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96 E. GUTKIN

Corollary 5 in §1) which hold for reflection groups in general as was |
demonstrated by Davis [3] (see also [18]). L

The proofs of these general properties in the literature depend on the
particular type of the reflection groups considered. The best known proofs '
are those in [2] for the linear (or affine) reflection groups acting properly
discontinuously on the whole space, and Davis [3] adapted them to the
general case of topological reflection groups.

The purpose of this paper is to supply geometric proofs of the basic
properties of general reflection groups as opposed to adapting the formal
arguments of [2]. For simplicity of exposition we assume in the paper that M
is a differentiable (actually C') manifold and that the group action is CL. |
Extension to the topological manifolds does not require new ideas and is left
to the reader. |

The rationale for this paper is twofold. First, the basic properties of
reflection groups are stated (and proved) here in a form particularly useful f:
for applications (cf. [5], [9], [11]). Second and more important, the sim- |
plicity of the geometric proofs presented here will make the subject more ]
accessible to the general mathematical public.

In conclusion let me mention that reflection groups that do not act |
properly discontinuously are also useful (cf. [19], [4], [8]) but the results |
of the paper do not extend to them. |

I would like to thank Mike Davis and the referee for pointing out an |

error in the original version of the paper. 1)

§ 1. GEOMETRY AND COMBINATORICS

Throughout the paper M is a connected differentiable manifold (possibly
with boundary). f‘

Definition 1. A reflection of M is a difftomorphism s such that s> = 1 |}
and the set M of fixed points of s has codimension 1. A reflection s is [}
called separating if M\ M, is disconnected. A reflection group W acting on M
is a discrete group of diffeomorphisms of M generated by separating
reflections.

") L N. Bernstein told me that E.B. Vinberg has an unpublished manuscript
on reflection groups which is similar to this one.
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| LemMa 1. Let s be a reflection of M. Then M\M; has at most two
connected components.

them. We can assume without loss of generality that x(t) is piecewise
differentiable and that it intersects M, transversally. Let x(t), ..., X(ty) be
the points of intersection. Consider the new path X{(f) where

|
% Proof. Let xq,x; € M\M, and let x(t) be a continuous path Jommg

i) = x(t), 0<t<ty, Xt)=sxt), ty StSh,

X(t) = x(1), t; <t <3, ete

(see fig. 1). Deform the path x(t) slightly in small neighborhoods of
x(t,), .., X(ty) to make it come off M, (if x(t) does not cross M, at t;).

\)‘(o
13
! Ms Yy
15 (Y x(t,,) ®(t <)
i ! 2 3
1 a) N odd
Ly

RGBT P B

f
i
’} b) Neven

FIGURE 1
M\ M, has at most two connected components

The resulting path x'(f) does not intersect M at all if N is even and
%nFersects M, only at x(ty) 15 N is odd. Thus any x, ye M\M, can be

! joined by a continuous path intersecting M, at most once.
.Assume that M\ M, has three connected components X, Y, Z and choose
points x, y, z in X, Y, Z respectively. Then there are paths v, ¥ from x to y

{
1
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and from y to z respectively intersecting M, once. The path ¥y goes from |
x to z and intersects M, twice. By previous argument we can find another §

path v from x to z that does not intersect M, at all. This contradiction
proves the Lemma.

COROLLARY 0. Let M\M; be disconnected and let x, ye M\M,. Let
Y be a continuous path in M joining x with y and intersecting M,
transversally. Then x,y belong to the same component of M\M, if and
only if vy intersects M, an even number of times.

Proof. Let vy intersect M, N times. By the argument of Lemma 1, we
can find another path v from x to y that intersects M, once if N is odd
and does not intersect M, if N is even. Thus it suffices to prove that if Y
joining x with y intersects M; once then x and y belong to different H
connected components of M\M,. Assume the opposite and let z belong
to the other component. Then there is a path ¥ from y to z intersecting
M, once. The composition ¥y joints points in different connected components
of M\M, and intersects M, twice. By the argument of Lemma 1, this is
impossible.

Denote by M/s the quotient of M by the action of s endowed with
the natural topology.

PROPOSITION 1. Let s be a reflection of M.

() Assume that s is separating. Then M is orientable if and only if
M/s is.

(ii) Assume that s is not separating. If M is orientable then M/s is
not orientable.

Proof. Let X be a connected manifold with the bound‘ary 0X # ¢.
Define the doubling dX of X as the manifold obtained by gluing two
copies of X along the common boundary. Clearly dX is orientable if and
only if X is.

Let M, separate M and let X, Y, be the connected components of
M\M;. Let X = X, () M,, Y = Y, () M, be their closures in M. Then

s:X — Y is a difftomorphism which identifies X, Y with M/s and M
with dX. This proves (i). ' :

(i) Let x € M be sufficiently close to M. Then x and sx belong to the
same open ball in M and we orient the tangent spaces at x and sx
simultaneously. Let v be a continuous path in M\M, from x to sx. Since M -
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is orientable, moving along y does not change the orientation. Since s
Bl reverses the orientation, moving along the loop py in the quotient p: M — M/s
§1we come back to px with the orientation reversed.

Examples. 1. Let M = S* x S! be the twodimensional torus and let s
4 be the reflection about the diagonal (see fig. 2, a)). Then M/s is the Moebius
1 band.

R
gy M=SxS$S M/s = Moebius band

e R £ [T e e e e T TR e o

2 N
X - pX
P'ls MS
. SX
N
b) M = Moebius band M/s = cylinder
FIGURE 2

¥ 2. Let s be the reflection of the Moebius band M about the midline
(see fig. 2, b)). Then M/s is the cylinder.

“ Remark. Proposition 1, (i) shows that if s is not separating then M
and M/s can not be both orientable. The following example shows that M
and M/s can be both nonorientable.
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3. Let M be the product of two Moebius bands and let s be the product
of the reflection in midline (Example 2) and the identity map. Then M/s
is the product of the cylinder and the Moebius band. Thus s does not
separate M and both M and M/s are not orientable.

CorROLLARY 1. If M is Simply connected then any reflection s of M
IS separating.

Proof.  Since s has fixed points, M/s is simply connected, thus orientable.
If s is not separating then, by Proposition 1, (i), M is not onentable
contrary to the assumption.

In the rest of the paper we consider only separating reflections and groups
generated by them. By Corollary 1, if M is simply connected (which holds
in many applications) then the assumption is automatically satisfied.

Let us establish some terminology. The closures M%, & = =+ 1, of connected
components of M\M; are the two halfspaces corresponding to s. If 4 = M
intersects only one connected component of M\M, we denote the corres-
ponding halfspace by M(A4)" and the other one by M (4)".

Let W be a reflection group acting on M and let R = W be the set of
reflections in W. The sets M, se R are called the (reflecting) walls of M

and the closures of connected components of M., = M\ ) M, are the
seR

chambers of M. M., is the set of regular points of M. Since a wall M,
defines s uniquely, we identify R with the set of walls of M. Points x € M
that belong to no more than one wall are the semiregular points of M.
The walls of a chamber C are such M, that dim (M,()C) = n—1, their
intersections with C are the faces of C. Walls of C correspond to a subset
Sc¢ = R. Nonempty intersections of faces of C are the facets of C.

Two chambers C # D are adjacent if they have a common face. Let
M, be the unique wall containing this face, then D = rC." A sequence
Co,Cy, .., Cy of chambers is a gallery (of length- N, going from C, to
Cy) if for i = 1, .., N the chambers C;,_, and C; are adjacent. The sequence
(ry, ..., ry) of reflections defined by C; = r,C;_ is-called the reflection sequence
corresponding to the gallery C,, .., Cy. A gallery C,, .., Cy crosses M, if r
is contained in the corresponding sequence (7, .., ry). A minimal gallery
going from C to D is a gallery of minimal length which is by definition
the distance d(C, D) between C and D. A wall M, separates chambers C
and D if C = M} and D « M * Denote by R(C, D) = R the set of walls
separating C from D. The group W acts on R by conjugations r — grg~?
which we denote for brevity by g-r. Then gM: = M3.,, & & = +1.
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4  PROPOSITION 2. Let C=Cy,Cqy..Cy =D be a gallery and let

Z (ry,--Tn) be the corresponding sequence of reflections.

B (i) The set of reflections r contained in (ry,..7y) an odd number of
times is R(C, D).

- (ii) The following assertions are equivalent :

a) gallery Cg,..,Cy is minimal;

b) d(C;,C;) =1i—j| forany i,j=0,.,N;

¢) there are no repetitions in the sequence (Fqs e T'N)-

- Proof. A differentiable path {x(): 0 <t < 1} on M is called regular if
for all but a finite number 0 < t; < .. < ty < 1 of moments of time
x() is regular, x(t;) is semiregular for i = 1,.., N and the curve x(f) is

transversal to the set | ] M. Then for ¢ # £y, ., Iy x(t) belongs to a unique
seR

chamber and the sequence C,, .., Cy thus defined is a gallery with ¢;

b {1} Iy

c

s
oII

b)

x(1)

FIGURE 3
To the proof of Proposition 2. Galleries and paths along them
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being the moment of time when x(t) crosses from C;_, to C,. We say that
Co, .., Cy is the gallery along the path {x(t)}. Given a gallery C,,..,Cy
there is always a regular path {x(t)} such that C,, .., Cy is the gallery along
it. We say that {x(1)} goes along the gallery.

Let Co,..,Cy be a gallery going from C = Cy, to D = Cy and let
{x(t)} be a regular path along it. For anyreRlets; <..<t,  be the conse- .
cutive moments of time when {x(#)} intersects M,. By Corollary 0, N(r)
is even (resp. odd) if and only if 7 ¢ R(C, D) (resp. r € R(C, D)) which proves (1).
Assertions a) and b) of (ii) are obviously equivalent. By (i) every r e R(C, D) l\
is contained in (ry, .., ry) at least once, thus N > | R(C, D)|. Assume that
N > | R(C,D)|. Then either there is r¢ R(C, D) that occurs in (ry, .., ry)
(necessarily an even number of times) or there is r € R(C, D) that occurs in ‘
(ry..,7y) more than once. Assume the first possibility and let r occur 2m |

times in (ry,..,ry). Using the proof of Lemma 1 we construct a new

regular path {x'(t)} which joins x(0) with x(1) and does not cross M,
at all (see fig. 3, a)). The gallery along {x'(t)} has N + 1 — 2m chambers and
does not cross M,. Analogous argument shows that if there is r e R(C, D)

that occurs 2m + 1 > 1 times in (1, .., ry) then there is a new gallery from |

C to D which is by 2m shorter then Co, .., Cy and crosses M, once |
(see fig. 3,b)). Thus the sequence (ry, .., 7y) corresponding to a minimal ;
gallery can contain only r € R(C, D) and no more than once. On the other
hand by (i), it must contain every r e R(C, D) at least once. This proves the 1
Proposition and the following. ‘ ‘

COROLLARY 2. 1) A gallery C = Cos s Cy = D is minimal if and only 1
if N =|R(C,D)|. Thus d(C, D) = |R(C,D)|. 2) For any gallery
C=Coy,..,Cy=D,(—)N = (—)4CD),

COROLLARY 3. Let D # C be two chambers, let M (resp. M,)
be a wall of C (resp. D) such that r,s€ R(C, D). Then there exists a
minimal gallery C, = C,..,Cy = D such that C, =5sC and Cy_, = rD.

Proof. If d(C,D) = 1 then r = s and the assertion is trivial. If ¢ € R
and t # s then t cannot separate sC from C. If besides ¢ e R(C, D) then C,
sC = M(D)~ and if t ¢ R(C, D) then C, sC = M,D)*. Therefore R(sC, D)
= R(C, D)\{s} and d(sC, D) = d(C, D) — 1. This proves the assertion by
induction on d(C, D). -
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The group W naturally acts on the set of chambers of M. Choose one
chamber C, to be the fundamental chamber and let S = S¢, be the set of
& reflections in the walls of C, . Elements s S are called simple reflections.

PROPOSITION 3.

(1) W acts simply transitively on the set of chambers.

(i) S generates W.

§ (i) Any reR is conjugate to some seS.

|
!
x
|
1 (iv) Let geW andlet g = s,..sy be a decomposition of g into simple
1| 3 reflections. Then the sequence '

|

|

|

CO = C+ 5 Cl = S1C+ 5 eeey Ci = 81 . SiC+ 9 eeesy CN = Sl . SNC+

| - is a gallery. This establishes a one to one correspondence between the
words in s; and galleries starting from C. .

~ Proof. Denote d(C,, C) by d(C) and R(C,, C) by R(C). Let W be the
subgroup of W generated by S. We have seen in the proof of Corollary 3
. that if d(C) > 0 then there is r € R(C) such that d(rC) = d(C) — 1. Assuming
- that *C = wC, for some we W we have r = wsw™! for some se S, thus
~reWand C = r-rC = rwC,, where rwe W. This proves by induction on
g d(C) that W acts transitively on the set of chambers.
|  Let reR and let C be such that M, is a wall of C. Then there is
weW such that w™!C = C, thus w M, is a wall of C,, that is
|:w ™M, = M for some seS, therefore r = wsw™! which shows that
¢ Rc W and proves (iii). The group W is generated by R and R = W
:; thus W = W which proves (ii). Let C,,i = 0,.., N be the sequence of
chambers defined in (iv). Since

G i
o P

; Civs = (Sg o 5)8i44(5; o 89)8; ... 5;C = ri+1GC;

and since ;11 = (Sy ... ;)84 1(s; . ;)" € ¢, the chambers C;+, and C; are
' adjacent, thus C,,..,Cy is a gallery going from C, to ¢gC,. Let

Co=C,,..,Cy be any gallery and let (ry,..,7y) be the corresponding

sequence of reflections. Set g; = r;...r;i = 1,.., N. Then C; =¢,C, and
f g; 'r;419;€ S fori = 1,.., N. Denote gi '7i119: by 501 Then g,y = 1,419
= 95+ 1 which shows by induction that g; = s, ... s; for i = 1,.., N. Thus
E the gallery C,, ..., Cy corresponds to the word S1 .. S;+1 Which proves (iv).
| In particular, two words S1.. Sy and s’ ..s) represent the same ge W

if and only if the corresponding galleries C, = C,, .., Cy and C, -
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0> - Cyrlead to he same chamber gC, = Cy = C),. Thus the mapping
g = gC. is one to one which proves (1).

Choose a fundamental chamber C + and let § be the corresponding set of
simple reflections generating W. A decomposition g =Sy..5y,85€S of
g € W is called minimal if it is the shortest possible. Then N = d(g) is the
length of g and the distance d(g, h) is defined by d(g, h) = d(g~1h). Denote
g9C. by C,, R(C,) by R(g) and M(C,)* by M2 respectively. Identify the
set of halfspaces M * with R = R x {£1} and call elements (r, &) = e R

the oriented reflections. A gallery C,, .., Cy defines a sequence (Fys s Fyy)
of oriented reflections by

(i, +1) if C,c M*
1) F =

(i, —=1) if Cyc M-

Denote by 7 — g7 the action of W on R corresponding to the natural

action of W on the set of halfspaces. Define a function sgn: W x R
— {1} by

—1  g-reR()
) sgn(g, r) =

: o Cadoe Sy T T o S b S s ST O R %
AL AR R RS 9 Aol o I I Y B MR e s 7 R

1 g-ré¢R(g)

and for 7 = (r, &) set —# = (r, —¢).

COROLLARY 4.

(i) Forany g, he W, d(g, h) = dC,, Cy) and d(g) = | R(g) |.
(i) R(g) = {reR:g 'M: = M= }. .

g"lor

(i) The action of W on R is given by g(r, &) = (g -, sgn(g, 1)e).

Proof. (i) follows from Proposition 3 and Corollary 2. Recall that
R(g) = {reR:C, = M }. Since g 'C, = C, we have g~ 1M~ = M-,

On the other hand if r ¢ R(g) then C, = M therefore g M} = M -1
which proves (ii).

(i) is equivalent to the assertion that gM: = M, if g-reR(g) and
gM: = M;.,if g - r ¢ R(g) which proves (idi).

For xe M denote by W, = W the isotropy subgroup of x and by
R, = R the set of r € R such that rx = x.
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1 PROPOSITION 4.
; () Let x,yeC,geW andlet gx =y. Then x =y and geW,.
E (i) For any xe M the group W, is generated by reflections reR,.

| _:' Proof. Let C,D be such chambers that C () D # ¢. Since any wall
M, e R(C, D) separates C from D, it contains C () D. A minimal gallery
C = Cy,..,Cy = D going from C to D crosses only the walls M, € R(C, D),
thus every chamber C,,..,Cy contains C () D and reflections of the
corresponding sequence (ry , ..., ry) leave C () D fixed pointwise. In the notation
of (i), ye gC () C # ¢. A minimal decomposition g = s, ... sy corresponds to
a minimal gallery going from C to gC and g = ry..r,;. Thus g leaves
C () ¢gC pointwise fixed, so y = x. For xe M let C be a chamber con-
- taining x. By the same argument as above any ge W, is a product of
~ r;€ R, which proves (ii).

COROLLARY 5. The natural mapping ¢: C, — M/W is an isomorphism.

Proof. By Proposition 3, (i), ¢ is onto. By Proposition 4, (i) ¢ is one
" to one.
For r,se R denote by m(s,r) e {1, .., co} the order of rs. Since s? = 1
for any s € R we have

@) mls,s) =
- (3)
(i1) mr,s) = m(s,r) =2 for r#s.

Definition 2 (cf. Bourbaki [2]). A Coxeter group is a group W with a
{ finite set S of generators and a presentation

L (4) W= <S:(sr"®? =1, r,seS>

#

% where the function m: S x S — {1, .., oo} satisfies (i) and (ii) above.

THEOREM 1. Let W be a reflection group actingon M, let C, bea
fundamental chamber, let S = R be the corresponding set of simple reflections

: and for s,reS let m(s,r) be the order of sr. Then W is a Coxeter
% & group with the presentation

g }

(5) W= <S:(sr"" = 1> .

*‘.’&i&eﬂmwa el

Proof. If C,, .., Cy and Cj, ..., C', are two galleries such that Cy = C,
we define their product by C,, ..., Cy, C 15 - Ciy. The inverse of the gallery -
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Co, ., Cy is by definition Cy, .., Cy. A loop is a closed gallery C,, .., Cy
= Co. Any chamber of a loop can be taken for the starting chamber.
If there are two loops passing through the same chamber C,, we define
their product based on C, in an obvious way.

The dihedral group D,, is the Coxeter group of order 2m with the
presentation

(6) D, = <s,r:s8>=71r*=(sr)" = 1> .

It is isomorphic to the reflection group on R? generated by reflections
s, r in two lines meeting at the angle nt/m.

By Proposition 3, (iv), there is a one to one correspondence between
relations sy ... sy = 1, s; € S and loops starting from C. .

If r, s are reflections in the walls of a chamber C, the group they
generate is the dihedral group D, ,) and the defining relation (rs)""9 = 1
corresponds to the loop on R? starting at C and going around the origin
visiting every chamber once (see fig. 4). Let us call such loops elementary
and let us call loops of the form C,,..,Cy_;,Cy,Cy—1,..,Cq trivial.

C =rsrsrsC
rC rsrsrcC
rsC rsrsC
rsrC
FIGURE 4

Loop corresponding to the relation (rs)* = 1

The statement of the Theorem is equivalent to the assertion that every
loop is a product of elementary loops and trivial loops.

Let Cy,..,Cy be any gallery and set d(C) = d(C, C,). Then d(C;,,)
=dC)+1,i=0,.,N—1 and if Cy = C,, the graph of the function
d:i— d(C;) looks like graphs on fig. 5, a), b).
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N d(C‘)

..-\/

FIGURE 5 a), b)
Length function on loops

We call a loop perfect if it can not be decomposed into a product of
. shorter loops. It suffices to prove the assertion for perfect loops.

~ Assume that the function d has more than one local maximum. Thus
- d(C;) increases until i = n,,d(n,;) = n,, then decreases to a local minimum
cati = m, > ny,dm;) = n, — (m,—n;) = 2n, — m,, then starts increasing
again. Let C,,C', .., C%,—pn, = C,, be a minimal gallery going from C,
to C,,,. Then the original loop is the product of two loops

— / !
CO: seey Cm 9l wnsy le - C2n1-—m1 > M 2ng—mp—15 1> CO
§ and
’ ’
Co, 19 ooy 211 —my = le, Cm1+1, veey CN == Co.

Each of them is shorter than the original one. Indeed, since the length of

a loop is even, N = 2M and n, < M (see fig. 4, a)). The length of the

5 first loop is 2n; < 2M and the length of the second is 2ny—my) + (N—m,)

2 =N+ 2n,—m;)<N.

| Thus the length function on a perfect loop must have a graph like

jone on fig. 4, b) no matter which chamber is used as a starting chamber.
Let Cy,..,C,, = C, be a perfect loop and let (rys.Ty) be the

corresponding reflection sequence. Since every subgallery of length m is




108 E. GUTKIN

minimal, any reflection r that occurs in (r,, ..., r,,) occurs twice. Moreover
these m distinct reflections must occur in the order Fisws Frgs Ty s ooy Py (SEE
Proposition 2, (ii)). It is convenient to arrange the sequence 7y, ..., ¥,,, Fy., - F'm
as a circle (see fig. 6). Then it becomes clear that it does not matter
which chamber is taken for the starting chamber and that a half of the
sequence determines the other half.

2 m
r r
1 1
r r
m 2
FIGURE 6

Reflection sequence of a perfect loop

The relation corresponding to a perfect loop has the form
(6) (1) = 1.

Let Cy, ..., C,,n < m be a subgallery of a perfect loop and assume that
there is another minimal gallery C,, C', .., C,_;, C, going from C, to C,
(and different from C,, C5,—1, ..., Cpui 1, C, if n = m). Our loop is then the

product of two loops
Cor s Cyy Creg,.,C1,Co  and  Cy,CY,....Ch_1,C,,Chyiy, ., Cy.

In the reflection sequence corresponding to the second loop the last m
reflections are ry,..,7, but the first m are not ry,..,r,. So it is not
perfect therefore the original loop was not perfect. ’

The argument above shows that every subgallery C,, ..., C,,_; of length
m — 1 of a perfect loop of length 2m is unique, i.e. there is no other
minimal gallery going from C, to C,,_, and the only other minimal gallery
leading from C, to C,, is the other half of the loop.

Write r,,..r; as a product s;..s, of simple reflections. The word

7 S1 we SpSq eoe Sy = 1
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has the cyclic property that s; = s,;. Assume that the sequence Si, ..., Sm
L] contains three distinct reflections. Then we can rewrite (7) as

| ENU) 35185« Spy_ 1535182 v Sm—1 = 1

1 where s; # 5, # S,. We will use the following

, LEMMA 2 (compare with Bourbaki [2], ch. IV, § 1, Lemma 3). If a word
S, .S, is minimal and the word s ..s,s s not (seS) then there is
1 <i<n suchthat

-9 Sipq e SpS = SiSj41 - Sp

Proof of the Lemma. Let 1 <i < n be the maximal index such that
§4;..5,S is minimal and s;s;4;..S,s is not. Consider the gallery C;,
Ci“,..., C,, C corresponding by Proposition 1, (iv) to s;..s,s and let
r., .. Im, F be the corresponding sequence of reflections. Since the gallery
C; Clﬂ, .., C., C is not minimal and every subgallery of it is minimal, by
Proposition 2,7; # 711 # ... # ryandr = r;. Thus §;8;, 1 ... $,55, ... S;+18; =
which implies §;41 ... $,8 = 8;S;+1 - S, and proves the Lemma.
The word s55;5; ... S,—153 is not minimal and every subword of it is
minimal, therefore, by Lemma 2,

(10) S185 o Spy— 183 = 535153 . Spp—1
that is s; commutes with s;s, ... s,,_; . This produces two relations

(11) S1S5 e Spp— 1S3 = 535152 e Su—1 = Sm—1 - 525153

corresponding to three different galleries going from C, to C, which
- contradicts to the assumption that the loop C,, ..., C,,, 1s perfect.
Thus (7) contains only two reflections s; and s,, ie. it has the form

(12) (s¢s,)" = 1

1 which is one of the defining relations of the Coxeter group. This completes

| E the proof of the Theorem.
g
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