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LES SURFACES EUCLIDIENNES A SINGULARITES CONIQUES

par Marc TROYANOV

INTRODUCTION

Une surface euclidienne est une surface possédant localement la structure
du plan euclidien; on peut, de maniére équivalente, la définir a I’aide d’une
métrique riemannienne plate (cC’est-a-dire a courbure nulle).

Une surface euclidienne 4 singularités coniques (on abrégera s.e.s.c.) est
une surface possédant localement la géométrie d’un cone standard; on peut
également la définir a laide d’une métrique riemannienne plate avec des
singularités spécifiques.

Un coéne standard posséde un unique invariant: son ouverture (qui est
un nombre réel positif). La s.e.s.c. posséde donc un invariant pour chacune
de ses singularités.

En outre, une surface euclidienne (ou riemannienne) avec singularités
coniques détermine une unique structure conforme.

Le but de cet article est de montrer que la donnée de ces invariants

§ caractérise complétement une s.e.s.c. compacte et orientable, et d’obtenir

ainsi une classification de ces surfaces (Théoréme du § 5).
L’exposé présenté est élémentaire et ne nécessite, pour sa compréhension,
aucune connaissance autre que les définitions de surface de Riemann et de

métrique riemannienne (3 Iexception d’un résultat technique donné en
appendice).

§ 1. STRUCTURE LOCALE D’UNE SINGULARITE CONIQUE

Définition. Vg:= {(r;8):r > 0;:te R/9Z}/(0; )~ (©0;r) Muni de Ia

ds* = dr* + r%ds?
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s'appelle le céne standard d’angle total 0. On utilise parfois les nombres
k =2rn—0 et B = (6/2n) — 1; k s’appelle la courbure concentrée de V,,
B le poids ou le résidu. Les nombres 0, k et P sont des mesures de
I'ouverture du cone V.

Ces appellations peuvent étre justifiées ainsi: prenons le cas ou 0 < 2n
et plongeons le cone Vy dans I'espace euclidien R® (fig. 1). Si on considére
une sphere unité tangente intérieurement & V, on remarque que limage
sphérique de toute approximation (lisse et convexe) de V, est une calotte
sphérique d’aire 2r—0 d’ou le nom de «courbure concentrée» pour ce
nombre.

1

«——  Identifiés

FiGure 1 FIGURE 2

Si un cOne est fabriqué a partir d’'un secteur d’angle 0 en recollant
les bords par une isométrie, 'angle total de ce cOne est précisément 0
(remarquons que O peut étre supérieur a 2m). 6 est en fait la longueur du
cercle de rayon 1 centré au sommet du cone (fig. 2).

Le nombre B est introduit pour des raisons plus techniques venant de
la structure conforme:

ProposITION 1. C, muni de la métrique ds* = |z|*®|dz|?, est iso-
métrique a V.

Preuve. Siz = x + iy, 'i'sométrie est donnée par
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——29“ 27
x = ar? co 5

2n

‘ ,aveca— ZE_ .

Définition. On dit qu’une fonction
h:U—->R

-f (U ouvert de C) est harmonique avec singularité logarithmique de résidu
(oupoids) BenpeUsila fonction

z+—>h(z) — Blog|z—p|

est harmonique.
On remarque que cette notion est indépendante de la coordonnée z

choisie.

PROPOSITION 2. Si U est un ouvert de C, et si h:U - C est
harmonique avec singularité logarithmique de poids B> —1 en pe U
et si on munit U de la métrique

ds? = e?"|dz|?

alors il existe un voisinage de p dans U isométrique a un voisinage du
~sommet du céne Vg (pour 0=2n(B+1)).

 Définition. On dira dans ce cas que p est une singularit¢ conique
] dangle 6 pour la métrique ds>.
Preuve. Supposons pour simplifier que p = 0; alors il existe une fonction

%g(z) holomorphe dans un voisinage de O et telle que

I Re g(z) = h(z) — Blog|z|,

& ¢

’ ' car cette fonction est harmonique par hypothese. On a
9P = gy + a,z + a,z% + .. (ay#0).
{ Posons

| B+1

by = —  — _q:
k B+k+1%’
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alors la série ) b,z* converge dans un voisinage de O vers une fonction
k :
analytique f telle que f(0) # 0. Considérons la fonction
w = zf(z)}/P+1,

(On a choisi une détermination du log au voisinage de f(0)). On a

1 z .
511 whtl — f t?e?Odt pour toute détermination. Donc whdw = zPe?@ g
0

= gf@+Blogzg, of

I w Iﬁ I dw l — eRe(g(z)+Blog(z)) l dz I — eh(z) I dz , .

Donc ds®> = |w|?"|dw|? ce qui prouve la proposition 2 grice 4 la pro-
position 1.

Remarques. 1) On n’a nulle part utilisé que B # 0, donc on a montré
que si h est harmonique, alors

ds? = e | dz |

est une metrique plate.

2) La démonstration montre également que si p(z) est une fonction
holomorphe possédant un zéro d’ordre m a lorigine alors il existe une
coordonnée w telle que

whdw? = p(z)dz?

(ou g=1,2,3,..). Ce fait est important en théorie des formes modulaires
et des différentielles quadratiques. On appelle w la « coordonnée normale »
au voisinage du zéro.

Définition. Deux métriques riemanniennes ds,, ds, sur une variété M
sont dites conformes s'il existe une fonction h: M — R telle que ,

2 _ ,2hq.2
dsty = e*"ds§

Une classe d’équivalence de métriques conformes sur M s’appelle une structure
conforme. Si M est une surface orientable, alors les structures conformes
s'identifient avec les structures complexes (cf. [2], [3]). Une surface orientable
munie d’une structure conforme (ou complexe) s’appelle une surface de
Riemann.

PROPOSITION 3. Soit S une surface munie de deux métriques conformes
dsg,ds; (alors ds;=e"dsy). Supposons que ds, soit plate.




SURFACES A SINGULARITES CONIQUES 83

Alors: ds, est plate si et seulement si h est harmonique.

| De plus: peS est un point conique dangle ©; pour ds?(i=1,2)
B i ct sculement si h a en p une singularité logarithmique de poids

By — Po <0u B: = o )

4 (0, nest pas nécessairement différent de 2m).

8! Prewve. Soit S, = S — {singularités de ds, ou ds;}. Soit p € So; si h

| est harmonique et ds, plate la proposition 2 implique que ds; est également

8 i plate en p (cf. remarque 1). Inversément, si ds, et ds; sont toutes deux

4 plates, alors il existe deux systémes de coordonnees, (x;y) et (u;v) au
1 voisinage de p tels que: :

ds? = dx* + dy?> et ds? = du* + dv*.
~ Notons z = x + iy et w = u + iv et soit w = g(2) l’application identité
dans ces coordonnées. Alors g est holomorphe et on a
ds} = |aw|*> = |g(2)|* | dz|*;
or

ds? = e*dsit = e2"|dz|?.

Donc h(z) = log| g'(z) | est bien harmonique. Si p¢ Sy, p est un point
| conique d’angle 0; pour ds;(i=1, 2). Alors il existe des coordonnées z et w
~au voisinage de p tellesque z = w = Oen p et

dsg = |z|*P°|dz|?, dst = |w|*P*|dw]|?
i (cf. proposition 1).
| Soit w = g¢g(z) I'identité; g est holomorphe en z # 0 mais comme g est un
R { difftomorphisme g est encore holomorphe a I'origine. De plus g'(z) ne s’annule

pas. g(0) = 0 est donc un zéro simple c’est-a-dire il existe g, tel que
# g(z) = zg,(z) et g, ne sannule pas. Ainsi

ds? = |w|*P|dw|* = | z9:(2) |*P* | g'(2) | | dz|?,
mais
dst = e*'ds}3 = e | z|%Po|dz|2.

 Done h(z) = (B,—Bo) log | 2| + B, log| ,(2) | + log | ¢'(2) | est harmonique
avec singularité logarithmique de poids (B, —Bo) en z = 0 (car ¢’ et g,
ne sannulent pas).
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§2. SURFACES EUCLIDIENNES A SINGULARITES CONIQUES

DEFINITIONS-EXEMPLES

Une surface euclidienne a singularités coniques est une surface possédant }
localement la géométrie du plan euclidien ou d’un céne standard. Plus
précisément :

Définition. Soient S une surface, X1,Xz,X3,.. des points de S et
0:,0,,05, ... des nombres positifs. On dit que S a une structure euclidienne
avec singularités coniques x, x,, ... d’angle 0, , 02, 81 8o 1= S\{x; x,..}

possede une structure euclidienne pour laquelle x; admet un voisinage
isométrique d& un voisinage du sommet dans le cone standard V, . La
donnée de S et d’une telle structure sur S s’appelle une surface euclidienne
a singularités coniques, on abrégera s.e.s.c.

Remarquons que si S est une s.e.s.c. alors les singularités forment un

ensemble discret, en particulier si S est compacte, elles sont en nombre
fini.

Exemples. 1) Les polyédres de dimension 2 forment une vaste classe de
s.e.s.c. Les points singuliers sont les sommets et leur angle est la somme
des angles que chaque face incidente forme a ce sommet. (Un point sur
‘une aréte est un point régulier, on s’en convainc en dépliant un voisinage
de ce point.)

2) Si G est un groupe d’isométries du plan R? opérant de fagon pro-
prement discontinue et en préservant ’orientation, alors R?/G est une s.es.c.
Les points singuliers correspondent aux points du plan dont le stabilisateur
est non trivial. Il s’agit alors d’un sous-groupe fini de G qui’ ne peut étre
qu'un groupe cyclique d’ordre m. L’angle en ce point conique est alors
2m/m.

3) Si S est une surface de Riemann, toute différentielle quadratique
(cf. § 4) définit une structure de s.e.s.c.

4) Si S est une surface euclidienne (avec ou sans singularités) et S’ est
un revétement ramifié de S alors S’ est une s.es.c. Si p€S est un point
de branchement d’ordre m et si c’est de plus un point conique d’angle 6,
alors tout point p’ au-dessus de p est un point conique d’angle Om.
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§3. UN PEU DE GEOMETRIE GLOBALE

On appelle géodésique d’une s.e.s.c. toute courbe minimisant la longueur
! entre deux quelconques de ses points assez proches.

Il est évident qu'une géodésique d’une s.e.s.c. correspond (dans toute carte)
4 un segment de droite euclidienne qui peut, le cas échéant, étre brisée
en un point singulier; elle y forme alors un angle > m. En particulier
une géodésique ne passe jamais par une singularité conique dont la courbure
4 concentrée est positive (car 'angle total est < 2m). |

PROPOSITION 1. Soit S une s.e.s.c. compléte.

i) Si p,qeS il existe une géodésique de longueur d(p;q) reliant p
a q.

- 1) Toute classe d’homotopie peut étre représentée par une géodésique de

longueur minimale.

: Cette proposition est vraie dans le cas beaucoup plus général des
« Espaces de longueurs » (cf. [4], page 6, pour une preuve).

PROPOSITION 2. Toute s.e.s.c. compacte admet une triangulation géodésique
telle que chaque point singulier soit un sommet et chaque aréte soit incidente
d deux faces différentes.

(On appellera « normale » une telle triangulation, ’existence de triangulations
 normales montre que l'exemple 1 du §2 est, en fait, le cas général)

. Preuve. Soit {U,} un recouvrement de S par des ouverts isométriques
2 un disque du plan euclidien ou du cone standard. Choisissons F, = U,
2 un fermé dont le bord est une ligne polygonale et opérons ce choix de sorte

R ¢ que les F, recouvrent encore S. Si F, n Fy n'est pas vide, c’est un fermé
g § dont le bord est polygonal; il est donc possible de trianguler les F,

de fagon que toutes les intersections F, n F p non vides soient des réunions

& de triangles. I ne reste qu'a subdiviser cette triangulation pour obtenir la

B8 triangulation voulue.

ProposITION 3 (Formule de Gauss-Bonnet). Si S est une s.e.s.c. compacte
| (sans bord) avec singularités en x,,x,,..,x, dangle 0:,0,,..0, alors

i
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Preuve. Choisissons une triangulation normale T. Si g est un sommet
de T, posons

2r  si g est un point régulier .

Posons également k, = 21 — 6,.
Soient a;b;c respectivement le nombre de sommets, d’arétes et de faces
de T. Comme T est une triangulation, on a 2b = 3¢ donc

2ty (S) = 2na — 2mb + 2mc = 2ma — mc.

Chaque triangle est un triangle euclidien, donc

mh = )9,

(la somme étant prise sur lensemble des sommets de T). On a donc

2ny(S) = 2ma — ) 6, = ). (2n—0,) = Z(Zn—(—),-) = Zk"'

COROLLAIRE 1. Si § est une s.e.s.c. homéomorphe a la sphére S2,
alors il existe au moins trois singularités de courbure concentrée positive.

Preuve. k; est strictement inférieur a 2, donc il existe moins de trois
singularités a courbure positive, on a

Y k; < 4n = 2my(S) .

COROLLAIRE 2. Si S est une s.es.c. dont toutes les singularités ont
une courbure concentrée négative, alors une géodésique minimale reliant deux
points p,q €S est unique dans sa classe d’homotopie relative.

Preuve. Quitte 4 passer au revétement universel, on peut supposer S
simplement connexe. S’il existait deux géodésiques reliant p a g, elles bor-
deraient un (ou plusieurs) disque a bord polygonal dont au plus deux
angles sont inférieurs a m. En recollant deux exemplaires de ce disque sur
leur bord on obtiendrait une s.e.s.c. homéomorphe 4 S? avec moins de trois
points coniques & courbure concentrée positive.
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§ 4. LES DIFFERENTIELLES QUADRATIQUES

; Soit S une surface de Riemann. On notera TS son fibré tangent, c’est
. une variété analytique complexe de dimension 2. Si pe S, on notera T,S
- la fibre au-dessus de p ('espace tangent en p).

Définition. Une différentielle quadratique sur S est une fonction holo-
- morphe.

o: 1S - C

qui, restreinte & chaque fibre, est une forme quadratique.
Rappelons que les seules formes quadratiques sur C(= T ,S) sont

t - pt? (n e C est une constante)

Donc si U < S est le domaine d’une coordonnée z, alors toute différentielle
quadratique ® est donnée par une fonction holomorphe p: U — C telle que
o = p(z)dz2 Si 27 = f(z) est une autre coordonnée sur U et p’' la fonction
correspondante, alors on doit avoir:

dz \ 2

dz’) .

Notons Q(S) I'espace vectoriel complexe des différentielles quadratiques
sur S. Remarquons que si S est une surface close de genre > 0, Q(S)
nest pas réduit & 0 (Q(S) contient les carrés des différentielles abéliennes,
cf. [2] ou [6]). Soit ® € Q(S) — {0} et z une coordonnée au voisinage d’un
point pe S pour laquelle ® sécrit p(z)dz2. Supposons que p ait en p
‘un zéro d’ordre m. Alors on dira que m est lordre de ® en p. Il est
-immeédiat que ce nombre ne dépend pas de la coordonnée choisie.

w(z') = p) (

LEMME 1. Soit peS et © une différentielle quadratique non nulle
f ’"*dordre m en p. Alors il existe une coordonnée z au voisinage de p
”‘telle que z(p) =0 et o = z"dz’. De plus, cette coordonnée est unique
B k2w

m+ 2

B 2 d une rotation d’angle radians prés (k est un entier).

On appelle z la coordonnée « normale » ou « distinguée » en p.

T N R

Preuve.

Lxistence. 11 suffit de reprendre la démonstration de la proposition 2 du § 1.
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Unicité. Si z"dz?> = w™dw?, alors
dw z \™?
dz —\w)

. : d :
W = ele = eld = l = i e—ldm/Z = d(1+m/2) =kn=d = kan .
dz m+ 2

-

Une solution est donnée par

Cette solution est unique une fois une condition initiale donnée.

ProrosITION 1. Soit S wune surface de Riemann close et soit ® une
différentielle quadratique non nulle sur S.

Alors o définit sur S une structure euclidienne a singularités coniques.

Si Xq{,..,X, Sont les zéros de ® et ont pour ordre m,, .. m, alors
X{, . X, Sontles singularités coniques et ont pour angle (m,+2)=, ..., (m,+2)n
respectivement.

Preuve. La métrique est donnée par ds® : = | @ |. La proposition 2 du § 1
implique les propriétés énoncées.

COROLLAIRE. Soit S une surface de Riemann close de genre g et
o € Q(S) — {0}. Alors le nombre de zéros de ® (comptés avec multiplicités)
est 49 — 4. (En particulier, il wexiste aucune différentielle quadratiques non
nulle sur une surface de Riemann homéomorphe a S?).

Preuve. Si x; est un zéro d’ordre m;, la courbure concentrée est
k; = —mm. On applique la formule de Gauss-Bonnet. O

4

En plus d’une structure de s.e.s.c., une différentielle quadratique induit
sur S deux feuilletages mesurés, orthogonaux I'un a l'autre ('avec des sin-
gularités), définis par:

X est un vecteur horizontal si et seulement si ®(X) est un réel positif

Y est un vecteur vertical si et seulement si  ®(Y) est un réel négatif .

Dans [5], Hubbard et Masur étudient ces feuilletages et leurs liens avec la
théorie des différentielles quadratiques. La proposition 1 dit que certaines
structures de s.e.s.c. sur une surface close peuvent étre obtenues a partir
d’'une différentielle quadratique, a condition que les angles des points
coniques soient tous des multiples entiers de m. Cette condition n’est
toutefois pas suffisante, le contre-exemple le plus simple est peut-étre donné

g.‘
i

e
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re 2) avec une unique singularité

® par la surface euclidienne (close et de gen
t de la facon usuelle les bords

_ conique d’angle 6m obtenue en identifian
8 : f'un octogone régulier du plan euclidien.

1

S
Ll

T-o

o
KK

3

FIGURE 3

7 Si la structure de s.es.c. provenait d’une différentielle quadratique, il
existerait un feuilletage géodésique sur S, (le feuilletage horizontal). Les
5 . feuilles devraient étre des droites paralléles dans 'octogone rencontrant deux
‘ ._\@ cotés identifiés selon des angles égaux. Cela est clairement impossible si les

4 cotés identifiés ne sont pas paralleles.
Tl est intéressant de noter que les différentielles quadratiques jouent un role

F§ central dans la théorie des déformations (des « modules ») des surfaces de
| Riemann (cf. [1]).

8 Pour une théorie compléte des différentielles quadratiques, on peut se
reférer a [7].

§ 5. CLASSIFICATION DES S.ES.C.

Rappelons qu'une métrique ds? sur une vari€té riemannienne (M, ds?)
est conforme s’il existe une fonction h: M — R telle que

ds? = e*"ds®.

i
g
i
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Lorsqu’il existe des singularités coniques, & peut prendre des valeurs infinies
(avec croissance logarithmique).

Le résultat suivant classe toutes les s.e.s.c. closes et orientables.

THEOREME. Soit S une surface close et orientable, X1, X, €S et

0;,...8, >0 tels que

Z(Zn—@,-) = 2ny(S).

13
Alors dans chaque structure conforme sur S, il existe une structure eucli-
dienne pour laquelle x; est une singularité conique d’angle 0;(i=1,2, ... n).
Cette structure est unique si on la normalise (par exemple en posant :
Aire totale de S=1).

Démonstration.

Unicité. Si ds et ds’ sont deux telles structures, alors par conformité il
existe une fonction h telle que ds’ = e"ds. Alors h doit étre une fonction
harmonique (pour la structure conforme donnée) et sans singularité
(cf. prop. 3, § 1). Comme S est compacte, h est constante et comme laire
est normalisée, cette constante est nulle.

Existence. Supposons que S soit de genre g > 0, alors il existe sur la
surface de Riemann S une différentielle quadratique non nulle ®. Soient
Y1, Vi les zéros de o, alors ds3 = | @ | définit une métrique euclidienne
conforme sur S avec singularités coniques en y; de poids my/2 (m; est
Pordre du zéro y;; cf. prop. 1, §4). On a

0,
Yom/) =29 —2= 38, <Bi=5;—1>.

Donc en particulier:
ZBi + Z(—mj/Z) =0.
i Jj

Pour conclure, nous utiliserons le lemme ci-dessous::

LEMME. Soit S une surface de Riemann close, x,,..,x,€S et
Oy, ..., O € R, Supposons ) o; = 0. Alors il existe une fonction harmonique
i

h:S — R avec singularités logarithmiques de poids o; en x;(i=1,2,..,n).
Si h et K sont deux telles fonctions, elles différent par une constante.
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Il existe donc une fonction harmonique h:S — R avec singularités
logarithmiques de poids

{ B, en x;(i=1, .., n)
—m;/2 en y;(j=1, .., k)

£ alors
ds?> = e*tds}

} est la métrique cherchée (cf. prop. [3], § 1).
| Ce raisonnement ne convient pas si g = 0, la sphére mérite donc des
[ § considérations particulieres:
: Par le théoréme d’uniformisation de Riemann (cf. [6]), il n’existe (@
isomorphisme prés) qu’une structure conforme sur S2. On peut donc poser
- §2 = Cu {oo}.

Soit ¢;€ C U {0} la coordonnée de x;, on peut supposer que a; # 0.
Soit aussi B; = (8;/2m) — 1 alors on a

ZB:‘:—Z

On pose:

ds?* = (J]1z — a;|*#)| dz |?

1

Alors ds? est bien une métrique euclidienne (log []|z — a;|® est har-
i

. monique) et g; est un point conique d’angle 0;. Il ne reste plus qu’a
. vérifier que co est un point régulier. Pour cela, on fait 'inversion w = 1/z

dw |
(donc|dz|2 = I—W—|> On a

o w

le_ailzﬁi:lel_zﬂill_waﬂzﬁi = |w|4n|1—wai|23i
i i i

8 (cor Y B = —2);
donc,
ds* = ([T1z — a,12*)1dz 1> = [wl*T]11 — wa, |?P | dw | w|*

= ([T11 — wa; |?*) ] dw|?

1

est une métrique euclidienne réguliere en w = 0 (c’est-a-dire z = o0).
Ceci achéve donc la preuve du théoréme.
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APPENDICE

Le but de cet appendice est de montrer comment le lemme utilisé
dans la démonstration précédente découle du théoréme de Hodge:

LEMME. Soit S wune surface de Riemann close, X1, X, €S et
Oy, ..., 0 € R, Supposons Y o, = 0. Alors il existe une fonction harmonique
i

h:S — R avec singularités logarithmiques de poids o; en x;(i=1,2,..,n).

Si h et K sont deux telles fonctions, elles différent par une constante.

Avant de prouver ce lemme, quelques rappels sur la théorie de Hodge
seront nécessaires :

Si S est une surface de Riemann, alors S est munie d’une structure
presque complexe, c’est-a-dire d’un morphisme (linéaire) de fibré J: TS — TS
tel que J> = —I (identité). J peut étre défini a I'aide d’une métrique
conforme en posant Y = JX si et seulement si {X; Y} est une base ortho-
normée d’orientation positive, pour tout vecteur unité X.

Si @ est une 1-forme sur S, on définit *® par:

*0(X) = —(JX);

* est également un morphisme de fibré *: T*S — T*S tel que ** = —1.
Siz = x + iy est une coordonnée sur S, alors

J 0 0 J 0 0 7 0 .0 J 0 ; 0
_— = — _ = — _ =1 — _— = -] —
ox dy’  \0dy ox’  \oz 0z’ \oz 0z’

*dx = dy, *dy = —dx, *dz = —idz, *d7 = idz .

Si f est une fonction, on a

32f 0 f |
= —_— e — d A = 2 ] A —.
d=df <6x2 + 6y2> Xady 9207 idzadz .

On dit qu’une 1-forme est harmonique si do = d*® = 0, donc ® est har-
monique si et seulement si c’est localement la différentielle d’une fonction
harmonique.

THEOREME DE HODGE. Si © est une 1-forme différentielle sur S, alors
il existe u,ve C®(S) et ©, une l-forme harmonique tels que
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® = 0y + du + *dv.

Nous ne prouvons pas ce théoréme ici (cf. [6] ou [8]).

. Preuve du lemme.

Umcn‘e Soient h et &' deux fonctions harmoniques avec les mémes singu-
{ ; larités logarithmiques, alors h—h' est une fonction harmonique sans singu-
lantes donc constante puisque S est compacte.

Exlstence Par linéarité, il suffit de montrer que si p,g€S alors il existe
h S — R, harmoniques avec singularites logarithmiques de poids —1 en p
et +1 en g (la fonction voulue s’obtient ensuite comme combinaison linéaire
f de telles fonctions). On peut, pour la méme raison, SUpposer que p et g
ﬁ appartiennent a un méme domaine U d’une coordonnée z. Soit D un sous-
~ domaine contenant p et g et tel que D < U. Donnons-nous ensuite une

~fonction lisse % : S — R telle que

xp=1 et xls-v=0.

On définit f: U — C par f(z) = x(z)log ((z—g)/(z—p)) et 'on étend a f a
S tout entier en posant f|s_y = 0. Considérons la 1-forme

( = df—ixdf = 2@;(12'.
0z

Remarquons que { = 0 sur D v (S—U).

Le théoréme de Hodge permet d’écrire

| { = og+du+*dv

avec ®, harmonique. Posons ensuite

; = df —du = ®y+i*df +*dv;

i alors o est fermée car do = d(df —du) = 0, ® est cofermée car
#x = —1 donc dxo = d*w,—id*f—d*v = 0.

g8 Donc o est harmomque
Posons

h=Re(f—u) = > ((f—w) + (f—d);

MIH

alors h est harmonique puisque
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dxdh = %d*(d(f—u)er(f—G))) - %d*(co—kfb) =0.

h a clairement les singularités voulues. O
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