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96 E. GUTKIN

Corollary 5 in § 1) which hold for reflection groups in general as was
demonstrated by Davis [3] (see also [18]).

The proofs of these general properties in the literature depend on the

particular type of the reflection groups considered. The best known proofs
are those in [2] for the linear (or affine) reflection groups acting properly
discontinuously on the whole space, and Davis [3] adapted them to the
general case of topological reflection groups.

The purpose of this paper is to supply geometric proofs of the basic

properties of general reflection groups as opposed to adapting the formal
arguments of [2]. For simplicity of exposition we assume in the paper that M
is a differentiate (actually C1) manifold and that the group action is C1.

Extension to the topological manifolds does not require new ideas and is left
to the reader.

The rationale for this paper is twofold. First, the basic properties of
reflection groups are stated (and proved) here in a form particularly useful
for applications (cf. [5], [9], [11]). Second and more important, the
simplicity of the geometric proofs presented here will make the subject more
accessible to the general mathematical public.

In conclusion let me mention that reflection groups that do not act
properly discontinuously are also useful (cf. [19], [4], [8]) but the results
of the paper do not extend to them.

I would like to thank Mike Davis and the referee for pointing out an
error in the original version of the paper. x)

§ 1. Geometry and combinatorics

Throughout the paper M is a connected differentiate manifold (possibly
with boundary).

Definition 1. A reflection of M is a diffeomorphism s such that s2 1

and the set Ms of fixed points of s has codimension 1. A reflection s is

called separating if M\MS is disconnected. A reflection group W acting on M
is a discrete group of diffeomorphisms of M generated by separating
reflections.

*) I. N. Bernstein told me that E. B. Vinberg has an unpublished manuscript
on reflection groups which is similar to this one.
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Lemma L Let s be a reflection of M. Then M\MS has at most two

connected components.

Proof. Let and let x(t) be a continuous path joining

them. We can assume without loss of generality that x{t) is piecewise

differentiable and that it intersects Ms transversally. Let x(îx),x(tN) be

the points of intersection. Consider the new path x(t) where

x(t) x(t), 0 < t<tj, x(t) t! < t < *2 >

x(£) x(t), t2 «Ï t^ t3, etc.

(see fig. 1). Deform the path x(t) slightly in small neighborhoods of

x(ti),..., x(tN) to make it come off Ms (if x(t) does not cross Ms at t;

Figure 1

M\MS has at most two connected components

The resulting path x\t) does not intersect Ms at all if N is even and
intersects Ms only at x(tN) is N is odd. Thus any x, y e M\MS can be

joined by a continuous path intersecting Ms at most once.
Assume that M\MS has three connected components X, Y, Z and choose

points x, y, z in X, T, Z respectively. Then there are paths y, y from x to y
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and from y to z respectively intersecting Ms once. The path yy goes from
X to z and intersects Ms twice. By previous argument we can find another
path ffrom x to z that does not intersect Ms at all. This contradiction
proves the Lemma.

Corollary 0. LetM\MS be disconnected and let x, ye M\MSLet
y be a continuous path in M joining x with y and intersecting Ms

transversally.Then x, y belong to the same component of M\MS if and
only if y intersects Ms an even number of times.

Proof. Let y intersect Ms N times. By the argument of Lemma 1, we
can find another path f from x to ythat intersects Ms once if is odd
and does not intersect Ms if N is even. Thus it suffices to prove that if y
joining x with y intersects Ms once then x and y belong to different
connected components of M\MS. Assume the opposite and let z belong
to the other component. Then there is a path y from y to z intersecting
Ms once. The composition yy joints points in different connected componentsof M\MS and intersects Ms twice. By the argument of Lemma 1, this is
impossible.

Denote by M/s the quotient of M by the action of s endowed with
the natural topology.

Proposition 1. Let s be a reflection of M.
(i) Assume that s is separating. Then M is orientable if and onlv if

M/s is.
J

(n) Assume that s is not separating. If M is orientable then M/s is
not orientable.

Proof Let X be a connected manifold with the boundary dX ^ c().

Define the doubling dX of X as the manifold obtained by gluing two
copies of X along the common boundary. Clearly dX is orientable if and
only if X is.

Let Ms separate M and let X0, Y0 be the connected components of
M\MS. Let X X0 (J Ms, Y Y0 (J Ms be their closures in M. Then
s:X -+ Y is a diffeomorphism which identifies X, Y with M/s and M
with dX. This proves (i).

(ii) Let x s M be sufficiently close to Ms. Then x and sx belong to the
same open ball in M and we orient the tangent spaces at x and sx
simultaneously. Let y be a continuous path in M\MS from x to sx. Since M <
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is orientable, moving along ydoes not change the orientation. Since s

reverses the orientation, moving along the loop in the quotient -» M/s

we come back to px with the orientation reversed.

Examples. 1. Let M S1 x S1be the twodimensional torus and let s

be the reflection about the diagonal (see fig. 2, a)). Then M/s is the Moebius

band.

• px

M
5

b) M Moebius bond M/s cylinder

Figure 2

2. Let s be the reflection of the Moebius band M about the midline
(see fig. 2, b)). Then M/s is the cylinder.

Remark. Proposition 1, (ii) shows that if s is not separating then M
and M/s can not be both orientable. The following example shows that M
and M/s can be both nonorientable.
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3. Let M be the product of two Moebius bands and let s be the product
of the reflection in midline (Example 2) and the identity map. Then M/s
is the product of the cylinder and the Moebius band. Thus s does not
separate M and both M and M/s are not orientable.

Corollary 1. If M is simply connected then any reflection s of M
is separating.

Proof Since 5 has fixed points, M/s is simply connected, thus orientable.
If s is not separating then, by Proposition 1, (ii), M is not orientable,
contrary to the assumption.

In the rest of the paper we consider only separating reflections and groups
generated by them. By Corollary 1, if M is simply connected (which holds
in many applications) then the assumption is automatically satisfied.

Let us establish some terminology. The closures M\, e ±1, of connected
components of M\MS are the two halfspaces corresponding to s. If A cz M
intersects only one connected component of M\MS we denote the
corresponding halfspace by MS(A)+ and the other one by MS(A)~.

Let W be a reflection group acting on M and let R cz W be the set of
reflections in W. The sets Ms, s e R are called the (reflecting) walls of M
and the closures of connected components of Mreg M\\J Ms are the

seR
chambers of M. Mreg is the set of regular points of M. Since a wall Ms
defines s uniquely, we identify R with the set of walls of M. Points xe M
that belong to no more than one wall are the semiregular points of M.
The walls of a chamber C are such Ms that dim(Msf)Cj n-l, their
intersections with C are the faces of C. Walls of C correspond to a subset
Sc c: R.Nonempty intersections of faces of C are the facets of C.

Two chambers CDareadjacent if they have a common face. Let
Mr be the unique wall containing this face, then D rC.' A sequence
C0, Cj,..., CN of chambers is a gallery (of length -IV,going from C0 to
CN) if for i 1,N the chambers Ci^1 and Cf are adjacent. The sequence
(r1,..., rN) of reflections defined by C; is called the reflection sequence
corresponding to the gallery C0,.., CN. A gallery C0,..., CN crosses Mr if r
is contained in the corresponding sequence (rx,..., rN). A minimal gallery
going from C to Disa gallery of minimal length which is by definition
the distance d(C, D) between C and D. A wall Mr separates chambers C
and D if C c MJ and D czM~s.Denoteby R(C, c the set of walls
separating C from D. The group W acts on R by conjugations r -> grg ~1

which we denote for brevity by g-r. Then gMer Msg.r, s, 8 +1.
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Proposition 2. Let C C0 ,C,,...,Cbe a gallery and let

(r± 5rN) be the corresponding sequence of reflections.

(i) The set of reflections r contained in (rl5..., rN) an odd number of

times is R{C, D).

(ii) The following assertions are equivalent :

a) gallery C0,...,CN is minimal;

b) d{Ct, Cj) \i - j I far any ij 0,N;
c) there are no repetitions in the sequence (r±rN).

Proof A differentiable path {x(t): 0 ^ f ^ 1} on M is called regular if

for all but a finite number 0 < tt < < tN < 1 of moments of time

x{t) is regular, x(tf) is semiregular for i 1,N and the curve x(t) is

transversal to the set (J Ms. Then for t ^ tl9belongs to a unique
sei?

chamber and the sequence C0,CN thus defined is a gallery with tt

coco

ci=ci

\/
x'(t)

/v'

C2

\\\\\\
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C6= x(l)

c c / a)\, 3 4 jc
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Figure 3

To the proof of Proposition 2. Galleries and paths along them
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being the moment of time when x(t)crosses from Ci_1 to C;. We say that
C0,..., CNis the gallery along the path {x(t)}. Given a gallery C0,...,CN
there is always a regular path (x(r)) such that C0,..., CN is the gallery along
it. We say that {x(t)} goes along the gallery.

Let C0,..., CNbea gallery going from C C0 to and let
{x(t)} be a regular path along it. For any let < < lww be the consecutive

moments of time when {x{t)} intersects By Corollary 0,
is even (resp. odd) if and only if r £ R(C, D) (resp. r e R(C, D)) which proves (i).
Assertions a) and b) of (ii) are obviously equivalent. By (i) every r e R(C, D)
is contained in {rx,...,rN) at least once, thus N > | R(C, D) |. Assume that
N > I R(C, D) |. Then either there is i R(C, D) that occurs in (r,,...,
(necessarily an even number of times) or there is r e R(C, D) that occurs in
(ri > »••> rN) more than once. Assume the first possibility and let r occur 2m
times in (r,,.... rv). Using the proof of Lemma 1 we construct a new
regular path {x\t)} which joins x(0) with x(l) and does not cross M,
at all (see fig. 3, a)). The gallery along (x'(f)} has + 1 - 2m chambers and
does not cross Mr. Analogous argument shows that if there is r e R(C, D)
that occurs 2m + 1 > 1 times in (rl,..., rN) then there is a new gallery from
C to D which is by 2m shorter then C0,..., CN and crosses Mr once
(see fig. 3, b)). Thus the sequence (rl,..., rN) corresponding to a minimal
gallery can contain only r e R(C, D) and no more than once. On the other
hand by (i), it must contain every r e R(C, D) at least once. This proves the
Proposition and the following.

Corollary 2. 1) A gallery C —C0,...,CN D is minimal if and only
if N — I R(C, D) |. Thus d(C, D) | R(C, D) |. 2) For any gallery
C C0,.., CN D, (-)" (_)M.

Corollary 3. Let D^Cbetwo chambers, let Ms (resp. Mr)
be a wall of C (resp. D) such that Then there exists"a
minimal gallery C0 C,..., CN D suchthat C1 sC and CAr_1 rD.

Proof. If d(C, D) 1 then r sand the assertion is trivial. If e
and t # s then t cannot separate sC from C. If besides t e R(C, D) then C,
sC c Mt(D)~andif t $ R(C, D) then C, sC c Mt(D) + Therefore R(sC,D)

R(C, D)\{s} and d(sC, D) d(C, D)— 1. This proves the assertion by
induction on d(C, D).
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The group W naturally acts on the set of chambers of M. Choose one

chamber C+ to be the fundamental chamber and let S Sc+ be the set of
reflections in the walls of C+. Elements se S are called simple reflections.

Proposition 3.

(i) W acts simply transitively on the set of chambers.

(ii) S generates W.

(iii) Any r e R is conjugate to some s e S.

(iv) Let g eW and let g s 1 sN be a decomposition of g into simple
reflections. Then the sequence

Co C+ C, S-±C+ C£ s1... SjC+ Cjy sNC+

is a gallery. This establishes a one to one correspondence between the
words in st and galleries starting from C +

Proof. Denote d(C+, C) by d(C) and R(C+, C) by R(C). Let W be the
subgroup of W generated by S. We have seen in the proof of Corollary 3

that if d(C) > 0 then there is r e R(C) such that d(rC) d(C) — 1. Assuming
that rC wC+ for some w eW we have r wsw"1 for some s e S, thus
r g W and C r • rC rwC+ where rw e W. This proves by induction on
d(C) that W acts transitively on the set of chambers.

Let r e R and let C be such that Mr is a wall of C. Then there is
weW such that w_1C C+ thus w_1Mr is a wall of C+, that is
w Ms for some s e S, therefore r wsw-1 which shows that
R c W and proves (iii). The group W is generated by R and R c W
thus W W which proves (ii). Let Ct,i 0,..., N be the sequence of
chambers defined in (iv). Since

Cf+i (s^... 5f)s^+^(s^... S(C +

and since ri+1 (sj.... s^St+^Sx... sJ"1 e SCi the chambers Ci+1 and Ct are
adjacent, thus C0,..., CN is a gallery going from C+ to gC+. Let
C0 C+,...,CN be any gallery and let (rlf ^rN) be the corresponding
sequence of reflections. Set gt r£... r, i 1,N. Then Q GiC+ and
9i Xri±i9i e S for i 1,N. Denote by si+1. Then gi+1 ri+1gt

9isi+1 which shows by induction that gt sx st for i 1,N. Thus
the gallery C0,..., CN corresponds to the word sx... si+1 which proves (iv).
In particular, two words sx... sN and s\ s'M represent the same g eW
if and only if the corresponding galleries C+ C0,..., CN and C+
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C'0, -,C'Mlead to he same chamber gC+CN C^.Thus the mapping
3 ~* yC+ is one to one which proves (i).

Choose a fundamental chamber C+ and let be the corresponding set of
simple reflections generating W.A decomposition of

ge Wis called minimal if it is the shortest possible. Then N d(g) is the
length of g and the distance d(g,h) is defined by d(g, h) d(g~lh). Denote
gC+ by C9'R(cs) by R(g) and M,(C+)± by M± respectively. Identify the
set of halfspaces Mfwith R Rx {±1} and call elements fe R
the onented reflections. A gallery C0,...,CN defines a sequence (r\,fN)of oriented reflections by

(1) rt
(ri} +1) if Ct cz Mr+

—1) if Ci c= M~

Denote by r ->grtheaction of Won Rcorrespondingto the natural
action of Wonthe set of halfspaces. Define a function x
-> {±1} by

(2) sgn(g, r)

and for f (r, e) set (r, -s).

-1 g-re R(g)

1 g • rR(g)

Corollary 4.

(i) For any g,heW, d(g, h) d{Cg, C„) and d(g) \ R(g) |.

(ii) R(g) {re R-.g-1Mer r}.
(iii) The action of W on R is given by g(r, e) (g r, sgn(g, r)e).

Proof, (i) follows from Proposition 3 and Corollary 2. Recall that
R(d) — {r e R. Cg œ Mr }. Since g 1Cg C+ we have g~*Mf M+-ir.
On the other hand if r $ R(g) then Cg <= M+ therefore g~1M+ M+\'
which proves (ii).

r 9 "

(ii) is equivalent to the assertion that gMcr Mg.\ if g-re R(g) and
gM\! MI.r if g• r$R(g)which proves (iii).

For xs M denote by WxciWtheisotropy subgroup of x and by
Rx <= R the set of re Rsuchthat rx x.
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Proposition 4.

(i) Let x, y g C, g e W and let gx y. Then x — y and g e Wx.

(ii) For any xeM the group Wx is generated by reflections rsRx.

Proof. Let C, D be such chambers that Cf)D ^ (|>. Since any wall

Mr e R(C, D) separates C from D, it contains C f] D. A minimal gallery
C C0,..., CN — D going from C to D crosses only the walls Mr e #(C, D),

thus every chamber C0,..., CN contains C f] D and reflections of the

corresponding sequence (r±,..., r^) leave C f°) D fixed pointwise. In the notation
of (i), y e gC (°| C # <(). A minimal decomposition gr % corresponds to
a minimal gallery going from C to gC and g rN... 7^. Thus <7 leaves

C H gC pointwise fixed, so y x. For x e M let C be a chamber
containing x. By the same argument as above any g e Wx is a product of
rf 6which proves (ii).

Corollary 5. The natural mapping cp : C+ —> M/W is an isomorphism.

Proof. By Proposition 3, (i), cp is onto. By Proposition 4, (i) cp is one
to one.

For r, s e R denote by m(s, r)e{ 1,..., 00} the order of rs. Since s2 1

for any se R we have

(i) m(s, s) 1

(3)

(ii) m(r, s) m(s, r) ^ 2 for r ^ s

Definition 2 (cf. Bourbaki [2]). A Coxeter group is a group W with a
finite set S of generators and a presentation

(4) W < S : (sr)m(Sï r) 1, r,seS>
where the function m: S x S -+ {1,..., 00} satisfies (i) and (ii) above.

Theorem 1. Let W be a reflection group acting on M, let C+ be a
fundamental chamber, let S a R be the corresponding set of simple reflections
and for s,reS let m(s,r) be the order of sr. Then W is a Coxeter
group with the presentation

(5) w < $ • *) — J >

Proof If C0,CNand C'0,C'M are two galleries such that C'0
we define their product by C0,CN,C'u..., The inverse of the gallery
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C0,..., CN is by definition CN,..., C0. A loop is a closed gallery C0,..., CN
C0. Any chamber of a loop can be taken for the starting chamber.

If there are two loops passing through the same chamber C0, we define
their product based on C0 in an obvious way.

The dihedral group Dm is the Coxeter group of order 2m with the
presentation

(6) Dm <s,r:s2 r2 (sr)m 1>

It is isomorphic to the reflection group on R2 generated by reflections
s, r in two lines meeting at the angle n/m.

By Proposition 3, (iv), there is a one to one correspondence between
relations sN 1, e S and loops starting from C+

If r, s are reflections in the walls of a chamber C, the group they
generate is the dihedral group Dmis r) and the defining relation (rs)mir's) 1

corresponds to the loop on R2 starting at C and going around the origin
visiting every chamber once (see fig. 4). Let us call such loops elementary
and let us call loops of the form C0,.., CN_±, CN, CN^1,..., C0 trivial.

C rsrsrsC

Figure 4

Loop corresponding to the relation (rs)3 1

The statement of the Theorem is equivalent to the assertion that every
loop is a product of elementary loops and trivial loops.

Let C0,...,CN be any gallery and set d(C) d(C,C0). Then d(Ci+1)
d(Ci) ± 1, i 0,..., N — 1 and if CN C0, the graph of the function

d:i -> d(Ci) looks like graphs on fig. 5, a), b).
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Figure 5 a), b)

Length function on loops

We call a loop perfect if it can not be decomposed into a product of
shorter loops. It suffices to prove the assertion for perfect loops.

Assume that the function d has more than one local maximum. Thus
d(Ci) increases until i n1, dty^ nli then decreases to a local minimum
at i m1 > n1, dfm^ n1 — (m1 — n1) 2n1 — m1, then starts increasing
again. Let C0, C'x % C'2ni-mi Cmi be a minimal gallery going from C0
to Cmi. Then the original loop is the product of two loops

Cq C„1 Cmi Clni-mi > ^ 2ni - mi - 1 5 •••? C 1 ^0

and

C0,Cl9...,C2ni-ni CWl5Cmi + 1?...? CN C0.

Each of them is shorter than the original one. Indeed, since the length of
a loop is even, N 2M and n1 < M (see fig. 4, a)). The length of the
first loop is 2n1 < 2M and the length of the second is (2n1-m1) + (AT-mJ

N + 2(n1 — m1) < N.
Thus the length function on a perfect loop must have a graph like

one on fig. 4, b) no matter which chamber is used as a starting chamber
Let C0,..., C2w C0 be a perfect loop and let (r1?..., r2m) be the

corresponding reflection sequence. Since every subgallery of length m is
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minimal, any reflection r that occurs in (rl5..., r2m) occurs twice. Moreover
these m distinct reflections must occur in the order r±,rm, rm (see

Proposition 2, (ii)). It is convenient to arrange the sequence rx,..., rm, rr,rm
as a circle (see fig. 6). Then it becomes clear that it does not matter
which chamber is taken for the starting chamber and that a half of the
sequence determines the other half.

Figure 6

Reflection sequence of a perfect loop

The relation corresponding to a perfect loop has the form

(6) (rm r±)2 1.

Let C0,..., Cn, n < m be a subgallery of a perfect loop and assume that
there is another minimal gallery C0, C*u C;_1? Cn going from C0 to Cn

(and different from C0, C2m_1?..., CM+1, Cm if w m). Our loop is then the
product of two loops

Co,Cn, Cn_l9C 1,C0 and Co? C\,..., C„, C"n+1,..., C0

In the reflection sequence corresponding to the second loop the last m

reflections are r1,..., rm but the first m are not r1,..., rm. So it is not
perfect therefore the original loop was not perfect.

The argument above shows that every subgallery C0,..., Cw_x of length
m — 1 of a perfect loop of length 2m is unique, i.e. there is no other
minimal gallery going from C0 to Cm_1 and the only other minimal gallery
leading from C0 to Cm is the other half of the loop.

Write rm... r1 as a product s±... sm of simple reflections. The word

(7) Si — SmSi sm — 1
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I has the cyclic property that s; sm+i. Assume that the sequence

I contains three distinct reflections. Then we can rewrite (7) as

SB 1

I (8) s^SiSi — sm-iS^SiSi — sm~ i —

where s3 # s1 #= s2. We will use the following

Lemma 2 (compare with Bourbaki [2], ch. IV, § 1, Lemma 3). If a word

s%... sn is minimal and the word sns is not (seS) then there is

1 ^ i ^ n such that

(9) si+1 ...sns stsi+1... sn

Proof of the Lemma. Let 1 ^ i ^ n be the maximal index such that

si+1... sns is minimal and stsi+1... sns is not. Consider the gallery Ct,

Ci+1,..., Cn, C corresponding by Proposition 1, (iv) to st...sns and let

ri9...,rn,r be the corresponding sequence of reflections. Since the gallery

Ci9 Ci+1,..., Cn,C is not minimal and every subgallery of it is minimal, by

Proposition2,rt # ri + 1 / # r„andr rt. Thussisi+1... snssn si + 1Si st

which implies si+1... sns SiSi+1... sn and proves the Lemma.

The word s3s1s2 sm_1s3 is not minimal and every subword of it is

minimal, therefore, by Lemma 2,

(10) S±S2 Sm_1S3 sm_1

that is s3 commutes with s±s2 sm-1. This produces two relations

(11) 5^2 5m_!S3 SaSiSi Sm— Sm_i S^^
corresponding to three different galleries going from C0 to Cm which
contradicts to the assumption that the loop C0,..., C2m is perfect.

Thus (7) contains only two reflections sx and s2a i.e. it has the form

] (i2) (Sls2r i
: which is one of the defining relations of the Coxeter group. This completes

the proof of the Theorem.
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