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L’ Enseignement Mathématique, L. 32 (1986), p. 121-138

UN RESULTAT DE TARSKI
SUR LES ACTIONS MOYENNABLES DE GROUPES
ET LES PARTITIONS PARADOXALES

par Pierre DE LA HARPE et Georges SKANDALIS

Soit G un groupe agissant sur un ensemble non vide X. Une translation
par morceaux associée a cette action est une bijection y: S —» T ou S et
T sont des parties de X, telle quil existe une partie finie {g1, - gu}
de G avec yx € {g;X, .., gpX} pour tout x € S. Nous notons ® P'ensemble de
ces translations par morceaux: c’est un pseudogroupe au Sens défini plus bas.
On appelle partition paradoxale du G-ensemble X la donnée d’une partition
X = X, [] X, et de bijections v;: X — X appartenant au pseudogroupe
(j=1, 2). (Le signe ][] indique une réunion disjointe.) On appelle moyenne
invariante sur le G-ensemble X une fonction p: P(X) — [0, 1] définie sur
Pensemble des parties de X et satisfaisant

px) =1,
wSuT) = w(S) + (T) pour S, Tc X avec SN T = OR
u(gS) = n(S) pour geGetScX.

Cest I'évidence méme qu’il ne peut exister & la fois une décomposition

paradoxale de X et une moyenne invariante sur X. Mais on a plus
~ précisément une alternative, ce qui est le résultat principal exposé dans ce
© travail.

THEOREME 1. Si le G-espace X ne posséde pas de moyenne invariante,
i alors il admet une partition paradoxale.

& Particularisons 4 Pexemple ou G agit sur X = G par multiplication
: 8 o gauche; dans ce cas, sl existe une moyenne invariante, on dit que G
B cst moyennable.

CorROLLAIRE II. Pour qu'un groupe G soit non moyennable, il faut
et il suffit quil admette une partition paradoxale, C’est-d-dire qu’il existe
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/ /
91> 9> 91,--91€G et Sy,.,8,8),.,8, < G avec

=1 s,= I s;,= <LI g,S>H( [ g’,-S;).
1<i<k 15j=1 1< 1<j=1

Au vocabulaire prés, le théoréme apparait avec le numéro 16.12 (i1)
dans un livre mal connu de A. Tarski [T], reprenant des articles biené
antérieurs (1929 et 1938, cités dans [T]). Mais nous avons trouvé difficile
d’isoler dans [T] les idées essentielles pour la preuve. Clest ce qui nous a |
engagé a proposer ici une preuve du théoréme I et de quelques variantes. |
Notre seul mérite éventuel est d’avoir rassemblé des arguments éparpillés |
dans la littérature, mais aucun de ceux-ci n’est original. Les ingrédients
que nous utilisons sont

a) une invocation du théoréme de Hahn-Banach (voir ci-dessous le !
théoréme 1), '

b) un lemme essentiel de Kuratowski (lemme 8),
c) des manipulations 4 la Cantor-Bernstein (lemme 5).

De c) et de Iexistence de sous-groupes libres non abéliens dans le groupe
SO(3) des rotations de I'espace usuel (voir le supplément au § XI de [Hf]), |
on deduit facilement un second résultat (voir 'exemple 3 de notre section 5,
ou l'agreable exposition [DE]). C’est un énoncé spectaculaire du paradoxe de
Hausdorff, Banach et Tarski :

TueoREME III.  Etant donnés dans lespace euclidien R® une pomme U

et la lune V, il existe un entier n, des partitions U = ]_[ U; et
1<j<n £
v =1l Vi, et des déplacements euclidiens g,,..,g, de R®> avec
1<j<n ‘

gU;) = V; pour j=1,.,n

J

Nous voulons insister sur le fait suivant, concernant la partie non banale
du corollaire II, a savoir qu’un groupe non moyennable admet une partition
paradoxale: la preuve dans le cas particulier ou G contient un sous- -groupe
libre non abélien résulte d’une trés simple observation, mais la seule preuve
que nous connaissons dans le cas général nécessite les trois ingrédients
a), b), ¢) évoqués plus haut.
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Plutdt que de nous restreindre d’entrée aux moyennes deﬁmes sur
B(X), nous préférons considérer d’abord X comme fourni avec une algébre B
@ de parties de X (une algebre est stable par réunions finies et par passage
-ﬁ—{ au complémentaire, et contient X). De plus, il est avantageux de considérer
s priori un pseudogroupe ® de transformations de (X, B), comme défini
dans la section 1. Le formalisme des pseudogroupes permet d’importantes
4 simplifications d’écriture. Son avantage se voit aussi dans I’étude des sous-
espaces (section 5): un pseudogroupe & de transformations de (X, B) définit
en effet canoniquement un pseudogroupe ®, de transformations de (U, By)
E } avec

Gy = {ye®|y:S—> T avec Sc Uet T c U}
§et B, = {SeB|S c U}.

Aprés une section consacrée aux définitions et aux notations, les trois
. sections suivantes étudient successivement les cas ou

2) B est une algebre,

:3) B est une c-algebre,

4 B = PX).
‘Pour le dernier cas, le théoréme 11 résume une partie des résultats obtenus.
"La section 5 décrit quelques exemples classiques.

Nous remercions E. Bédos qui nous a signalé¢ le livre de Tarski,
~P.L. Aubert la thése de Sherman sur la moyennabilité des groupes [Sh]
et J. Berney d’autres précisions bibliographiques. Nous renvoyons a [BH]
épour Iintérét du théoréme I relativement a la notion de moyennabilité
%mterzeure pour un groupe discret.

.

i

1. DEFINITIONS ET NOTATIONS

On se donne un ensemble non vide X et une algebre B de parties de X.
Un pseudogroupe ® de transformations de (X, B) est un ensemble de
bijections y: S — T, ou S, T € B, qui satisfait

| 1) lidentité X — X est dans G;
i) siy:S — T est dans ®, Pinverse y~: T — S lest aussi;

i) siy:S — Tetd: T — U sont dans ®, le composé &y: S — U est dans G ;
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iv) si y:S — T est dans ® et si S'e B est contenu dans S, la restriction
de y a §" est dans ®;

v) soient §,TeB et ¢:S - T une bijection; s’il existe une partition
finieS =[] S javec S; € B, telle que chaque restriction @ | S; soit dans ®,
alors @ € 6.

La condition iv) exprime que ® est stable par localisation et v) par recol-
lement fini. La donnée de ® contient celle de B vu les conditions i) et iv).

Deux parties S, T €B sont équivalentes modulo ®, ce quon note
S = T (mod ®), s’il existe dans ® une bijection de source S et de but T.
Une partie S € B est grande s’il existe Ty, .., Ty € B, chaque T étant équi-
valent & une partie de S, avec X = U T;; on obtiendrait la méme défi-
nition (vu la propriété iv)) en exigeant de plus que les T; soient disjoints
deux a deux. (La partie S est grande si et seulement si X est S-borné au
sens de [R1], [R2].) Nous disons que le pseudogroupe & est faiblement
paradoxal 'l existe dans ® deux bijections ayant X pour source qui sont

de buts disjoints, ce que nous abrégeons par

2X < X (mod 6).

Nous disons aussi, parfois et abusivement, que 'espace (X, B) est faiblement
paradoxal.

Pour tout entier p > 1, on note I, I'ensemble {1, .., p} et €, le pseudo-
groupe de toutes les bijections entre sous-ensembles de I,. On note X,
le produit direct X x I,, qu’on munit de I'algébre produit B, = B x P )
Si ® est comme ci-dessus, le produit direct ®, = & x €, est le pseudogroupe
de transformations de (X,, B,) engendré par les bijections

S x{q}->T x {r}
(%, g) — (yx, 7)

ou y:S — T est dans ® et ou g,r sont dans I,. Nous disons que ®
est virtuellement paradoxal §’il existe un entier p > 1 tel que G, soit fai-
blement paradoxal. Notons ceci: lorsque r > p, on a I, o I, et (X,, B,)
est un sous-espace de (X,,%B,) sur lequel ®, induit précisément ,. On
vérifie plus bas que, si ®, est faiblement paradoxal, alors il en est de méme
de ®, pour tout r > p (voir la remarque qui suit la proposition 3).

Le pseudogroupe ® est moyennable s’il existe une moyenne ®-invariante
sur (X, B), c’est-a-dire une application p: B — [0, 1] telle que
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ux) =1,
wSuT) = wS) + u(T) pour S, TeB avec SNnT =@,
wT) = w(S) silexiste y:S — T dans &.

Nous désignons par [°(X) l'espace de Banach des fonctions bornées a
valeurs réelles sur X avec la norme de la convergence uniforme, et par
1°(X, B) I'adhérence dans [°(X) du sous-espace vectoriel engendré par les
fonctions caractéristiques des éléments de B. Alors ® est moyennable si et
seulement s’il existe une forme linéaire positive normalisée ®-invariante sur
I*(X, B), forme que nous notons aussi p. (Rappel de vocabulaire: p est
positive si p(f) > 0 pour tout f el®(X,B) a valeurs positives ou nulles,
i est normalisée si p prend la valeur 1 sur la fonctien constante de valeur 1,
et p est ®-invariante si p(fy) = p(f) pour tout y: S — T dans ® et pour
tout f €1°(X, B) a support dans T.) Pour I'équivalence entre les deux défi-
nitions de moyennabilité, voir le théoréme 20.30 de [HS].

Ftant donné un entier p > 1, on laisse au lecteur le soin de vérifier
que ® est moyennable si et seulement si &, l'est. Plus généralement, si
® agit sur (X,B) et si UeB est une grande partie de X, alors ® est
moyennable si et seulement si &, est moyennable. (Voir aussi la propo-
sition 12.)

2. PARADOXES RELATIFS A UNE ALGEBRE

On considére a nouveau un ensemble non vide X, une algebre B de
parties de X, et un pseudogroupe ® de transformations de (X, B).

THEOREME 1. Les conditions suivantes sont équivalentes :
1) & nr’est pas moyennable;

1) ® est virtuellement paradoxal.

Preuve. S’il existe un entier p > 1 avec G, faiblement paradoxal, il est
_ évident que ®, n’est pas moyennable, et par suite ® n’est pas moyennable;
~ donc ii) implique 1).

Notons d®(X, B) le sous-espace vectoriel de [*(X, B) engendre par les
& | différences y — xy, avec y: S —» T dans ® et x la fonction caractéristique
Sl dc T. Notons C le cone convexe ouvert de [°(X, B) forme des fonctions f

-
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&
pour lesquelles inf f(x) > 0. Une moyenne ®-invariante sur (X, B) est une '

xeX ¢

forme linéaire continue p sur I°(X, B), telle que la restriction p|de(X, B)
soit nulle et telle que la restriction i | C soit a valeurs strictement positives.
En utilisant le théoréme de Hahn-Banach, on en déduit que la condition i) |
est équivalente 4 d°(X,B) N C # @. On suppose donc que d®(X, B) ren-
contre C, et il s’agit de montrer que ®, est faiblement paradoxal pour p i
assez grand. |
Comme C est ouvert, il existe des éléments v;:S; = T; dans G et des |
nombres rationnels n; tels que la fonction |

-m—l
Z nj(Xj_Xij)
j=1
soit dans C, ou y; désigne la fonction caractéristique de T;. En remplagant 1
quand il le faut y; par y; !, on peut rendre chaque n; positif. Quitte a
multiplier la fonction par un entier convenable, on peut aussi supposer
les n; entiers et la fonction minorée par la constante 1. En répétant les
Yj» on peut enfin supposer tous les n; égaux a 1. On a donc
n—1

n—1
L+ 2 < X %
ji=1 ji=1
pour un entier n convenable. Notons X; = 1 — x;v; la fonction caracté-
ristique de X — S; et ajoutons les X; a linégalité précédente; comme 1
x; < lety; <1 on obtient

n—1
n< f = .Zl(x,-+x;-)<2n—2.
=

On définit encore

Ry = {(%.9) € X203 14 < [0} | i

qui est dans B,,_, car c’est le sous-graphe de la fonction B-mesurable f,
et on note 7,: R, — X la projection canonique. L’inégalité n < f implique
X n - R fe '

Soit ®: X, ; — X,,_, lapplication injective définie par

O(x,j) = (yx, 2j—1) si xe§; et Dx,j) = (x,2) si X¢ES;.

Notons U I'image de @ et n,: U —» X la projection canonique. Pour tout
ye X, le cardinal de w1 '(y) est précisément f). Vu le lemme qui suit,
il existe ¥ € ®,,_, tel que le diagramme '
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X
N
Xon-2 > Xy SUS Ry Xpps

nl\X/nz

n

1 commute.

: Soit y la restriction a X, de ® ¥~ !, qui est dans ®,. Soit v, € ©,
5 litéré y" de v; on a y(X,) = X,_,, de sorte que les ensembles X, — X,_;,
VX —Xpo1)s o Y M X, —X,— 1), Y(X,), sont disjoints. Définissons y, € ,
? par y,(x,q) = v '(x,n). Alors y, et y, ont des buts disjoints, et &,
est bien faiblement paradoxal. |

L’existence de ¥ € &,,_, invoquée dans la preuve se justifie comme suit:
2n—2

LEMME 2. On considére un entier p > 1 et deux parties U,,U, de
X,, dans B,. Onnote m;:U; > X la restriction a U; de la projection
canonique X, = X x I, > X(j=1,2), et on note €, le pseudogroupe de
 transformations de (X ,,B,) engendré par les applications idy x 6 od o
est une bijection de I,.

Si les cardinaux de my'(x) et m;'(x) sont égaux pour tour xe X,
alors il existe W e €, tel que le diagramme

U, > U,

1:1\ / n

commute.

| z Preuve. 11 suffit de montrer le lemme lorsque U, est tel que (x, q) e U,
|} § implique (x, ) e U, pour t = 1,2, .., q (cas d’un sous-graphe). Toute bijection
U; —» U, faisant commuter le diagramme peut s’écrire (x, @) = (x, r(x, g)).
| II en existe une, unique, pour laquelle toutes les fonctions g r(x, q)
R 8 sont croissantes, x étant dans I'image de 7, ; on la note V.

‘ Pour tout te{l, .., p}, I'ensemble S, = {xeX|(x,t)e U;} est dans B,
I donc sa fonction caractéristique x, est B-mesurable. Comme r(x, q)

| = 1<Z< X{x), la fonction r est B ,-mesurable. Par suite I'application ¥ est
Itxg

| B ,-mesurable.
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Etant donnés ¢, s € I,,, 'ensemble
= {XEX | (xa q) € Ul et IP(xa q) = (X, S)}

est donc dans B. Si xe 4, ,, alors ¥(x, g) = (x,s). Ceci étant vrai pour
toute paire (g, s), il en résulte que ¥ € €. ]

Le critére suivant peut faciliter la vérification qu’un pseudogroupe donné
est faiblement (ou virtuellement) paradoxal. Il est du méme type que, par
exemple, le théoreme 2.7 de [Sh].

PropPoOSITION 3. Si & est un pseudogroupe de transformations d’un espace
(X, B), les conditions suivantes sont équivalentes :

i) ® est faiblement paradoxal.

ii) Il existe un entier n =2 et des partieS Sy, .. Sp—158p5 L1 s Ty
dans B avec
— les S; sont disjoints deux a deux
— S, est grand
— T, est équivalent d une partie de Syk=1,..,n—1)

—(H Sj>c< U Tk>.
1<j<n 1<’f<"_1 A

iii) Il existe y:X — R dans & telque X — R soit grand.

Preuve. L’implication i) = ii) est banale (avec n=2, T=X et 5,8,
les buts des bijections de la définition).

Si ii) est vrai, on peut supposer de plus les T, disjoints deux a deux:
sinon, on considere

,1'= Tl’ - T2 - T]_,..., = Tn 1 (T]_U...UTn_z).

Supposons la condition ii) vérifiée, avec les T, disjoints deux a deux.

Posons T = U T,, et choisissons dans ® une bijection o de source T
1<k<n—1

et de but §' < U §;, obtenue en recollant des €léments T; —» S < §;.
1<j<n—1 ' ’

Posons R = §' U (X—T), et notons v: X — R la bijection qui coincide avec o

sur T et avec lidentit¢é sur X — T. La condition iii) est vérifie, car

X — R contient la grande partie S,,. ;
Supposons enfin la condition iii) vérifiée. Comme X — R est-grand,

il existe dans G des éléments 3;:S; » T; avec §; = X — R et'les T;

disjoints deux & deux (j=1, .., N), tels que X = ]_[ T;. Les ensembles

ISJSN

|
4
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X — R, Y(X—R), .. Y "Y(X —R), y"(X) sont disjoints deux a deux. Posons
y = YV, et soit y” la bijection de source X qui coincide avec Y E)
| sur T, pour j = 1,.., N. Comme les buts de v' et y" sont disjoints, & est
O

;faiblement paradoxal.

Soient r et p des entiers avec r>p > 1. Comme nous l'avons déja
affirmé, il résulte de la proposition 3 que, si ®, est faiblement paradoxal,
“alors ®, Pest aussi. Plus généralement, soit ® un pseudogroupe de trans-
formations de (X, B) et soit U e B une grande partie de X; si ®y est
faiblement paradoxal, alors ® I'est aussi.

3. PARADOXES RELATIFS A UNE G-ALGEBRE

Un pseudogroupe ® de transformations de (X, %B), comme a la section 2,

est dit fortement paradoxal sil existe X, X, avec X = X, ][] x, et
" X; = X (mod ®) (j=1,2), ce que nous abrégeons par 2X = X (mod ©).

PROPOSITION 4. On suppose que B est une c-algébre. Alors ® est
faiblement paradoxal si et seulement si ® est fortement paradoxal.

Insistons sur le fait que ® est bien un pseudogroupe au sens précédent:
la condition v) de la section 1 concerne toujours des recollements finis,
méme si B est stable par réunions infinies dénombrables.

LEMME 5. Sl existe T, T'e®B avec TnT =@ e v:X->T

% dans ®, alors il existe y":X - X — T' dans ©.
g Preuve. Posons U = U yXT"), de sorte que y(U) = U — T'. On définit
| & k=0

7" € ® de source X par Yx = xsixe X — U et y'x = yx si xe U. Le but
RF dey est X—-U)uyU) =X — T O

Preuve de la proposition. Supposons & faiblement paradoxal: il existe
| deux éléments y: X > T et y¥: X - T de ® avec Tn T = . Alors ¥
et ’élément v du lemme 5 sont des bijections dans ® ayant X pour source
et dont les buts forment une partition de X. O
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Lorsque B est une oc-algébre, on peut donc dire sans ambiguité que
® est paradoxal s'il Test faiblement ou/et fortement. La condition i1) du
théoréme 1 peut s’écrire: ®, est paradoxal pour p assez grand.

REMARQUE 6. Le lemme 5 est équivalent a I'énoncé suivant, plus classique, v’
du type Cantor-Bernstein:
S’il existe 6:S > R et &:5S > R dans ® avec R S’ et R < S, |
alors §' = S (mod 6). ]
Preuve. Posons v =88:S—>T et T"=S—R;ona TcPR < S |

Par le lemme 5 (appliqué dans S), il existe dans & un élément Y":S > R. ¢
Par suite (§') " 'y": S — S’ est une équivalence dans ®. ] f

COROLLAIRE 7. On suppose que B est une c-algébre. Soient
U V,U, V' e€B des grandes parties avec U U et V < V. Si G, |
et ®, sont paradoxaux, alors U’ = V' (mod 6).

Preuve. 1l suffit de montrer que U’ = X (mod ®). Comme U est grand,
il existe un entier N et une bijection o:X x {1} - U, dans ®, avec ||

U, €U x Iy. Comme G est paradoxal, il existe B: U x Iy —» U x {1} ¢l

dans ®y. La composition de a et B fournit une bijection y: X - T de &
avec T = U = U". On conclut en utilisant le lemme 5 (avec T'=X—U").

[]

Notons que nous aurions pu formuler ce corollaire sans introduire U
et V, car U est grand dans U’, et par suite G, est paradoxal vu la der- ,:
niére remarque de la section 2. Mais I'énoncé choisi correspond mieux a |
I'utilisation en vue, pour I'exemple 3 de la section 5. 1

4. PARADOXES RELATIFS A L’ALGEBRE DE TOUTES LES PARTIES

On se donne un ensemble X et un pseudogroupe ® de transformations
de X, ou plus précisément de (X, P(X)). L’outil nouveau est un lemme de
Kuratowski [K].

LEMME 8. On se donne un ensemble X, deux partitions X = § [T

= Ull V, ainsi que} deux bijections @:S—>T et Y:U - V. Alors il
existe deux partitions
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s= s, v= U v,

5 1sjs4 1<j<4

5; avec

V=28, V.= o(S2), Vi = Y(Ss), V= Vo(S,) -

: Preuve. Considérons la bijection de X sur X qui coincide avec @
sur S et avec ¢ ! sur T; cest une transformation de X sans point fixe
et dordre 2, que nous notons encore . On étend de méme V. Si
G = (Z/2Z) * (Z/2Z) désigne le groupe diédral infini, ¢ et { définissent une
- action de G sur X. |

| Soit G, le sous-groupe de G engendré par Vo, qui est cyclique infini
" et normal dans G; soit Y = X/G, lespace des orbites. Alors ¢ et ]
induisent sur Y la méme transformation, que nous notons p et qui satisfait
p? = idy. Cette transformation est sans point fixe: sinon, il existerait
xeX et neZ avec ¢(x) = (Y@)*(x); or e(Pe)" est conjugué soit a ¢ (st n
est pair) soit & \s (si n est impair), donc n’a pas de point fixe par hypothese
sur @ et . Vu laxiome du choix, il existe une partition ¥ = Y’ 1y
telle que p échange Y’ et Y". Si X = X' [] X est la partition image inverse
par la projection canonique X — Y, alors X' et X" sont échangés par @
et par \.

La bijection a:S — X' définie par a(x) € {x, ¢(x)} montre que S et X
sont équivalents modulo le pseudogroupe engendré par ¢, ce que nous
écrivons S = X' (mod ¢). Deméme X’ = V (mod V). Par suite S = V (mod G).
Plus précisément, on pose |

S1=SﬂX'(\V=V1

S, =SnX"n o) V,=TnX'nV
S3=8SnX'nU Va=VYS) n X" nV
S, =SnX"n o) Vo=UWT)n X"V
et on obtient 'affirmation du lemme. =
Remarques.

1) Le nombre 4 apparaissant dans le lemme 8 est le minimum possible [U].

1§ 2) La preuve ci-dessus est une variante de celle de Kuratowski. Le lemme
résulte d’un travail de Konig datant de 1916; voir le § 5 de [K6].

_ 3) La preuve montre ceci: étant données deux actions sans point fixe
I du groupe a deux éléments sur X, il existe un domaine fondamental commun

X =8,00S)uS;ulSy) =V, uV,u \ll_l(Vs) U \lf_l(V4)




132 P. DE LA HARPE ET G. SKANDALIS

L’analogue mesurable de I’affirmation de la remarque 3 n’est pas correct,
comme le montre ’exemple suivant.

On considére le cercle unité S' du plan complexe et deux réflexions o,
V de S? relatives 4 deux diamétres dont I’angle est un multiple irrationnel
de m Soit X lespace S' privé de I'ensemble dénombrable constitué par
les points fixes des transformations ((@V)"¢),.z; on munit X de la c-algebre
des ensembles mesurables au sens de Lebesgue. Il n’existe pas de sous-
ensemble mesurable X’ < X qui soit un domaine fondamental pour {idy, ¢}
et {idy,V}: en effet, un tel X’ serait invariant par la transformation
ergodique Y, ce qui est absurde, car @ et \y préservent la mesure de
Lebesgue.

ProrosiTioN 9. Si & est un pseudogroupe de transformations de X
relatif a la oc-algébre de toutes les parties, alors ® est virtuellement
paradoxal si et seulement si & est paradoxal.

Preuve. On suppose ® virtuellement paradoxal, c’est-a-dire ®, paradoxal ' |
pour un entier convenable p. En remplagant au besoin p par un entier
plus grand, on se raméne au cas d’une puissance de 2. Modulo une induction = |
¢vidente, il suffit donc de considérer le cas p = 2.

L’hypothése que X, est paradoxal signifie quil existe une partition ; §
X,=U]l]V avec U= X, (mod ®,) et V = X, (mod &,). En posant 5;
S=Xx{l} et T =X x {2}, on obtient évidemment X, = S[[ T avec
S = T (mod ®,). Le lemme 8 montre que S = V (mod ®,), donc que iy
X, = X (mod ®,). Cette derniére équivalence signifie précisément que X est |
paradoxal. [

Notons que notre proposition 9 résulte immédiatement du théoréme 11
et du corollaire 12 de [BT].

COROLLAIRE 10. Soit & comme d la proposition 9. Si ® est paradoxal,
deux grandes parties S,S' de X sont toujours équivalentes modulo ©.

Preuve. Vu le corollaire 7, il suffit de montrer que ®g est paradoxal
pour toute grande partie S de X.

Comme S est grand, il existe un entier N tel que X x {1} soit équivalent
modulo ®y a une partie de § x Iy = Sy. Comme ©® est paradoxal, ®g, lest
aussi (derniére remarque de la section 2); en d’autres termes, ®g est
virtuellement paradoxal. La proposition 9 montre que ®g est paradoxal. []

On a donc:
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i TuEOREME 11. Soit & un pseudogroupe de transformations d’'un ‘ensemble
“non vide X, relatif a lalgébre P(X) de toutes les parties de X. Les

‘conditions suivantes sont équivalentes:

3

f ) O nestpas moyennable.

i) Il existe un entier n = > 2 et des parties Sy, . Su—155n> Tiseo Tno1
de X avec

— les S; sont équivalents deux a deux,

— S, est grand,

— T, est équivalent d une partie de Syk=1,..,n—1),

—(H Sj>c< U Tk>.
1<j<n 1<k<n—1

i) ® est (fortement) paradoxal : il existe une partition X =X,[]X,
avec X; = X(mod ©).

De plus, si ces conditions sont satisfaites, alors deux grandes parties quelconques

de X sont équivalentes modulo ©®.

On connait d’autres conditions équivalentes: voir par exemple [R1]
pour des conditions a la Fglner. Voir aussi le corollaire 3.5 de [R2]:
toute action d’un groupe de génération finie et de croissance SOus-e€xpo-

nentielle est moyennable.

5. UN DEVELOPPEMENT ET QUELQUES EXEMPLES CLASSIQUES

: Soit ® un pseudogroupe de transformations d’un espace (X, B) donné
| : avec un sous- —ensemble non vide U € B. (Le cas étudié plus haut correspond
| a a U= X.) Rappelons que nous notons &y le pseudogroupe de transformations
: de (U, By) défini par ®. On appelle moyenne invariante pour le systéme
1 (X, U, B, 6) une fonction p: B — [0, 0] telle que

W(U) = 3
wSuT) = wlS) + (T) pour S, TeBavec SNT = Q, 1
wT) = w(S) silexiste v:S— T dans G©.

La notion est due 4 von Neumann [vN].
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PROPOSITION 12.  On reprend les notations ci-dessus. Pour qu’il existe une |
moyenne invariante pour (X, U,B, ®), il faut et il suffit que &, soit |
moyennable.

Preuve. Supposons qu’il existe une moyenne u: By — [0, 1] invariante
par ®y. Soit SeB; il existe une B-partition S = 11 Sj, des sous- |

1<j<n ¢
ensembles U, , .., U, de U et des éléments Y;:S; > U;dans ® pourj = 1,..,n, |

n

on pose uy(S) = Z WU;); dans le cas contraire, on pose px(S) = oo. On

ji=1 .
vérifie que py: B — [0, 0] est une moyenne invariante pour (X, U, B, ®).
L'implication réciproque est (encore plus) banale. ]

Avec les notations de la preuve, on peut remarquer que py(X) < oo
si et seulement si la partie U est grande dans X.

Terminons en décrivant quelques exemples bien connus d’espaces para-
doxaux.

Exemple 1: groupes libres agissant librement

On considére le groupe libre non abélien F, a deux générateurs a et b,
qui agit sur lui-méme par multiplication a gauche. Grace a la proposition 3,
on s’assure que I’espace obtenu est paradoxal (au sens faible) en considérant le
sous-ensemble S de F,, constitué par les mots réduits de la forme a'w
avecn € Z,n # 0, w quelconque: en effet S, bS, b2S sont disjoints deux a deux,
etSuvaS =F,.

On peut vérifier la paradoxalité forte sans l'aide de la proposition 4.
Notons X; le sous-ensemble de F, contenant les puissances 4" de a
(ou neZ) et les mots réduits de la forme a™w avec ne, n#0, w# Q.
Le complémentaire X, de X, consiste en les mots réduits de la forme b"w
avec n€ Z, n # 0, w quelconque. On peut définir (presque comme dans [C])
deux bijections ¢;: F, — X;(j=1,2)

g sig=a"avec neZ
P4(9) = oug = a"wavecn>0,

a g sinon,

g si g =>b"w avecn >0,
?y(9) =

b~'g sinon,

qui montrent que le F,-espace F, est fortement paradoxal.
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1l en résulte que le groupe F, n’est pas moyennable.
Plus généralement, tout ensemble X sur lequel F, agit librement est

| ? paradoxal (voir [VN], page 82). En effet, on peut choisit un domaine

» fondamental T < X pour laction, de sorte que X et F, x T sont isomorphes
1 en tant que F,-espaces (avec F, agissant par multiplications a gauche sur le pre-
£ mier facteur de F, x T, et trivialement sur le second). Par suite, a tout para-
% doxe dans F, constitué de bijections v;: F; = T ;(i=1,2), on peut associer un
¢ paradoxe dans F, x T constitué des bijections y; X idr(j=1,2).

Comme exemples d’actions libres de F,, citons:

, 1) La multiplication 4 gauche dans un sur-groupe de F,.

7) Les actions de F, sur les sphéres S*"**(n>1) construites par Deligne et
| Sullivan [DS].
B Exemple 2: groupes libres agissant avec isotropies abéliennes

Considérons d’abord Paction de F, sur F, — {1} par automorphismes
intérieurs. L’espace obtenu est paradoxal: en effet, si S est I’ensemble des mots
_ réduits non vides de 1a forme a*wa' avec k, le Z et k, [ # 0, alors

1) SuaSa—tuva'Sa=F, — {1},
) biSbI AbSh* = O, jkeZ, j#k.

Notons qu’on a de plus S™! = S. Vu 1) et 2), il n'existe pas de moyenne
invariante sur F, — {1}: on dit que F, n’est pas intérieurement moyennable.

Plus généralement, tout ensemble Z, sur lequel F, agit de telle sorte
que les groupes d’isotropie sont abéliens, est paradoxal. Notons I(z) le
4 groupe d’isotropie d’un point z € Z pour une telle action, et posons

X={zeZ|lz)={1}}, Y=Z-X.

Vu lexemple 1, il suffit de vérifier que le F,-espace Y est paradoxal
; Pour tout ye Y, le groupe I(y) est infini cyclique; on en choisit un géne-
4 * rateur c(y).
| g Notons que

%
4 o)

7l

c(gy) € {gcn)g™ ", gey) ‘g™ "}

§ pour tout g € F, et pour tout y € Y. Posons

U={yeY|cyeS}.

! Les parties aU, U, a~ U recouvrent Y par 1) et les parties U sont disjointes
fieux a deux (jeZ) par 2). Donc Y est paradoxal par une application
immeédiate de la proposition 3.
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Mentionnons avant I'exemple 3 deux autres exemples d’actions de F,
a isotropies abéliennes

12 10
1) Le sous-groupe de SI(2, Z) engendré par <0 1) et (2 1> est 1s0-

morphe a F, (exemple 1 de [He]), donc F, agit naturellement sur Z @ Z
moins l'origine. Cette action est paradoxale. '

2) Soient G un groupe et H un sous-groupe libre non abélien de G. |
On suppose que le centralisateur I, = {he H | gh = hg} est abélien pour tout ]
ge G avec g # 1. Alors lactlon de H sur G — {1} par automorphlsmes
intérieurs est paradoxale. ]

Nous avons retrouvé ainsi la proposition 4 et I'exemple 5 de [Ak]: |
le groupe G de 2) n’est pas intérieurement moyennable, et en particulier |
le produit semi-direct de F, par Z @ Z défini par I'action de 1) n’est pas |
intérieurement moyennable.

Exemple 3 : déplacements euclidiens d'un domaine du systéme solaire

On se donne un ouvert borné E de l'univers, contenant la lune et une
pomme. 1
Soit B une boule de E de centre b. Dans laction sur B — {b} du
groupe des rotations SO(3), tous les groupes d’isotropie sont abéliens. Or |
SO(3) contient un sous-groupe isomorphe a F, (voir [Hf], ou [He]). Donc |
B — {b} est paradoxal pour SO(3). |

Si ® désigne le pseudogroupe des déplacements euclidiens de E, toute |
partiec X = E d’intérieur non vide contient une grande partic B — {b}. !
Deux parties de E d’intérieurs non vides sont donc ®-équivalentes par le ]
corollaire 7: c’est le théoréme III de lintroduction. Observons que, des
sections précédentes, nous n’avons utilis€ que la proposition. 3, le lemme 5 H
et le corollaire 7, qui sont indépendants du reste. |

La méme situation prévaut sur une sphére: la surface de mon jardin
est équivalente a celle de Rome modulo le (pseudo)groupe des rotations,
contrairement a 'opinion qui apparait a la page 18 de [GU]. En revanche, §
le pseudogroupe des déplacements d’un ouvert borné du plan euclidien est §
moyennable. Nous ignorons §’il a jamais été fait usage d’'un argument basé
sur ces faits dans la controverse sur la rotondité de la terre.

Remarque. Dans les exemples qui précédent, I’existence de paradoxes est
liée 4 la présence de groupes libres non abéliens.
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Considérons plus particulierement un groupe G, agissant sur lui-méme
par multiplication & gauche. La question suivante apparait implicitement
dans [VN] et explicitement dans [K2]: Pexistence d’un sous-groupe de G
isomorphe a F, est-elle équivalente a Pexistence d’'une décomposition para-
B doxale du G-espace G (i.e. a la non moyennabilité de G)?
| La réponse semble étre non: il existe des groupes paradoxaux (i.e. non
moyennables) sans sous-groupe libre. C'est par exemple le cas des groupes
de Burnside B(2, p) pour p impair et p assez grand, ou B(2, p) est le quotient
du groupe libre F, par les relations (w”=1),cr, voir [O] et [Ad].

(PR T
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