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SURFACES A SINGULARITES CONIQUES 85

§3. UN PEU DE GEOMETRIE GLOBALE

On appelle géodésique d’une s.e.s.c. toute courbe minimisant la longueur
! entre deux quelconques de ses points assez proches.

Il est évident qu'une géodésique d’une s.e.s.c. correspond (dans toute carte)
4 un segment de droite euclidienne qui peut, le cas échéant, étre brisée
en un point singulier; elle y forme alors un angle > m. En particulier
une géodésique ne passe jamais par une singularité conique dont la courbure
4 concentrée est positive (car 'angle total est < 2m). |

PROPOSITION 1. Soit S une s.e.s.c. compléte.

i) Si p,qeS il existe une géodésique de longueur d(p;q) reliant p
a q.

- 1) Toute classe d’homotopie peut étre représentée par une géodésique de

longueur minimale.

: Cette proposition est vraie dans le cas beaucoup plus général des
« Espaces de longueurs » (cf. [4], page 6, pour une preuve).

PROPOSITION 2. Toute s.e.s.c. compacte admet une triangulation géodésique
telle que chaque point singulier soit un sommet et chaque aréte soit incidente
d deux faces différentes.

(On appellera « normale » une telle triangulation, ’existence de triangulations
 normales montre que l'exemple 1 du §2 est, en fait, le cas général)

. Preuve. Soit {U,} un recouvrement de S par des ouverts isométriques
2 un disque du plan euclidien ou du cone standard. Choisissons F, = U,
2 un fermé dont le bord est une ligne polygonale et opérons ce choix de sorte

R ¢ que les F, recouvrent encore S. Si F, n Fy n'est pas vide, c’est un fermé
g § dont le bord est polygonal; il est donc possible de trianguler les F,

de fagon que toutes les intersections F, n F p non vides soient des réunions

& de triangles. I ne reste qu'a subdiviser cette triangulation pour obtenir la

B8 triangulation voulue.

ProposITION 3 (Formule de Gauss-Bonnet). Si S est une s.e.s.c. compacte
| (sans bord) avec singularités en x,,x,,..,x, dangle 0:,0,,..0, alors

i
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Preuve. Choisissons une triangulation normale T. Si g est un sommet
de T, posons

2r  si g est un point régulier .

Posons également k, = 21 — 6,.
Soient a;b;c respectivement le nombre de sommets, d’arétes et de faces
de T. Comme T est une triangulation, on a 2b = 3¢ donc

2ty (S) = 2na — 2mb + 2mc = 2ma — mc.

Chaque triangle est un triangle euclidien, donc

mh = )9,

(la somme étant prise sur lensemble des sommets de T). On a donc

2ny(S) = 2ma — ) 6, = ). (2n—0,) = Z(Zn—(—),-) = Zk"'

COROLLAIRE 1. Si § est une s.e.s.c. homéomorphe a la sphére S2,
alors il existe au moins trois singularités de courbure concentrée positive.

Preuve. k; est strictement inférieur a 2, donc il existe moins de trois
singularités a courbure positive, on a

Y k; < 4n = 2my(S) .

COROLLAIRE 2. Si S est une s.es.c. dont toutes les singularités ont
une courbure concentrée négative, alors une géodésique minimale reliant deux
points p,q €S est unique dans sa classe d’homotopie relative.

Preuve. Quitte 4 passer au revétement universel, on peut supposer S
simplement connexe. S’il existait deux géodésiques reliant p a g, elles bor-
deraient un (ou plusieurs) disque a bord polygonal dont au plus deux
angles sont inférieurs a m. En recollant deux exemplaires de ce disque sur
leur bord on obtiendrait une s.e.s.c. homéomorphe 4 S? avec moins de trois
points coniques & courbure concentrée positive.
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