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VEnseignement Mathématique, t. 32 (1986), p. 121-138

UN RÉSULTAT DE TARSKI

SUR LES ACTIONS MOYENNABLES DE GROUPES

ET LES PARTITIONS PARADOXALES

par Pierre de la Harpe et Georges Skandalis

Soit G un groupe agissant sur un ensemble non vide X. Une translation

par morceaux associée à cette action est une bijection y: S -> T où S et

T sont des parties de X, telle qu'il existe une partie finie {g±,—y9k}

de G avec yx g {g^x,..., gkx} pour tout x g S. Nous notons © l'ensemble de

ces translations par morceaux: c'est un pseudogroupe au sens défini plus bas.

On appelle partition paradoxale du G-ensemble X la donnée d une partition

X X1\\X2 et de bijections Jj'.X -» Xj appartenant au pseudogroupe

(j= 1,2). (Le signe U indique une réunion disjointe.) On appelle moyenne

invariante sur le G-ensemble X une fonction ji : ^ß(X) [0, 1] définie sur

l'ensemble des parties de X et satisfaisant

ÂX) 1,

p(SuT) \i{S) + p(T) pour S, T a X avec S n T 0
\i(gS) p(S) pour g g G et S a X

C'est l'évidence même qu'il ne peut exister à la fois une décomposition

paradoxale de X et une moyenne invariante sur X. Mais on a plus

précisément une alternative, ce qui est le résultat principal exposé dans ce

{ travail.

^ Théorème I. Si le G-espace X ne possède pas de moyenne invariante,

alors il admet une partition paradoxale.

1 Particularisons à l'exemple où G agit sur X G par multiplication
à gauche; dans ce cas, s'il existe une moyenne invariante, on dit que G

I est moyennable.

I Corollaire II. Pour qu'un groupe G soit non moyennable, il faut

I et il suffit qu'il admette une partition paradoxale, c'est-à-dire qu'il existe
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di —* Qk > G l s — 5 Qi e G et Sk, 5J c= G auec

G - U s,= U Si- C U „AW U »;s;Y
l<i<k l^j^l /

Au vocabulaire près, le théorème apparaît avec le numéro 16.12 (ii)
dans un livre mal connu de A. Tarski [T], reprenant des articles bien
antérieurs (1929 et 1938, cités dans [T]). Mais nous avons trouvé difficile
d'isoler dans [T] les idées essentielles pour la preuve. C'est ce qui nous a
engagé à proposer ici une preuve du théorème I et de quelques variantes.
Notre seul mérite éventuel est d'avoir rassemblé des arguments éparpillés
dans la littérature, mais aucun de ceux-ci n'est original. Les ingrédients
que nous utilisons sont

a) une invocation du théorème de Hahn-Banach (voir ci-dessous le
théorème 1),

b) un lemme essentiel de Kuratowski (lemme 8),

c) des manipulations à la Cantor-Bernstein (lemme 5).

De c) et de l'existence de sous-groupes libres non abéliens dans le groupe
SO(3) des rotations de l'espace usuel (voir le supplément au § XI de [Hf]),

on déduit facilement un second résultat (voir l'exemple 3 de notre section 5,

ou l'agréable exposition [DE]). C'est un énoncé spectaculaire du paradoxe de
Hausdorff, Banach et Tarski:

Théorème III. Etant donnés dans l'espace euclidien R3 une pomme U
et la lune V, il existe un entier n, des partitions U ]j V- et

lij^n
1

V II Vj,etdes déplacements euclidiens g1,...,gn de R3 avec
l^j^n

g(Uj) Vj pour j 1,..., n.

Nous voulons insister sur le fait suivant, concernant la partie non banale
du corollaire II, à savoir qu'un groupe non moyennable admet une partition
paradoxale .* la preuve dans le cas particulier ou G contient un sous-groupe
libre non abélien résulte d'une très simple observation, mais la seule preuve
que nous connaissons dans le cas général nécessite les trois ingrédients
a), b), c) évoqués plus haut.
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Plutôt que de nous restreindre d'entrée aux moyennes définies sur

<P(X), nous préférons considérer d'abord X comme fourni avec une algèbre ©

de parties de X (une algèbre est stable par réunions finies et par passage

au complémentaire, et contient X). De plus, il est avantageux de considérer

à priori un pseudogroupe © de transformations de (X, 33), comme défini

dans la section 1. Le formalisme des pseudogroupes permet d'importantes

simplifications d'écriture. Son avantage se voit aussi dans 1 étude des sous-

espaces (section 5) : un pseudogroupe © de transformations de (X, 33) définit

en effet canoniquement un pseudogroupe de transformations de (U, ©y)

avec

{y e (ù | y: S -> T avec S a U et T c U}

| et %u {S e 33 | S c U}

1 Après une section consacrée aux définitions et aux notations, les trois

sections suivantes étudient successivement les cas où

2) © est une algèbre,

; 3) © est une a-algèbre,

4) » ©(X).

Pour le dernier cas, le théorème 11 résume une partie des résultats obtenus.
1 La section 5 décrit quelques exemples classiques.

Nous remercions E. Bédos qui nous a signalé le livre de Tarski,
P. L. Aubert la thèse de Sherman sur la moyennabilité des groupes [Sh]
et J. Berney d'autres précisions bibliographiques. Nous renvoyons à [BH]

jpour l'intérêt du théorème I relativement à la notion de moyennabilité

I intérieure pour un groupe discret.

1. Définitions et notations

On se donne un ensemble non vide X et une algèbre © de parties de X.
Un pseudogroupe (5 de transformations de (X, ©) est un ensemble de

bijections y : S T, où S, T e ©, qui satisfait

i) l'identité X - X est dans (5 ;

ii) si y : S T est dans ©, l'inverse y-1 : T -* S l'est aussi;

iii) siy:S->Tet8:T U sont dans (5, le composé 8y : S -> U est dans (5 ;
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iv) si y : S -* T est dans © et si S' e 23 est contenu dans S, la restriction
de y à S' est dans © ;

v) soient S, T e 93 et cp : S ^ T une bijection ; s'il existe une partition
finie S =LI Sj avec Sj e 93, telle que chaque restriction cp | Sj soit dans ©,
alors cp e ©.

La condition iv) exprime que © est stable par localisation et v) par
recollement fini. La donnée de © contient celle de 93 vu les conditions i) et iv).

Deux parties S, T e 93 sont équivalentes modulo ©, ce qu'on note
S T (mod ©), s'il existe dans © une bijection de source S et de but T.
Une partie S e 93 est grande s'il existe 7\,TN e 93, chaque Tj étant
équivalent à une partie de S, avec X u 7"]; on obtiendrait la même
définition (vu la propriété iv)) en exigeant de plus que les Tj soient disjoints
deux à deux. (La partie S est grande si et seulement si X est S-borné au
sens de [RI], [R2].) Nous disons que le pseudogroupe © est faiblement
paradoxal s'il existe dans © deux bijections ayant X pour source qui sont
de buts disjoints, ce que nous abrégeons par

2X ^ X (mod ©).

Nous disons aussi, parfois et abusivement, que l'espace (X, 23) est faiblement
paradoxal.

Pour tout entier p ^ 1, on note Ip l'ensemble {1,..., p} et ©p le pseudogroupe

de toutes les bijections entre sous-ensembles de Ip. On note Xp
le produit direct X x Ip, qu'on munit de l'algèbre produit 93p 93 x ty(Ip).
Si © est comme ci-dessus, le produit direct ©p © x ©p est le pseudogroupe
de transformations de (Xp, 93p) engendré par les bijections

j S x {q} - T x {r}
I (x, q) i-> (yx, r)

où y : S - T est dans © et où q, r sont dans Ip. Nous disons que ©
est virtuellement paradoxal s'il existe un entier p ^ 1 tel que ©p soit
faiblement paradoxal. Notons ceci: lorsque r ^ p, on a Ir =d Ip, et (Xp, 93p)

est un sous-espace de (Xr,93r) sur lequel ©r induit précisément ©p. On
vérifie plus bas que, si ©^ est faiblement paradoxal, alors il en est de même
de ©r pour tout r ^ p (voir la remarque qui suit la proposition 3).

Le pseudogroupe © est moyennable s'il existe une moyenne ©-invariante
sur (X, 23), c'est-à-dire une application p : © -> [0, 1] telle que



PARTITIONS PARADOXALES 125

mW i,
H(SuT) n(S) + n(T) pour S, T e 95 avec n 0
|i(T) p(S) s'il existe y : S -> T dans ©

Nous désignons par /°°(X) l'espace de Banach des fonctions bornées à

valeurs réelles sur X avec la norme de la convergence uniforme, et par

r(X9 95) l'adhérence dans l°°(X) du sous-espace vectoriel engendré par les

fonctions caractéristiques des éléments de 93. Alors © est moyennable si et

seulement s'il existe une forme linéaire positive normalisée ©-invariante sur

r(X, 93), forme que nous notons aussi p. (Rappel de vocabulaire: p est

positive si p(/) ^ 0 pour tout / e lœ(X, 93) à valeurs positives ou nulles,

p est normalisée si p prend la valeur 1 sur la fonction constante de valeur 1,

et p est ©-invariante si p(/y) p(/) pour tout y : S -> T dans © et pour
tout / e l°°(X, 93) à support dans T.) Pour l'équivalence entre les deux

définitions de moyennabilité, voir le théorème 20.30 de [HS].
Etant donné un entier p ^ 1, on laisse au lecteur le soin de vérifier

que © est moyennable si et seulement si ©p l'est. Plus généralement, si

© agit sur (.X, 93) et si U e © est une grande partie de X, alors © est

moyennable si et seulement si ©c/ est moyennable. (Voir aussi la proposition

12.)

2. Paradoxes relatifs à une algèbre

On considère à nouveau un ensemble non vide X, une algèbre 93 de

parties de X, et un pseudogroupe © de transformations de (X, 93).

Théorème 1. Les conditions suivantes sont équivalentes :

i) © n'est pas moyennable ;

ii) © est virtuellement paradoxal

Preuve. S'il existe un entier p > 1 avec ©p faiblement paradoxal, il est

évident que ©p n'est pas moyennable, et par suite © n'est pas moyennable;
donc ii) implique i).

Notons dœ(X, 93) le sous-espace vectoriel de Ie0(X, 93) engendré par les

différences x — XY> avec J ' S ^ T dans © et % la fonction caractéristique
de T. Notons C le cône convexe ouvert de /°°(V, 93) formé des fonctions /
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pour lesquelles inf /(x) > 0. Une moyenne ©-invariante sur (.X, 93) est une

forme linéaire continue p sur 93), telle que la restriction p | dœ(X, 93)
soit nulle et telle que la restriction p | C soit à valeurs strictement positives.
En utilisant le théorème de Hahn-Banach, on en déduit que la condition i)
est équivalente à d(X, 93) n C # 0. On suppose donc que d°°(X, 93)
rencontre C, et il s'agit de montrer que ©p est faiblement paradoxal pour p
assez grand.

Comme C est ouvert, il existe des éléments yy. S} Tj dans © et des
nombres rationnels rij tels que la fonction

m- 1

L Mxj-Xjy.
j= 1

soit dans C, où désigne la fonction caractéristique de En remplaçant
quand il le faut y,- par y j1,onpeut rendre chaque positif. Quitte à
multiplier la fonction par un entier convenable, on peut aussi supposer
les rij entiers et la fonction minorée par la constante 1. En répétant les
y j,on peut enfin supposer tous les tij égaux à 1. On a donc

n- 1 n-1
1 + I XjJj < I Xj

7=1 7 =1

pour un entier n convenable. Notons %)= 1 - x/Yj la fonction caractéristique

de X — Sj et ajoutons les à l'inégalité précédente; comme
Xj ^ 1 et Xj ^ 1 on obtient

n- 1

» < fI (Xj+X-2.
7=1

On définit encore

Rf {(*, 3) e X2n-2 I q «S

qui est dans S2„_2 car c'est le sous-graphe de la fonction ©-mesurable /,
et on note n2: Rf-* Xlaprojection canonique. L'inégalité < / implique
Xn^Rf.

Soit <D: Xn j -> X2n-2 l'application injective définie par

®(*J) (jjX,2j-l) si xe Sjet (x, 2;) si

Notons 17 l'image de > et n1 :U-»X la projection canonique. Pour tout
ysX, le cardinal de ttj

1
(y) est précisément f(y). Vu le lemme qui suit,

il existe e ©2n_ 2 tel que le diagramme
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Xln-2—' -^n-1 —* U -+ Rj- CZ X2n-

'\ J"2

X

*n
n

f ^2n-2

commute.

Soit y la restriction à Xn de 0~lxF_1, qui est dans ©n. Soit Yi g (£>„

l'itéré y" de y; on a y(2fj <= Xn_1, de sorte que les ensembles Xn — Xn_±,
y(Xn—Xn_1\...,Yn~1(Xn—Xn_1),yn(Xn), sont disjoints. Définissons y2 e

par y2(x, q) yq~1{x, n). Alors y± et y2 ont des buts disjoints, et
est bien faiblement paradoxal.

L'existence de ¥ e ©2„_2 invoquée dans la preuve se justifie comme suit:

Lemme 2. On considère un entier p ^ 1 et deux parties U1,U2 de

Xp, dans ©p. On note Kj: Uj -> X la restriction à Uj de la projection
canonique Xp X x Ip — X(j= 1, 2), et on note (£p le pseudogroupe de

transformations de (Xp,3$p) engendré par les applications idx x a où a
est une bijection de Ip.

Si les cardinaux de tc^x) et n2\x) sont égaux pour tout xeX,
alors il existe ¥ e &p tel que le diagramme

U±^U2
*l\^ JJI2

X

commute.

Preuve. Il suffit de montrer le lemme lorsque U2 est tel que (x, q) g U2
implique (x, t) eU2 pour t 1,2,..., q (cas d'un sous-graphe). Toute bijection
U1 -> U2 faisant commuter le diagramme peut s'écrire (x, q) b-+ (x, r(x, q)).
Il en existe une, unique, pour laquelle toutes les fonctions q i— r(x, q)
sont croissantes, x étant dans l'image de %1 ; on la note W.

Pour tout t e {1,.., p], l'ensemble 5, {x g X | (x, t) g Uj] est dans 93,
donc sa fonction caractéristique %t est ©-mesurable. Comme r(x, q)
"

x
E &(*)> la fonction r est ©^-mesurable. Par suite l'application ¥ est

®n-mesurable.
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Etant donnés q, se Ip, l'ensemble

Aq,s {x eX| {x,q)eU1et *P(x, (x, s)}

est donc dans 93. Si xeÀq>s, alors *¥(x, q) (x, s). Ceci étant vrai pour
toute paire (q, s), il en résulte que

Le critère suivant peut faciliter la vérification qu'un pseudogroupe donné

est faiblement (ou virtuellement) paradoxal. Il est du même type que, par
exemple, le théorème 2.7 de [Sh].

Proposition 3. Si (5 est un pseudogroupe de transformations d'un espace

(X, 93), les conditions suivantes sont équivalentes :

i) (5 est faiblement paradoxal

ii) Il existe un entier n ^ 2 et des parties S±,..., Sn-1, Sn, T1?..., Tn_1

dans 93 avec

— les Sj sont disjoints deux à deux

— Sn est grand

— Tk est équivalent à une partie de Sk(k= 1,..., n— 1)

iii) Il existe y: X -> R dans © tel que X — R soit grand.

Preuve. L'implication i) =^> ii) est banale (avec n 2, T X et S1,S2
les buts des bijections de la définition).

Si ii) est vrai, on peut supposer de plus les Tk disjoints deux à deux:

sinon, on considère

T\ Tl9T'2 T2- Ti,..., r;_! Tri-1 - (T,u...UTh_2).

Supposons la condition ii) vérifiée, avec les Tk disjoints deux à deux.

Posons T u Tk, et choisissons dans © une bijection a de source T

et de but Sf ci u Sj, obtenue en recollant des éléments Tj -> S} c= Sj.

Posons R S' u (X— T), et notons y : X -> R la bijection qui coïncide avec a

sur T et avec l'identité sur X — T. La condition iii) est vérifiée, car

X — R contient la grande partie Sn.

Supposons enfin la condition iii) vérifiée. Comme X — R est grand,

il existe dans © des éléments dj'.Sj^Tj avec Sj a X — R et les Tj

disjoints deux à deux (j 1,..., N), tels que X U Tj. Les ensembles
l^j^N
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X - R, y{X —R),..., yN~1{X — R),yN(X)sont disjoints deux à deux. Posons

y' y", et soit y" la bijection de source X qui coïncide avec y* fôj)

sur Tj pour j 1,N. Comme les buts de y' et y" sont disjoints, © est

faiblement paradoxal. ^

Soient ret pdesentiers avec r>p ^ 1. Comme nous l'avons déjà

affirmé, il résulte de la proposition 3 que, si ©p est faiblement paradoxal,

alors ©r l'est aussi. Plus généralement, soit © un pseudogroupe de

transformations de (X,©) et soit Ue© une grande partie de X; si ©D est

faiblement paradoxal, alors (5 l'est aussi.

3. Paradoxes relatifs à une ct-algèbre

Un pseudogroupe © de transformations de (.X, 93), comme à la section 2,

est dit fortement paradoxal s'il existe Xl,X2 avec X Xx JJ X2 et

X^Xtmod©) 0 1, 2), ce que nous abrégeons par 2X X (mod (S).

Proposition 4. On suppose que 93 est une G-algèbre. Alors © est

faiblement paradoxal si et seulement si © est fortement paradoxal

Insistons sur le fait que (S est bien un pseudogroupe au sens précédent :

la condition v) de la section 1 concerne toujours des recollements finis,

même si 93 est stable par réunions infinies dénombrables.

Lemme 5. S'il existe T, T e 93 avec T n T 0 et y : X -+ T
dans (5, alors il existe y" : X X — T' dans ©.

Preuve. Posons U u y\T'\ de sorte que y(U) U — T'. On définit
k^O

y" g (5 de source X par y'x x si x e X — U et y"x yx si xe U. Le but
de y" est (X-U) u y(U) X - V.

Preuve de la proposition. Supposons (5 faiblement paradoxal: il existe

deux éléments y: X -> T et y' : X -» T' de (5 avec T n Tf 0. Alors y'
et l'élément y" du lemme 5 sont des bijections dans (5 ayant X pour source
et dont les buts forment une partition de X.
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Lorsque 53 est une a-algèbre, on peut donc dire sans ambiguïté que
(5 est paradoxal s'il l'est faiblement ou/et fortement. La condition ii) du
théorème 1 peut s'écrire : est paradoxal pour p assez grand.

Remarque 6. Le lemme 5 est équivalent à Vénoncé suivant, plus classique,
du type Cantor-Bernstein :

S'il existe 5 : S -> R et 5' : S" Rf dans © avec R c S' et R' c S,

alors S' S (mod ©).

Preuve. Posons y 5'ô : S - T et T S - R' ; on a T a R' c= S.

Par le lemme 5 (appliqué dans S), il existe dans (5 un élément y" : S - R'.
Par suite (ô')_1y": S -> S' est une équivalence dans (5.

Corollaire 7. On suppose que est une <j-algèbre. Soient
U, V,U',V'eSB des grandes parties avec U a U' et Va V. Si
et ($)v sont paradoxaux, alors U' V (mod ©).

Preuve. Il suffit de montrer que U' X (mod (5). Comme U est grand,
il existe un entier N et une bijection a :X x {1} - U1 dans (&N avec
U1 c= U x IN. Comme (5V est paradoxal, il existe ß: U x IN ^ U x {1}
dans La composition de a et ß fournit une bijection y: X T de ©
avec T cz U a U'. On conclut en utilisant le lemme 5 (avec T' X-U').

Notons que nous aurions pu formuler ce corollaire sans introduire U
et V, car U est grand dans U', et par suite est paradoxal vu la
dernière remarque de la section 2. Mais l'énoncé choisi correspond mieux à

l'utilisation en vue, pour l'exemple 3 de la section 5.

4. Paradoxes relatifs à l'algèbre de toutes les parties

On se donne un ensemble X et un pseudogroupe (5 de transformations
de X, ou plus précisément de (X, ^(X)). L'outil nouveau est un lemme de

Kuratowski [K].

Lemme 8. On se donne un ensemble X, deux partitions X 5 II T

u\A V, ainsi que deux bijections cp : S ^ T et \|r.U -> V. Alors il
existe deux partitions
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s= 0 Sj, LI Vj,
l^j<4

avec

Vl s,, v2 (P(S2), V3 MS3), ^(s4) •

Preuve. Considérons la bijection de X sur X qui coïncide avec 9

sur S et avec (p_1 sur T; c'est une transformation de X sans point fixe

et d'ordre 2, que nous notons encore (p. On étend de même \|/. Si

G (Z/2Z) * (Z/2Z) désigne le groupe diédral infini, <p et i|/ définissent une

action de G sur X.
Soit G0 le sous-groupe de G engendré par i|/q>, qui est cyclique infini

et normal dans G; soit Y X/G0 l'espace des orbites. Alors cp et \|/

induisent sur Y la même transformation, que nous notons p et qui satisfait

p2 idy. Cette transformation est sans point fixe: sinon, il existerait

xe X et ne Z avec cp(x) (\|/<p)"(x); or <PM><P)n est conjugué soit à cp (si n

est pair) soit à \|/ (si n est impair), donc n'a pas de point fixe par hypothèse

sur (p et \|/. Vu l'axiome du choix, il existe une partition Y Y' U Y"

telle que p échange Y' et Y". Si X X' U X" est la partition image inverse

par la projection canonique X -> Y, alors X' et X" sont échangés par 9
et par \|/.

La bijection a : S - X' définie par a(x) e {x, (p(x)} montre que S et X'
sont équivalents modulo le pseudogroupe engendré par 9, ce que nous

écrivons S X' (mod 9). De même X' V (mod \|/). Par suite S V (mod G).

Plus précisément, on pose

S± S nX' nV Vx

52 S nX" n 9(F) V2 T n X' n F

53 S n X' nU F3 \|/(S) n A" n F

54 SnI"n 9(G) F4 v|/(T) n X" n F

et on obtient l'affirmation du lemme.

«i
Remarques.

Il)
Le nombre 4 apparaissant dans le lemme 8 est le minimum possible [U].

2) La preuve ci-dessus est une variante de celle de Kuratowski. Le lemme

résulte d'un travail de König datant de 1916; voir le § 5 de [Kö].
3) La preuve montre ceci: étant données deux actions sans point fixe

du groupe à deux éléments sur X, il existe un domaine fondamental commun

X S, u 9(S2) u S3 u 9(S4) F1uF2U ^~1(F3) U y\f~\V4)
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L'analogue mesurable de l'affirmation de la remarque 3 n'est pas correct,
comme le montre l'exemple suivant.

On considère le cercle unité S1 du plan complexe et deux réflexions cp,

v|/ de S1 relatives à deux diamètres dont l'angle est un multiple irrationnel
de tu. Soit X l'espace S1 privé de l'ensemble dénombrable constitué par
les points fixes des transformations ((cp\)/)wcp)„eZ ; on munit X de la a-algèbre
des ensembles mesurables au sens de Lebesgue. Il n'existe pas de sous-
ensemble mesurable X' c= X qui soit un domaine fondamental pour {idz, (p}

et {idx,\|/}: en effet, un tel X' serait invariant par la transformation
ergodique \|/cp, ce qui est absurde, car cp et \J/ préservent la mesure de

Lebesgue.

Proposition 9. Si 0 est un pseudogroupe de transformations de X jj

relatif à la a-algèbre de toutes les parties, alors (5 est virtuellement [

paradoxal si et seulement si (5 est paradoxal \

Preuve. On suppose (£> virtuellement paradoxal, c'est-à-dire ($p paradoxal L

pour un entier convenable p. En remplaçant au besoin p par un entier ;

plus grand, on se ramène au cas d'une puissance de 2. Modulo une induction
évidente, il suffit donc de considérer le cas p 2.

L'hypothèse que X2 est paradoxal signifie qu'il existe une partition j

X2 U LJ V avec U X2 (mod ß>2) et V X2 (mod (ö2). En posant &

S I x {1} et T I x {2}, on obtient évidemment X2 S ]J T avec ;

S= T(mod(ö2). Le lemme 8 montre que S F(mod©2), donc que j.

X2 X (mod (ö2). Cette dernière équivalence signifie précisément que X est :

paradoxal. |
Notons que notre proposition 9 résulte immédiatement du théorème 11 |

et du corollaire 12 de [BT].

Corollaire 10. Soit © comme à la proposition 9. Si (5 est paradoxal,
deux grandes parties S, S' de X sont toujours équivalentes modulo (S.

Preuve. Vu le corollaire 7, il suffit de montrer que (Ss est paradoxal

pour toute grande partie S de X.
Comme S est grand, il existe un entier N tel que X x {1} soit équivalent

modulo (&N à une partie de S x IN SN. Comme © est paradoxal, (5Sn l'est

aussi (dernière remarque de la section 2); en d'autres termes, (5S est

virtuellement paradoxal. La proposition 9 montre que (Ss est paradoxal.

On a donc :
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Théorème 11. Soit © un pseudogroupe de transformations d'un ensemble

non vide X,relatif à l'algèbre $(X) de toutes les parties de X. Les

conditions suivantes sont équivalentes :

i) © n'est pas moyennable.

ii) Il existe un entier n>2 et des parties St1,Sn,T1, T„_ i
de X avec

— les Sj sont équivalents deux à deux,

— Sn est grand,

— Tk est équivalent à une partie de Sk(k= 1,..., n-1),

-( U S;W " 7,Y

iü) © est (fortement) paradoxal: il existe une partition X X1\}X2
avec Xj X(mod ©).

De plus, si ces conditions sont satisfaites, alors deux grandes parties quelconques

de X sont équivalentes modulo

On connaît d'autres conditions équivalentes: voir par exemple [RI]

pour des conditions à la F01ner. Voir aussi le corollaire 3.5 de [R2].

toute action d'un groupe de génération finie et de croissance sous-exponentielle

est moyennable.

5. Un développement et quelques exemples classiques

i Soit (b un pseudogroupe de transformations d'un espace (X, 93) donné

r avec un sous-ensemble non vide U g 53. (Le cas étudié plus haut correspond
1

à U—X) Rappelons que nous notons (5V le pseudogroupe de transformations

de (U, ïïu) défini par ©. On appelle moyenne invariante pour le système

(X, U, S, ®) une fonction p: 93 -> [0, oo] telle que

m 1,

\i(SkjT) \i(S) + p(T) pour S, T e 93 avec S n T 0
Ix(T) p(S) s'il existe y : S ^ T dans ©

La notion est due à von Neumann [vN].
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Proposition 12. On reprend les notations ci-dessus. Pour qu'il existe une
moyenne invariante pour (X, U, ©, (5), il faut et il suffit que ©„ soit
moyennable.

Preuve. Supposons qu'il existe une moyenne p: ©„ ->• [0,1] invariante
par ©y. Soit Se©; s'il existe une ©-partition U Sj, des sous-

ensembles U1,..., Un de U et des éléments yySj -> U} dans © pour; 1,n,
n

on pose p*(S) £ p(Uj); dans le cas contraire, on pose px(S) oo. On

vénfie que \xx:© ->• [0, oo] est une moyenne invariante pour (X, U, ©, ©).
L implication réciproque est (encore plus) banale.

Avec les notations de la preuve, on peut remarquer que px(X) < oo
si et seulement si la partie U est grande dans X.

Terminons en décrivant quelques exemples bien connus d'espaces
paradoxaux.

Exemple 1 : groupes libres agissant librement

On considère le groupe libre non abélien F2 à deux générateurs a et b,
qui agit sur lui-même par multiplication à gauche. Grâce à la proposition 3,
on s assure que 1 espace obtenu est paradoxal (au sens faible) en considérant le
sous-ensemble Sde F2, constitué par les mots réduits de la forme a"w
avec n e Z, n ^ 0, w quelconque: en effet bS, b2S sont disjoints deux à deux,
et 5 u aS F2.

On peut vérifier la paradoxalité forte sans l'aide de la proposition 4.
Notons Xj le sous-ensemble de F2 contenant les puissances a" de a
(où neZ) et les mots réduits de la forme a"w avec Z, n ^ 0, w 0.
Le complémentaire X2 de X y consiste en les mots réduits de la forme b"w
avec neZ, n̂0,w quelconque. On peut définir (presque comme dans [C])
deux bijections cp,-: F2 -> X,(/=l, 2)

<Pi(éO

<P2(0)

g si g an avec ne Z
ou g anw avec n > 0,

a'1g sinon,

si g bnw avec n > 0.

b xg sinon,

qui montrent que le F2-espace F2 est fortement paradoxal.
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Il en résulte que le groupe F2 n'est pas moyennable.

Plus généralement, tout ensemble X sur lequel F2 agit librement est

paradoxal (voir [vN], page 82). En effet, on peut choisir un domaine

fondamental Tel pour l'action, de sorte que X et F2 x T sont isomorphes

en tant que F2-espaces (avec F2 agissant par multiplications à gauche sur le

premier facteur de F2 x T, et trivialement sur le second). Par suite, à tout para-

doxe dans F2 constitué de bijections y,-: F2 -s- T1,2), on peut associer un

paradoxe dans F2 x T constitué des bijections yj x idr(j l, 2).

Comme exemples d'actions libres de F2, citons :

j 1) La multiplication à gauche dans un sur-groupe de F2.

I 2) Les actions de F2 sur les sphères S2n+1(n^l) construites par Deligne et

Sullivan [DS].
Exemple 2 : groupes libres agissant avec isotropics abéliennes

Considérons d'abord l'action de F2 sur F2 - {1} par automorphismes

intérieurs. L'espace obtenu est paradoxal : en effet, si S est l'ensemble des mots

réduits non vides de la forme akwal avec k, l e Z et k,l ^ 0, alors

1) Su aSa_1 u a~1Sa F2 — {1}

2) VSb-t n bkSb~k 0 k e Z, j±k.
Notons qu'on a de plus S-1 S. Vu 1) et 2), il n'existe pas de moyenne

invariante sur F2 - {1}: on dit que F2 n'est pas intérieurement moyennable.

Plus généralement, tout ensemble Z, sur lequel F2 agit de telle sorte

que les groupes d'isotropie sont abéliens, est paradoxal. Notons I(z) le

groupe d'isotropie d'un point zeZ pour une telle action, et posons

X {zeZ\I{z) {1}}, Y Z-X.
Vu l'exemple 1, il suffit de vérifier que le F2-espace Y est paradoxal.

C Pour tout y e Y, le groupe I(y) est infini cyclique; on en choisit un géné-

| rateur c(y).

j Notons que

c(gy) 6 {gc(y)g~\ gc(y)~

pour tout g e F2 et pour tout y g 7. Posons

U {yEY\dy)ES}.
Les parties aU, U, a~1U recouvrent Y par 1) et les parties tiU sont disjointes
deux à deux (JeZ) par 2). Donc Y est paradoxal par une application
immédiate de la proposition 3.
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Mentionnons avant l'exemple 3 deux autres exemples d'actions de F2
à isotropics abéliennes

morphe à F2 (exemple 1 de [He]), donc F2 agit naturellement sur Z © Z
moins l'origine. Cette action est paradoxale.

2) Soient G un groupe et H un sous-groupe libre non abélien de G.

On suppose que le centralisateur Ig {h e H | gh hg} est abélien pour tout
g g G avec g # 1. Alors l'action de H sur G — {1} par automorphismes
intérieurs est paradoxale.

Nous avons retrouvé ainsi la proposition 4 et l'exemple 5 de [Ak]:
le groupe G de 2) n'est pas intérieurement moyennable, et en particulier
le produit semi-direct de F2 par Z © Z défini par l'action de 1) n'est pas
intérieurement moyennable.

Exemple 3 : déplacements euclidiens d'un domaine du système solaire

On se donne un ouvert borné E de l'univers, contenant la lune et une

pomme.
Soit B une boule de E de centre b. Dans l'action sur B — {b} du

groupe des rotations £0(3), tous les groupes d'isotropie sont abéliens. Or
£0(3) contient un sous-groupe isomorphe à F2 (voir [Hf], ou [He]). Donc
B — {b} est paradoxal pour £0(3).

Si © désigne le pseudogroupe des déplacements euclidiens de E, toute
partie X c= E d'intérieur non vide contient une grande partie B — {b}.
Deux parties de E d'intérieurs non vides sont donc ©-équivalentes par le

corollaire 7: c'est le théorème III de l'introduction. Observons que, des

sections précédentes, nous n'avons utilisé que la proposition. 3, le lemme 5

et le corollaire 7, qui sont indépendants du reste.

La même situation prévaut sur une sphère: la surface de mon jardin
est équivalente à celle de Rome modulo le (pseudo)groupe des rotations,
contrairement à l'opinion qui apparaît à la page 18 de [GU]. En revanche,
le pseudogroupe des déplacements d'un ouvert borné du plan euclidien est

moyennable. Nous ignorons s'il a jamais été fait usage d'un argument basé

sur ces faits dans la controverse sur la rotondité de la terre.

1) Le sous-groupe de £L(2, Z) engendré par

Remarque. Dans les exemples qui précèdent, l'existence de paradoxes est

liée à la présence de groupes libres non abéliens.



PARUTIONS PARADOXALES 137

Considérons plus particulièrement un groupe G, agissant sur lui-même

par multiplication à gauche. La question suivante apparaît implicitement

dans [vN] et explicitement dans [K2]: l'existence d'un sous-groupe de G

isomorphe à F2 est-elle équivalente à l'existence d'une décomposition

paradoxale du G-espace G (i.e. à la non moyennabilité de G)?

La réponse semble être non: il existe des groupes paradoxaux (i.e. non

moyennables) sans sous-groupe libre. C'est par exemple le cas des groupes

de Burnside 5(2, p)pour p impair et p assez grand, où 5(2, p) est le quotient

du groupe libre F2 par les relations (wp=l)wsF2: voir [O] et [Ad].

i
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