Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 32 (1986)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: LES SURFACES EUCLIDIENNES À SINGULARITÉS CONIQUES

Autor: Troyanov, Marc

Kapitel: §4. Les différentielles quadratiques **DOI:** https://doi.org/10.5169/seals-55079

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

§ 4. Les différentielles quadratiques

Soit S une surface de Riemann. On notera TS son fibré tangent, c'est une variété analytique complexe de dimension 2. Si $p \in S$, on notera T_pS la fibre au-dessus de p (l'espace tangent en p).

Définition. Une différentielle quadratique sur S est une fonction holomorphe.

$$\omega : TS \to \mathbf{C}$$

qui, restreinte à chaque fibre, est une forme quadratique.

Rappelons que les seules formes quadratiques sur $C(\cong T_pS)$ sont

$$t \to \mu t^2 \quad (\mu \in \mathbb{C} \text{ est une constante})$$

Donc si $U \subset S$ est le domaine d'une coordonnée z, alors toute différentielle quadratique ω est donnée par une fonction holomorphe $\mu: U \to \mathbb{C}$ telle que $\omega = \mu(z)dz^2$. Si z' = f(z) est une autre coordonnée sur U et μ' la fonction correspondante, alors on doit avoir:

$$\mu'(z') = \mu(z) \left(\frac{dz}{dz'}\right)^2.$$

Notons Q(S) l'espace vectoriel complexe des différentielles quadratiques sur S. Remarquons que si S est une surface close de genre > 0, Q(S) n'est pas réduit à 0 (Q(S) contient les carrés des différentielles abéliennes, cf. [2] ou [6]). Soit $\omega \in Q(S) - \{0\}$ et z une coordonnée au voisinage d'un point $p \in S$ pour laquelle ω s'écrit $\mu(z)dz^2$. Supposons que μ ait en p un zéro d'ordre m. Alors on dira que m est l'ordre de ω en p. Il est immédiat que ce nombre ne dépend pas de la coordonnée choisie.

Lemme 1. Soit $p \in S$ et ω une différentielle quadratique non nulle d'ordre m en p. Alors il existe une coordonnée z au voisinage de p telle que z(p)=0 et $\omega=z^mdz^2$. De plus, cette coordonnée est unique à une rotation d'angle $\frac{k2\pi}{m+2}$ radians près (k est un entier).

On appelle z la coordonnée « normale » ou « distinguée » en p.

Preuve.

Existence. Il suffit de reprendre la démonstration de la proposition 2 du § 1.

Unicité. Si $z^m dz^2 = w^m dw^2$, alors

$$\frac{dw}{dz} = \pm \left(\frac{z}{w}\right)^{m/2}.$$

Une solution est donnée par

$$w = e^{id}z \Rightarrow e^{id} = \frac{dw}{dz} = \pm e^{-idm/2} \Rightarrow d(1+m/2) = k\pi \Rightarrow d = \frac{k2\pi}{m+2}.$$

Cette solution est unique une fois une condition initiale donnée.

Proposition 1. Soit S une surface de Riemann close et soit ω une différentielle quadratique non nulle sur S.

Alors ω définit sur S une structure euclidienne à singularités coniques. Si $x_1,...,x_n$ sont les zéros de ω et ont pour ordre $m_1,...,m_n$ alors $x_1,...,x_n$ sont les singularités coniques et ont pour angle $(m_1+2)\pi,...,(m_n+2)\pi$ respectivement.

Preuve. La métrique est donnée par $ds^2 := |\omega|$. La proposition 2 du § 1 implique les propriétés énoncées.

COROLLAIRE. Soit S une surface de Riemann close de genre g et $\omega \in Q(S) - \{0\}$. Alors le nombre de zéros de ω (comptés avec multiplicités) est 4g-4. (En particulier, il n'existe aucune différentielle quadratiques non nulle sur une surface de Riemann homéomorphe à S^2).

Preuve. Si x_i est un zéro d'ordre m_i , la courbure concentrée est $k_i = -m_i\pi$. On applique la formule de Gauss-Bonnet.

En plus d'une structure de s.e.s.c., une différentielle quadratique induit sur S deux feuilletages mesurés, orthogonaux l'un à l'autre (avec des singularités), définis par:

X est un vecteur horizontal si et seulement si $\omega(X)$ est un réel positif Y est un vecteur vertical si et seulement si $\omega(Y)$ est un réel négatif.

Dans [5], Hubbard et Masur étudient ces feuilletages et leurs liens avec la théorie des différentielles quadratiques. La proposition 1 dit que certaines structures de s.e.s.c. sur une surface close peuvent être obtenues à partir d'une différentielle quadratique, à condition que les angles des points coniques soient tous des multiples entiers de π . Cette condition n'est toutefois pas suffisante, le contre-exemple le plus simple est peut-être donné

par la surface euclidienne (close et de genre 2) avec une unique singularité conique d'angle 6π obtenue en identifiant de la façon usuelle les bords d'un octogone régulier du plan euclidien.

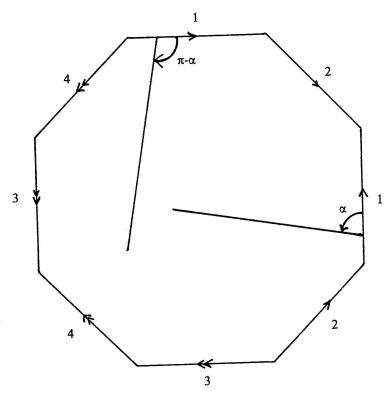


FIGURE 3

Si la structure de s.e.s.c. provenait d'une différentielle quadratique, il existerait un feuilletage géodésique sur S_0 (le feuilletage horizontal). Les feuilles devraient être des droites parallèles dans l'octogone rencontrant deux côtés identifiés selon des angles égaux. Cela est clairement impossible si les côtés identifiés ne sont pas parallèles.

Il est intéressant de noter que les différentielles quadratiques jouent un rôle central dans la théorie des déformations (des « modules ») des surfaces de Riemann (cf. [1]).

Pour une théorie complète des différentielles quadratiques, on peut se référer à [7].

§ 5. Classification des s.e.s.c.

Rappelons qu'une métrique ds_1^2 sur une variété riemannienne (M, ds^2) est conforme s'il existe une fonction $h: M \to R$ telle que

$$ds_1^2 = e^{2h} ds^2.$$