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§4. Les différentielles quadratiques

Soit S une surface de Riemann. On notera TS son fibré tangent, c'est

une variété analytique complexe de dimension 2. Si p e S, on notera TpS

la fibre au-dessus de p (l'espace tangent en p).

Définition. Une différentielle quadratique sur S est une fonction
holomorphe.

qui, restreinte à chaque fibre, est une forme quadratique.
Rappelons que les seules formes quadratiques sur C( TpS) sont

Donc si U a S est le domaine d'une coordonnée z, alors toute différentielle

quadratique œ est donnée par une fonction holomorphe p: U -> C telle que
cd \i(z)dz2. Si z' /(z) est une autre coordonnée sur U et p' la fonction
correspondante, alors on doit avoir :

Notons Q(S) l'espace vectoriel complexe des différentielles quadratiques
sur S. Remarquons que si S est une surface close de genre > 0, <2(S)

n'est pas réduit à 0 (2(5) contient les carrés des différentielles abéliennes,
cf. [2] ou [6]). Soit G) e Q(S) — {0} et z une coordonnée au voisinage d'un
point p e S pour laquelle co s'écrit p(z)dz2. Supposons que p ait en p
un zéro d'ordre m. Alors on dira que m est l'ordre de co en p. Il est
immédiat que ce nombre ne dépend pas de la coordonnée choisie.

Lemme 1. Soit p e S et co une différentielle quadratique non nulle
d'ordre m en p. Alors il existe une coordonnée z au voisinage de p

ä

telle que z(p) 0 et co zmdz2. De plus, cette coordonnée est unique
k2n

a une rotation d angle
^

radians près (k est un entier).

co: TS - C

t - pt2 (p e C est une constante)

On appelle z la coordonnée « normale » ou « distinguée » en p.

Preuve.

Existence. Il suffit de reprendre la démonstration de la proposition 2 du § 1.
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Unicité. Si zmdz2 wmdw2, alors

Une solution est donnée par

d\V IrO TT

w eidz => eid -— + e~idm/2 => d(l + m/2) kn => d
dz m + 2

Cette solution est unique une fois une condition initiale donnée.

Proposition 1. Soit S une surface de Riemann close et soit ce> une

différentielle quadratique non nulle sur S.

Alors (ù définit sur S une structure euclidienne à singularités coniques.
Si x1,...,xn sont les zéros de oo et ont pour ordre m1,...,mn alors

x±,..., xn sont les singularités coniques et ont pour angle (m1 + 2)71,..., (m„ + 2)tc

respectivement.

Preuve. La métrique est donnée par ds2 := | co |. La proposition 2 du § 1

implique les propriétés énoncées.

Corollaire. Soit S une surface de Riemann close de genre g et

co g 2(S) — {0}. Alors le nombre de zéros de co (comptés avec multiplicités)
est 4g — 4. (En particulier, il n'existe aucune différentielle quadratiques non
nulle sur une surface de Riemann homéomorphe à S2).

Preuve. Si xt est un zéro d'ordre mt, la courbure concentrée est

kt —mt7i. On applique la formule de Gauss-Bonnet.

En plus d'une structure de s.e.s.c., une différentielle quadratique induit
sur S deux feuilletages mesurés, orthogonaux l'un à l'autre (avec des

singularités), définis par :

X est un vecteur horizontal si et seulement si co(X) est un réel positif

Y est un vecteur vertical si et seulement si o)(7) est un réel négatif.

Dans [5], Hubbard et Masur étudient ces feuilletages et leurs liens avec la
théorie des différentielles quadratiques. La proposition 1 dit que certaines

structures de s.e.s.c. sur une surface close peuvent être obtenues à partir
d'une différentielle quadratique, à condition que les angles des points
coniques soient tous des multiples entiers de n. Cette condition n'est

toutefois pas suffisante, le contre-exemple le plus simple est peut-être donné
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par la surface euclidienne (close et de genre 2) avec une unique singulan e

conique d'angle 6rc obtenue en identifiant de la façon usuelle les bords

d'un octogone régulier du plan euclidien.

Figure 3

Si la structure de s.e.s.c. provenait d'une différentielle quadratique, il

existerait un feuilletage géodésique sur S0 (le feuilletage horizontal). Les

feuilles devraient être des droites parallèles dans l'octogone rencontrant deux

côtés identifiés selon des angles égaux. Cela est clairement impossible si les

côtés identifiés ne sont pas parallèles.

Il est intéressant de noter que les différentielles quadratiques jouent un rôle

central dans la théorie des déformations (des « modules ») des surfaces de

Riemann (cf. [1]).
Pour une théorie complète des différentielles quadratiques, on peut se

[ référer à [7].

§ 5. Classification des s.e.s.c.

Rappelons qu'une métrique ds\ sur une variété riemannienne (M,ds2)

est conforme s'il existe une fonction h: M -> R telle que

ds2 e2hds2
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