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re 2) avec une unique singularité

® par la surface euclidienne (close et de gen
t de la facon usuelle les bords

_ conique d’angle 6m obtenue en identifian
8 : f'un octogone régulier du plan euclidien.
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FIGURE 3

7 Si la structure de s.es.c. provenait d’une différentielle quadratique, il
existerait un feuilletage géodésique sur S, (le feuilletage horizontal). Les
5 . feuilles devraient étre des droites paralléles dans 'octogone rencontrant deux
‘ ._\@ cotés identifiés selon des angles égaux. Cela est clairement impossible si les

4 cotés identifiés ne sont pas paralleles.
Tl est intéressant de noter que les différentielles quadratiques jouent un role

F§ central dans la théorie des déformations (des « modules ») des surfaces de
| Riemann (cf. [1]).

8 Pour une théorie compléte des différentielles quadratiques, on peut se
reférer a [7].

§ 5. CLASSIFICATION DES S.ES.C.

Rappelons qu'une métrique ds? sur une vari€té riemannienne (M, ds?)
est conforme s’il existe une fonction h: M — R telle que

ds? = e*"ds®.
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Lorsqu’il existe des singularités coniques, & peut prendre des valeurs infinies
(avec croissance logarithmique).

Le résultat suivant classe toutes les s.e.s.c. closes et orientables.

THEOREME. Soit S une surface close et orientable, X1, X, €S et

0;,...8, >0 tels que

Z(Zn—@,-) = 2ny(S).

13
Alors dans chaque structure conforme sur S, il existe une structure eucli-
dienne pour laquelle x; est une singularité conique d’angle 0;(i=1,2, ... n).
Cette structure est unique si on la normalise (par exemple en posant :
Aire totale de S=1).

Démonstration.

Unicité. Si ds et ds’ sont deux telles structures, alors par conformité il
existe une fonction h telle que ds’ = e"ds. Alors h doit étre une fonction
harmonique (pour la structure conforme donnée) et sans singularité
(cf. prop. 3, § 1). Comme S est compacte, h est constante et comme laire
est normalisée, cette constante est nulle.

Existence. Supposons que S soit de genre g > 0, alors il existe sur la
surface de Riemann S une différentielle quadratique non nulle ®. Soient
Y1, Vi les zéros de o, alors ds3 = | @ | définit une métrique euclidienne
conforme sur S avec singularités coniques en y; de poids my/2 (m; est
Pordre du zéro y;; cf. prop. 1, §4). On a

0,
Yom/) =29 —2= 38, <Bi=5;—1>.

Donc en particulier:
ZBi + Z(—mj/Z) =0.
i Jj

Pour conclure, nous utiliserons le lemme ci-dessous::

LEMME. Soit S une surface de Riemann close, x,,..,x,€S et
Oy, ..., O € R, Supposons ) o; = 0. Alors il existe une fonction harmonique
i

h:S — R avec singularités logarithmiques de poids o; en x;(i=1,2,..,n).
Si h et K sont deux telles fonctions, elles différent par une constante.
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Il existe donc une fonction harmonique h:S — R avec singularités
logarithmiques de poids

{ B, en x;(i=1, .., n)
—m;/2 en y;(j=1, .., k)

£ alors
ds?> = e*tds}

} est la métrique cherchée (cf. prop. [3], § 1).
| Ce raisonnement ne convient pas si g = 0, la sphére mérite donc des
[ § considérations particulieres:
: Par le théoréme d’uniformisation de Riemann (cf. [6]), il n’existe (@
isomorphisme prés) qu’une structure conforme sur S2. On peut donc poser
- §2 = Cu {oo}.

Soit ¢;€ C U {0} la coordonnée de x;, on peut supposer que a; # 0.
Soit aussi B; = (8;/2m) — 1 alors on a

ZB:‘:—Z

On pose:

ds?* = (J]1z — a;|*#)| dz |?

1

Alors ds? est bien une métrique euclidienne (log []|z — a;|® est har-
i

. monique) et g; est un point conique d’angle 0;. Il ne reste plus qu’a
. vérifier que co est un point régulier. Pour cela, on fait 'inversion w = 1/z

dw |
(donc|dz|2 = I—W—|> On a

o w

le_ailzﬁi:lel_zﬂill_waﬂzﬁi = |w|4n|1—wai|23i
i i i

8 (cor Y B = —2);
donc,
ds* = ([T1z — a,12*)1dz 1> = [wl*T]11 — wa, |?P | dw | w|*

= ([T11 — wa; |?*) ] dw|?

1

est une métrique euclidienne réguliere en w = 0 (c’est-a-dire z = o0).
Ceci achéve donc la preuve du théoréme.
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