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APPENDICE

Le but de cet appendice est de montrer comment le lemme utilisé
dans la démonstration précédente découle du théoréme de Hodge:

LEMME. Soit S wune surface de Riemann close, X1, X, €S et
Oy, ..., 0 € R, Supposons Y o, = 0. Alors il existe une fonction harmonique
i

h:S — R avec singularités logarithmiques de poids o; en x;(i=1,2,..,n).

Si h et K sont deux telles fonctions, elles différent par une constante.

Avant de prouver ce lemme, quelques rappels sur la théorie de Hodge
seront nécessaires :

Si S est une surface de Riemann, alors S est munie d’une structure
presque complexe, c’est-a-dire d’un morphisme (linéaire) de fibré J: TS — TS
tel que J> = —I (identité). J peut étre défini a I'aide d’une métrique
conforme en posant Y = JX si et seulement si {X; Y} est une base ortho-
normée d’orientation positive, pour tout vecteur unité X.

Si @ est une 1-forme sur S, on définit *® par:

*0(X) = —(JX);

* est également un morphisme de fibré *: T*S — T*S tel que ** = —1.
Siz = x + iy est une coordonnée sur S, alors

J 0 0 J 0 0 7 0 .0 J 0 ; 0
_— = — _ = — _ =1 — _— = -] —
ox dy’  \0dy ox’  \oz 0z’ \oz 0z’

*dx = dy, *dy = —dx, *dz = —idz, *d7 = idz .

Si f est une fonction, on a

32f 0 f |
= —_— e — d A = 2 ] A —.
d=df <6x2 + 6y2> Xady 9207 idzadz .

On dit qu’une 1-forme est harmonique si do = d*® = 0, donc ® est har-
monique si et seulement si c’est localement la différentielle d’une fonction
harmonique.

THEOREME DE HODGE. Si © est une 1-forme différentielle sur S, alors
il existe u,ve C®(S) et ©, une l-forme harmonique tels que
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® = 0y + du + *dv.

Nous ne prouvons pas ce théoréme ici (cf. [6] ou [8]).

. Preuve du lemme.

Umcn‘e Soient h et &' deux fonctions harmoniques avec les mémes singu-
{ ; larités logarithmiques, alors h—h' est une fonction harmonique sans singu-
lantes donc constante puisque S est compacte.

Exlstence Par linéarité, il suffit de montrer que si p,g€S alors il existe
h S — R, harmoniques avec singularites logarithmiques de poids —1 en p
et +1 en g (la fonction voulue s’obtient ensuite comme combinaison linéaire
f de telles fonctions). On peut, pour la méme raison, SUpposer que p et g
ﬁ appartiennent a un méme domaine U d’une coordonnée z. Soit D un sous-
~ domaine contenant p et g et tel que D < U. Donnons-nous ensuite une

~fonction lisse % : S — R telle que

xp=1 et xls-v=0.

On définit f: U — C par f(z) = x(z)log ((z—g)/(z—p)) et 'on étend a f a
S tout entier en posant f|s_y = 0. Considérons la 1-forme

( = df—ixdf = 2@;(12'.
0z

Remarquons que { = 0 sur D v (S—U).

Le théoréme de Hodge permet d’écrire

| { = og+du+*dv

avec ®, harmonique. Posons ensuite

; = df —du = ®y+i*df +*dv;

i alors o est fermée car do = d(df —du) = 0, ® est cofermée car
#x = —1 donc dxo = d*w,—id*f—d*v = 0.

g8 Donc o est harmomque
Posons

h=Re(f—u) = > ((f—w) + (f—d);

MIH

alors h est harmonique puisque
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dxdh = %d*(d(f—u)er(f—G))) - %d*(co—kfb) =0.

h a clairement les singularités voulues. O
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