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112 V. V. DEODHAR

properties characterize Coxeter groups. It therefore seems worthwhile to
compile together various characterizations of Coxeter groups. This is done
in §2. A part of it is of expository nature though our proofs for the
well-known characterizations are somewhat more direct.

The author wishes to thank J. Tits and J. E. Humphreys for encouragement '
for writing this note up. Thanks are also due to T. Springer for his
comments on a preliminary version of this note.

§2. MAIN THEOREM

Let W be a group generated by a set S of involutary generators
(i.e. order s = 2Vse S). One then has the notion of the length I(w) of
an element we W viz. the least integer k such that w = s, .. s, with§
s; € S. Further, such an expression is called a reduced expression. We then
have the following: ]

MAIN THEOREM. Let W, S be as above. Then the following conditions
are equivalent: |

1) Coxeter condition: If W is the free group generated by a copy S
of S subject to relations (§)> = idVse S and n: W - W is the canonical
map, then Ker n is generated as a normal subgroup by elements of the |

type:
{(5182)™ 2,5y # s, €8, mg, 5, =2} le. <S§|s* =idVseS§, (sy5,)™ % = id

for some pairs s; # s, in S> is a presentation of W. (Note that the above
relations may not involve all pairs s; # s,).

2) Root-system condition: There exists a representation V of W over R,
a W-invariant set ® of non-zero vectors in V which is symmetric
(le. ® = —®) and a subset {e|seS} of ® such that the following |
conditions are satisfied.

() Every ¢ €@ can be written as ), ase, with either all a, > 0 or all §

seS

< 0, but not in both ways.
(Accordlngly, we write @ > 0 or ¢ < 0.)
(i) e, €D, s(e;) < 0and s(¢p) > Oforall d > 0, ¢ # e;.

iii) If we W, s, s’ € S are such that w(e,) = e,. Then ws'w™! = s.
(i) ) S, s s
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3) Strong exchange condition: If t € T = U xSx~ ! and we W are such
xeW

that [(tw) < I(w) then for any expression (not necessarily reduced) w = sy ... Sp,

A

B one has tw = s ... §; ... 5, for some i.

4) Bruhat condition: For we W one can associate a subset Br (w)
of W such that the following conditions are satisfied:

(@) If w = s, ... 5 is any reduced expression then

A

Br(w) = {xe W|x = 8y .. §j, .. 8, & for
some m>0 and 1<i; <..<i,<k}.

(i) For we W and te T, we have the dichotomy: either w e Br (tw) or
tw € Br (w).

5) Hyperplane condition. For s € S one can associate a subset P, of W
; ;' such that the following conditions are satisfied:

B () ideP,vses,

B () P,sP, = QVseS,

(i) If we W,s,s €S are such that we P, and ws' ¢ P then ws'w™ " = s.

6) Exchange condition: If we W, se S are such that I(sw) < I(w) then

B8 for any reduced expression w = s;..S, one has sw = s; o §j . 8 for
B some ;.

Remarks :

1) (W, S)is called a Coxeter group if it satisfies the equivalent conditions
of the theorem.

2) Equivalence of conditions (1), (5) and (6) is well-known. ([B, Thm. 1,
Prop. 6].) The name “hyperplane condition” is derived from the applicaBility
of the condition (5) to groups generated by reflections in hyperplanes
(e.g. Weyl groups). '

3) The condition (3) is known in literature.

4) Condition (4) allows one to define a partial order on W viz
x < wiff x € Br (w); this is the Bruhat ordering on W.

5) In condition (2), one does not assume the faithfulness of V; it
follows as a consequence of properties (i)-(iii). The set ® can be called a root
system associated to W. It should be noted that neither of V and ® is
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unique e.g. keeping V fixed, the set ®x = U w(e,) can be seen to satisfy

seS
weW

properties (1)-(iii).

6) The relevance of conditions (2) and (4) is discussed in the introduction. Y-
Note that in condition (2), the set {e, | s € S} need not be linearly independent.

7) Since W is generated by a set S of involutions and id ¢ S, it is
clear that I(s) = 1VseS. Also, for we W and se S, |I(sw) — I(w)]| < 1

and |I(ws) — I(w)| < 1. However, we do not assume, to begin with, that '

equality holds. In other words, we do not assume the existence of a sign 'f
character ¢ on W such that o(s) = —1Vse S. This condition is obviously

built in conditions (1), (3) and (6). It is not so obvious in conditions (2) ]

and (5) although it follows as a consequence. In condition (4), it is not
true if one leaves out part (i) of the condition. (The group Z, x Z, |
provides an easy counter-example.)

Proof of Main Theorem:

(1) = (2). The construction of the representation V and the set @ is
along the same lines as in ([D]) with suitable modifications to fit into
our present set-up. .

We quickly recall the construction of V. For a pair s; # s, € S, define
m, ,, to be the least integer such that (§:5,)":'2 € Ker n. (Here, we use
the convention viz. m,, , = oo if no non-zero power of 5§, belongs to
Kern.) Let V be a vector-space over R with {e,|se€ S} as a basis. Define 3;
a bilinear form ( , ) on V by setting |

(esa es) = 1 VS € S’ (e81 > esz) = (e829 esl) = —COS ( - )

mSl,Sz

for s; # s, € § and then extending bilinearly to V' x V.

For §e8, veV, define §v) = v — 2(v, e,)e,. It can be easily checked M
that (§)*(v) = vVveV and that (5,5,)™*v) = vVveV if s, #s, and
mg, s, < 00. Since Ker m is generated as a normal subgroup by these elements,
it is clear that one has an action of W on V such that s(v) = v — 2(v, e,)e, Vv
€ V,s€eS. Note also that (s(v), s(v')) = (v, v') Vo, v' € V and hence (w(v), w(v"))
=@, V)V,v' eV, weW. Let ® = U W(e,). Then @ is obviously W-inva-

seS

riant. Note that s(e;) = —e; and so ® = —® and (¢, d) = 1 VP e ®.
We next prove by induction on [(w) that for s’ € S,

@ I(ws') = I(w) = wley) = ) ae, with a;, >0, seS§.

seS
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If I(w) = O then w = id and there is nothing to prove. So let I(w) = 1.

i, Choose s” € S such that I(ws”) = I(w) — 1. Since I(ws’) = l(w), s # s”. Let

J = {s,s"} and W, be the subgroup of W generated by J. Let [; denote
the length function in W (I<I, on W,). Consider the set A={zeW|z 'w
eW, and I(z) + L,(z"'w) = I(w)}. Clearly we A. Choose x € A such that
I(x) is minimum. Now ws” € A as can be checked and so I(x) < [(ws”)
= I(w) — 1. Next, if possible, let I(xs’) < I(x). Then I(xs) = I(x) — 1 and we

" have,

Iw) < I(xs) + 1(s'x"tw) < I(xs) + I(sx7'w) = I(x) — 1 + (s~ 'w)
<100 — 1+ L tw) + 1 = 1(x) + Lx~'w) = I(w).

~ Thus equality must hold at all places and so I(w) = I(xs) + [ S(s'x ™ tw).
. This means xs'e A which is a contradiction since I(xs’) < I(x). Hence
I(xs') = I(x). Similarly we can prove that I(xs") > I(x). Since I(x) < L(w),
we can apply induction to pairs (x,s’) and (x,s”) to get: x(ey) = Y. cqes

seS
and x(ey) = ), dee, with ¢;,d; > 0 Vs € S.

seS

Let y = x~!w. If possible, let [,(ys’) < I,(y). Then

{ys) = I,»)) =1 and I(ws) = I(x x " *ws) < I(x) + I(x~'ws)
I + L) =1x) + Ly) — 1 =1w) — 1

which is a contradiction since [(ws’) = I(w). Thus [,(ys’) = I(y). Write down a
reduced expression for y in terms of generators s’ and s”. It is clear that
it ends with s”. Now either my » = oo, in which case a direct computation
shows that y(e,) = pey, + ges» withp, g = O(also,| p—q| = 1)ormy ¢ < 00,
; in which case [,(y) < my . (Note that (s's")™"* = id). Again a direct

computation shows that y(ey) = pey + ge,» with p,q = 0. In either case,
12 vey) = pey + geo with p,g > 0. Hence wley) = x- yley) = x(pey +qgey)

; = Y (pcs+qdy)es with a, = pc, + gd, > 0 Vs e S. This verifies the induction

¥ ; hypothesis for w and so (I) is true.

Now given ¢ € ®, ¢ = w(e,) for some we W, s'eS. If [(ws') = I(w)
then ¢ > 0 by (I). If I(ws) < I(w) then ws'(e;) > 0 by (I) (Note; [(ws' - )
> I(ws')). Hence ¢ < O in this case. This proves (i). Note that we have
proved a more precise statement than (i) viz.

lws') = l(w) = w(ey) > 0.

o ST o P e
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We now come to the proof of (ii). Obviously e, € ® and s(e;) = —e;, < 0.
Next, let ¢ > 0 and ¢ # e,. Since (b, db) = 1, it is clear that ¢ can’t be
a multiple of e;. Since s(¢p) — ¢ is a multiple of e, it is easy to see that
s(¢) > 0. (This is the “standard” argument with any “root-system”.)

Next, let w(ey) = e,. Consider y = ws'w™!s. Then for any

veV,yv) = wsw Ho—20, e,)e;) = ws'(w™1(v)—2(v, e )w™ (e,))
= w(w ™ (v) —2(w ™ 1(v), ey ey +2(v, €;)ey )

(This is because w™l(e)=¢e,) = w(w (V) —2(v, wley)) ey + 2(v, €;)ey )
= w(w '(v)) = v. In other words, y(v) = v.ve V. Now, if possible, let
y # 1d. Then 35" € S such that I(ys”) < I(y). By applying (*) to ys”, we get
ys"(eg:) > 0 ie. y(—ey) > 0 i.e. —e,» > 0. This is a contradiction. Hence
y = id and so ws'w™! = s. This proves (iii).

We note at this stage that the special representation constructed above
is the so-called geometric realization of W as given in ([B]). The fact that
this is faithful as well as some other properties of it are consequences of
conditions (1)-(ii)). We will prove these things for any representation with
conditions (i)-(iii) ; this is done in the next implication.

(2) = (3). We first observe that s(e,) = —e,. (For: —s(e;) > 0 and
s(—s(e)) = —e, < 0 and so —s(e;) = e by (ii).)

Next, we establish a one-one correspondence between T and the set
{6 > 0] b = wle) for some se€ S, we W}. For ¢ > 0 such that ¢ = w(e,),
define ¢, = wsw™". Condition (iii) then ensures that ¢, is independent of the
choice of w and s. Conversely, let te T such that t = wsw™!. Define
o, = w(e,) or —w(e;) whichever 1s > 0. We want to claim that ¢, is

independent of the choice of w and s. So let t = wsw™! = w,s;w[ ™
Then w™*w;s;w'w = s. Consider ¥ = w™'w,(e ). Now
s(V) = w™lwisiwi tww T twy(es,) = wlwisi(eg,) = —wTiwyle,) = — V.

It is now clear from (ii) that e, = ¢ or —\{ whichever is positive. Our
claim is now clear. It is easy to see that these two maps are inverses
of each other. It is also easy to see that t(¢,) = —,.

We now prove the following:

(**¥) Let w = s, ... s, be any expression (not necessarily reduced) and te T
such that w™'(¢,) < O then tw = s; ... §; ... 5, for some 1 < i < p.

To prove this, observe that ¢, > 0 and w™'(¢,) = s, ... s;(¢,) < 0. Hence
31 < i < p such that
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S;—q - 5:1(¢;) >0 and 5. si(d,) < 0.

By (i), Sy—; - S1(d:) = e, ie. d, = 5y .. 5-1(es). Now from the corres-
pondence mentioned earlier, it is clear that ¢ = Sy ... 8;—15Si—1 = S1- Thus
tW = Sq o Sj o Sp-

As a consequence of (*¥), we get: For

weW, te Tw Yd,) < 0=1(tw) < l(w)=1(w) < I(w)=w (d,) <0

(Le. w™i(d,) < 0iff I(tw) < I(w) iff [(tw) < [(w)). Indeed, the first implication
follows by applying (**) to a reduced expression of w and the last implication
follows by applying the first implication to the pair tw, t. (Note that
t=t"1)
The strong exchange condition is now clear. Hence (3) is proved.
Before proceeding further with the proof of the main Theorem, we observe
the following consequences of (**):

(**¥) For ye W, let ® = {¢ > 0]y %¢) < 0} then | @, | = I(y). In
particular, the representation V' is faithful.

Proof of (***). Let y = s;..5 be a reduced expression. Consider
O; = ;.. Si—q(es), 1 < i< k. We then claim that ¢; > 0 Vj, ¢; # ¢, for
j#rand ®F = {dy, ... dy: If ¢; < 0 for some j then by (**) applied to
W= Sj_1..5andt = s;gIVes §;.. §; = Sj—1 - $, ... s; which then contradicts
the fact that y = s;..s; is a reduced expression. The remaining claims
can be proved in a similar manner.

(3) = (4). For we W, define the subset Br (w) as follows:
Br(w) = {xeW|3m >0 and t;,..,t,€T
such that
@) x =t,..t;w and(d) It ..t;w) <ty EW)V1I <I< m}
(Note that w e Br (w) vacuously).

Proof of (). Let w = s;.. s, be a reduced expression. Let x € Br (w).
Then 3+¢,,..,t,€ T such that conditions (a) and (b) (given above) are
| satisfied. A repeated application of (3) and (b) implies that

X = Sl vos Si1 o

S

lm

e Sk -

" (Note that eventhough w = s; ... s is a reduced expression, t;w = $; ... §;_ ... Sk
need not be. In order to continue, we need the full strength of (3) and not
just the exchange condition (6)).

AR AT Y N
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Conversely, let z = s; ... §, ... §; .5 for some m >0 and 1 <i; <i, §
< ..< i, <k We prove by induction on (k+1)m — (i +...+1i,) (=0) that [§
z € Br (w).

If the above number is zero then m = 0 and z = w € Br (w). In other
cases, m > 0. Let t = s; ... s;, .. s;. Then z’ = tz = sy .. §;, .. §;, .. Sk |

im E
¢
;

it
L

Case (o). I(tz) = l(2).

In this case, the induction hypothesis holds for z/ = tz and so z’ € Br (w). (
Since [(tz) = I(z), it is clear that z € Br (w) as well.

Case (B). I(tz) < l(2).

We use (3) for the expression

zZ=8;..5 .5 .5 and t-JGFLVI<r<m)

PRt -

such that ¢z has an expression obtained by deleting s; from the above
expression of z. We claim that j > i;. If not, tz = s; ... § .. §, o §i, - Sk | |
It then follows thatt = sy ... s;, ... S = S ... §;.. 5. This gives a contradiction
to the fact that w = s, ..s, is a reduced expression. Hence j > i;. Let
i, <j <i.(r=1). Then we have, tz = Sy .. 5, .. § .. 8. Si,, | Si, o Sk |
Hence, z = t+tz = Sy . iy o 8, oo §j oo Si | e Sy, o Sx- Now the “number”
associated with this expression is (k+1)m — (iy+..+i,+j+i, 41+ i)
Since i; < j, it is clear that this number is smaller than (k+ 1)m — (i, +... +1,). !
Hence the induction hypothesis applies and so z € Br (w). This proves (i)
To prove (ii), we need to observe that for t € T, w € W, either I(tw) < [(w) |
on I(tw) > I(w). For: if I(tw) = I(w) then I(tw) < I(w) and so by (3) starting |
with a reduced expression w = s; .. 8, we get tw = s, ... §;... 5 i.e. [(tw)
< k — 1, a contradiction. Now by definition of Br ( ), it is clear that either |
tw € Br (w) or w e Br (tw) but not both. The dichotomy in (ii) is now clear. |

This proves (4).

(4) = (5). We first observe the following two consequences of (4):

(@) If xeBr(w) then I[(x) < I(w) with equality holding precisely when Ef
X = w. 2

(B) Forwe W,seS I(w) < I(sw) iff w € Br (sw).

Define P, = {we W |weBr(sw)} (seS). It is clear that ide P; and
P, sP, = (. Next, let we W, s'eS be such that we P; and ws' ¢ P;.
Hence [(w) < I(sw) and I(sws') < [(ws').

(Note that ws' ¢ P, = ws' ¢ Br (sws') = sws’ € Br (ws') = I(sws') < L(ws)).
Now I(ws) = I(sws)) + 1 = (I(sw)—1) + 1 = I(sw) > I(w). Start with a
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$° reduced expression w = s .. 5 then ws = Sy .. 5 is a reduced expression.
- Since I(sws) < l(ws'), sws’ € Br (ws') and so sws’ is a subexpression of sy ... 5§’
f (property (a) of (4)). However, | (sws’) = I(ws) — 1 and so either sws’ = Sy ... S
~ or swS' = §y ... §j... S+ 8. However, the second case is not possible since it

means SW = Sj ... Sj ... 5, which is not true since I(sw) > I(w) = k. Hence

sws' = Sy .. 8 = w. Thus ws'w™! = s. This proves (5).

(5) = (6). Letze W.We prove that I(z) < l(sz) =>ze P;. Letz = 51 .. 5
be a reduced expression. If possible, let z ¢ P;. Since id € P, and sy ... S, ¢ Py, 3J
such that s;..s;—;€P; but s .. s;¢ P;. So by (il of condition (5),
Sg o Sj=18jSj—1 - S = S Hence sz = S ... ;... § which is a contradiction
since I(sz) > I(z) = k. This proves that ze P,. Next, we claim that
ze P, = 1(z) < I(sz). If not, then I(sz) < I(z) and so by the earlier argument,
sze P,. This means ze Py sP which is a contradiction. Thus, z € P
iff I(z) < I(s2) iff I(2) < l(s2).

Now consider a reduced expression w = s;..5; and s€S such that
I(sw) < I(w). From above, w¢ P,. It is now clear that 3j such that

A

St - Sj—1 € Py but sy ... s; ¢ Ps. So by (iii), sw = 51 ... Sj ... Sg-

(6) = (1). Consider the canonical map m: W — W. For seS, let §
be the “canonical” preimage of s. For s; # s, €8, let my, g, denote the
order of s;s, if it is finite. Let N denote the normal subgroup of |14
generated by {(§; - §,)™* | my, ,, < co}. It is then clear that N < Kern.
We claim that N = Ker n, which proves (I).

If the claim is not true, choose Z = § ... § € Kern such that 7 ¢ N
and [(¢) = k is minimal with respect to this property (I is the length
function in W). Now id = n(£) = sy ... 8. Since I(s,) = 1 and I(s, .. s;) = 0,
it is clear that 3i < k — 1 such that I(s; ... s¢) < I(s;+1 - 8)- In fact, i can

k
be so chosen that i > 5 (or else there is no hope of acheiving I(s; ... s¢) = 0.

A

Thus by exchange condition, 3i + 1 < j < ksuchthats; .. s, = Sj4q - 85 Sk

1.€. Si Sj = Si+l e Sj—l’ NOW §l 5] §'j_1 . Si+1 S KCI’ n and

~

M6 55 n)<j—i+1l+j—1—-i=2—2i<2k—k=k

Pi-1

. , ok . )
(smce j<k and i > 5) If the length is strictly smaller than k, then
n

~ ~

= §;.. §;*§;_1 . §i+1 € N by minimality of k and in that case

~ ~ o~ ~

z = Sl e Sk = Sl Si—l ‘nSi+1 oes Sj—l 'Sj+1 ees Sk'

A
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A A

So Ze N as well since §; ... §; ... §; ... §, € Ker n, of length < k — 2 and so € N.
This gives a contradiction. Hence (s ... Si*Si_1..854+1) =kandj =k = 2i
Also, sy ..s; = id = s, .. § ... §, and 50 §, ... §; ... §, € N. Thus,
F€§y . 8_15 .55 -N.
Let 7} = §+$;..5i_1*8:*$i_,..5 then 7z, € 7- N (Note that N is normal).
Now argue with Z; instead of Z (Note that [(£,) = k again!) Thus we get
Zy = $18581 . 8i_58i_1 .. 5,-$, €2, N = ZN and so on. Finally, we get an
clement Z, (for a suitable r) which is of the form §§, .. 5, -5, (total
number of terms = 2i) and such that 7, e £+ N. Since %, € Ker n, it is clear
that m,, ,, < oo and it divides i and so Z,€ N by definition. Thus e N
which is a contradiction. This finally proves that N = Ker n and so (1) holds.
This completes the proof of the main theorem.
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