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§ 4. LES DIFFERENTIELLES QUADRATIQUES

; Soit S une surface de Riemann. On notera TS son fibré tangent, c’est
. une variété analytique complexe de dimension 2. Si pe S, on notera T,S
- la fibre au-dessus de p ('espace tangent en p).

Définition. Une différentielle quadratique sur S est une fonction holo-
- morphe.

o: 1S - C

qui, restreinte & chaque fibre, est une forme quadratique.
Rappelons que les seules formes quadratiques sur C(= T ,S) sont

t - pt? (n e C est une constante)

Donc si U < S est le domaine d’une coordonnée z, alors toute différentielle
quadratique ® est donnée par une fonction holomorphe p: U — C telle que
o = p(z)dz2 Si 27 = f(z) est une autre coordonnée sur U et p’' la fonction
correspondante, alors on doit avoir:

dz \ 2

dz’) .

Notons Q(S) I'espace vectoriel complexe des différentielles quadratiques
sur S. Remarquons que si S est une surface close de genre > 0, Q(S)
nest pas réduit & 0 (Q(S) contient les carrés des différentielles abéliennes,
cf. [2] ou [6]). Soit ® € Q(S) — {0} et z une coordonnée au voisinage d’un
point pe S pour laquelle ® sécrit p(z)dz2. Supposons que p ait en p
‘un zéro d’ordre m. Alors on dira que m est lordre de ® en p. Il est
-immeédiat que ce nombre ne dépend pas de la coordonnée choisie.

w(z') = p) (

LEMME 1. Soit peS et © une différentielle quadratique non nulle
f ’"*dordre m en p. Alors il existe une coordonnée z au voisinage de p
”‘telle que z(p) =0 et o = z"dz’. De plus, cette coordonnée est unique
B k2w

m+ 2

B 2 d une rotation d’angle radians prés (k est un entier).

On appelle z la coordonnée « normale » ou « distinguée » en p.

T N R

Preuve.

Lxistence. 11 suffit de reprendre la démonstration de la proposition 2 du § 1.
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Unicité. Si z"dz?> = w™dw?, alors
dw z \™?
dz —\w)

. : d :
W = ele = eld = l = i e—ldm/Z = d(1+m/2) =kn=d = kan .
dz m+ 2

-

Une solution est donnée par

Cette solution est unique une fois une condition initiale donnée.

ProrosITION 1. Soit S wune surface de Riemann close et soit ® une
différentielle quadratique non nulle sur S.

Alors o définit sur S une structure euclidienne a singularités coniques.

Si Xq{,..,X, Sont les zéros de ® et ont pour ordre m,, .. m, alors
X{, . X, Sontles singularités coniques et ont pour angle (m,+2)=, ..., (m,+2)n
respectivement.

Preuve. La métrique est donnée par ds® : = | @ |. La proposition 2 du § 1
implique les propriétés énoncées.

COROLLAIRE. Soit S une surface de Riemann close de genre g et
o € Q(S) — {0}. Alors le nombre de zéros de ® (comptés avec multiplicités)
est 49 — 4. (En particulier, il wexiste aucune différentielle quadratiques non
nulle sur une surface de Riemann homéomorphe a S?).

Preuve. Si x; est un zéro d’ordre m;, la courbure concentrée est
k; = —mm. On applique la formule de Gauss-Bonnet. O

4

En plus d’une structure de s.e.s.c., une différentielle quadratique induit
sur S deux feuilletages mesurés, orthogonaux I'un a l'autre ('avec des sin-
gularités), définis par:

X est un vecteur horizontal si et seulement si ®(X) est un réel positif

Y est un vecteur vertical si et seulement si  ®(Y) est un réel négatif .

Dans [5], Hubbard et Masur étudient ces feuilletages et leurs liens avec la
théorie des différentielles quadratiques. La proposition 1 dit que certaines
structures de s.e.s.c. sur une surface close peuvent étre obtenues a partir
d’'une différentielle quadratique, a condition que les angles des points
coniques soient tous des multiples entiers de m. Cette condition n’est
toutefois pas suffisante, le contre-exemple le plus simple est peut-étre donné

g.‘
i

e
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re 2) avec une unique singularité

® par la surface euclidienne (close et de gen
t de la facon usuelle les bords

_ conique d’angle 6m obtenue en identifian
8 : f'un octogone régulier du plan euclidien.
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FIGURE 3

7 Si la structure de s.es.c. provenait d’une différentielle quadratique, il
existerait un feuilletage géodésique sur S, (le feuilletage horizontal). Les
5 . feuilles devraient étre des droites paralléles dans 'octogone rencontrant deux
‘ ._\@ cotés identifiés selon des angles égaux. Cela est clairement impossible si les

4 cotés identifiés ne sont pas paralleles.
Tl est intéressant de noter que les différentielles quadratiques jouent un role

F§ central dans la théorie des déformations (des « modules ») des surfaces de
| Riemann (cf. [1]).

8 Pour une théorie compléte des différentielles quadratiques, on peut se
reférer a [7].

§ 5. CLASSIFICATION DES S.ES.C.

Rappelons qu'une métrique ds? sur une vari€té riemannienne (M, ds?)
est conforme s’il existe une fonction h: M — R telle que

ds? = e*"ds®.
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