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L'Enseignement Mathématique, t. 32 (1986), p. 79-94

LES SURFACES EUCLIDIENNES À SINGULARITÉS CONIQUES

par Marc Troyanov

Introduction

Une surface euclidienne est une surface possédant localement la structure
du plan euclidien; on peut, de manière équivalente, la définir à l'aide d'une
métrique riemannienne plate (c'est-à-dire à courbure nulle).

Une surface euclidienne à singularités coniques (on abrégera s.e.s.c.) est
une surface possédant localement la géométrie d'un cône standard; on peut
également la définir à l'aide d'une métrique riemannienne plate avec des
singularités spécifiques.

Un cône standard possède un unique invariant: son ouverture (qui est
un nombre réel positif). La s.e.s.c. possède donc un invariant pour chacune
de ses singularités.

En outre, une surface euclidienne (ou riemannienne) avec singularités
coniques détermine une unique structure conforme.

Le but de cet article est de montrer que la donnée de ces invariants
caractérise complètement une s.e.s.c. compacte et orientable, et d'obtenir
ainsi une classification de ces surfaces (Théorème du § 5).

L'exposé présenté est élémentaire et ne nécessite, pour sa compréhension,
aucune connaissance autre que les définitions de surface de Riemann et de
métrique riemannienne (à l'exception d'un résultat technique donné en
appendice).

§ 1. Structure locale d'une singularité conique

métrique^ {(r;t):r ^ 0; teR/0Zty(O; ~ (0; f) muni de la

ds2 dr2 -I- r2dt2
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s'appelle le cône standard d'angle total 0. On utilise parfois les nombres
k 2k — 0 et ß (ß/2n) — 1; k s'appelle la courbure concentrée de Vd,
ß le poids ou le résidu. Les nombres 0, k et ß sont des mesures de

l'ouverture du cône Ve.
Ces appellations peuvent être justifiées ainsi : prenons le cas où 0 < 2k

et plongeons le cône Ve dans l'espace euclidien R3 (fig. 1). Si on considère
une sphère unité tangente intérieurement à Ve on remarque que l'image
sphérique de toute approximation (lisse et convexe) de Ve est une calotte
sphérique d'aire 27t — 0 d'où le nom de « courbure concentrée » pour ce
nombre.

Si un cône est fabriqué à partir d'un secteur d'angle 0 en recollant
les bords par une isométrie, l'angle total de ce cône est précisément 0

(remarquons que 0 peut être supérieur à 2n). 0 est en fait la longueur du
cercle de rayon 1 centré au sommet du cône (fig. 2).

Le nombre ß est introduit pour des raisons plus techniques venant de

la structure conforme :

Proposition 1. C, muni de la métrique ds2 | z |2ß | dz |2, est

isométrique à VQ.

Preuve. Si z x + iy, l'isométrie est donnée par

Figure 1 Figure 2
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Définition. On dit qu'une fonction

h:U ^ R

(U ouvert de C) est harmonique avec singularité logarithmique de résidu

(ou poids) ß en p e U si la fonction

z i-> h(z) — ß log I z-p I

est harmonique.
On remarque que cette notion est indépendante de la coordonnée z

choisie.

Proposition 2. Si U est un ouvert de C, et si h:U -» C est

harmonique avec singularité logarithmique de poids ß > 1 en p e U

et si on munit U de la métrique

ds2 e2h | dz |2

alors il existe un voisinage de p dans U isométrique à un voisinage du

sommet du cône Ve (pour 0 27t(ß + X)).

Définition. On dira dans ce cas que p est une singularité conique
: d'angle 0 pour la métrique ds2.

] Preuve. Supposons pour simplifier que p 0 ; alors il existe une fonction

I g{z) holomorphe dans un voisinage de 0 et telle que

f Re g(z) h(z) - ß log | z |,
I
£ car cette fonction est harmonique par hypothèse. On a

e9{z) a0 + a±z + a2z2 + (ao^0) •

Posons

h - ß + 1

k
ß + k+1 *'
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alors la série £&fczfc converge dans un voisinage de 0 vers une fonction
k

analytique / telle que /(0) ^ 0. Considérons la fonction

w z/(z)1/ß + 1

(On a choisi une détermination du log au voisinage de /(0)). On a

ß _f_ i
wß+1 J t^e9it)dt pour toute détermination. Donc w^dw zße9(z)dz

e9iz) + Vloszdz et

| w |ß | dw | eRe(0(z) + ßiog(z)) \dz\ ehiz) \dz\.
Donc ds2 | w |2ß | dw |2 ce qui prouve la proposition 2 grâce à la
proposition 1.

Remarques. 1) On n a nulle part utilisé que ß ^ 0, donc on a montré
que si h est harmonique, alors

ds2 e2h | dz |

est une métrique plate.

2) La démonstration montre également que si p(z) est une fonction
holomorphe possédant un zéro d'ordre m à l'origine alors il existe une
coordonnée w telle que

wmdwq \i(z)dzq

(où q 1,2,3,...). Ce fait est important en théorie des formes modulaires
et des différentielles quadratiques. On appelle w la « coordonnée normale »
au voisinage du zéro.

Définition. Deux métriques riemanniennes ds0, dsx sur une variété M
sont dites conformes s'il existe une fonction h: M -+ R telle que

ds2 e2hds%

Une classe d'équivalence de métriques conformes sur M s'appelle une structure
conforme. Si M est une surface orientable, alors les structures conformes
s'identifient avec les structures complexes (cf. [2], [3]). Une surface orientable
munie d'une structure conforme (ou complexe) s'appelle une surface de
Riemann.

Proposition 3. Soit S une surface munie de deux métriques conformes
ds0,dsx (alors ds1 ehds0). Supposons que ds0 soit plate.
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Alors: is! est plate si et seulement si h est harmonique.

De plus: peS est un point conique d'angle 9; pour 1,2)

si et seulement si h a enpunesingularité logarithmique de poids

Pi-ßo (°"Pi è_1)'
n'est pas nécessairement différent de 2n).

Preuve. Soit S0 S — {singularités de ds0 ou isj. Soit peS0; si h

est harmonique et ds0 plate la proposition 2 implique que ds± est également

plate en p (cf. remarque 1). Inversément, si ds0 et ds1 sont toutes deux

plates, alors il existe deux systèmes de coordonnées, (x;y) et (u;v) au

voisinage de p tels que :

dsl dx2 + dy2 et ds\ du2 4- dv2

Notons z x + iy et w u + iv et soit w g(z) l'application identité

dans ces coordonnées. Alors g est holomorphe et on a

dsl I dw I2 | g\z) |2 \dz |2 ;

or

ds2 e2hdsl | iz |2

Donc /i(z) log | ^'(z) I est bien harmonique. Si p $ S0, p est un point
conique d'angle pour dSi(i= 1,2). Alors il existe des coordonnées z et w

au voisinage de p telles que z w 0 en p et

dsl | z |2ßo | dz 12 dsl I w 12ßl I dw |2

(cf. proposition 1).

Soit w g(z) l'identité ; g est holomorphe en z ^ 0 mais comme g est un
dififéomorphisme g est encore holomorphe à l'origine. De plus g'{z) ne s'annule

pas. #(0) 0 est donc un zéro simple c'est-à-dire il existe gl tel que
g{z) zgffz) et 0X ne s'annule pas. Ainsi

dsl I w |2ßl | dw I2 I Z0,(z) |2^ I 0'(z) I2 I dz I2

mais

dsl e2hdsl e2h \ z \2ßo | dz \2

Donc h(z) (ßi-ßo) log | z | + ßj_ log | gx(z) \ + log | g'(z) \ est harmonique
avec singularité logarithmique de poids (ßi~ß0) en z 0 (car g' et g1
ne s'annulent pas).
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§ 2. Surfaces euclidiennes à singularités coniques
Définitions-exemples

Une surface euclidienne à singularités coniques est une surface possédant
localement la géométrie du plan euclidien ou d'un cône standard. Plus
précisément :

Définition. Soient Sune surface, des points de et
®i> 63 > — des nombres positifs. On dit que S a une structure euclidienne
avec singularités coniques x1,x2,...d'angle0,,02,_, si := ...}
possède une structure euclidienne pour laquelle xt admet un voisinage
isométrique à un voisinage du sommet dans le cône standard Ve.. La
donnée de S et dune telle structure sur S s'appelle une surface euclidienne
à singularités coniques, on abrégera s.e.s.c.

Remarquons que si S est une s.e.s.c. alors les singularités forment un
ensemble discret, en particulier si S est compacte, elles sont en nombre
fini.

Exemples. 1) Les polyèdres de dimension 2 forment une vaste classe de
s.e.s.c. Les points singuliers sont les sommets et leur angle est la somme
des angles que chaque face incidente forme à ce sommet. (Un point sur
une arête est un point régulier, on s'en convainc en dépliant un voisinage
de ce point.)

2) Si G est un groupe d'isométries du plan R2 opérant de façon
proprement discontinue et en préservant l'orientation, alors R2/G est une s.e.s.c.
Les points singuliers correspondent aux points du plan dont le stabilisateur
est non trivial. Il s'agit alors d'un sous-groupe fini de G qui* ne peut être
qu un groupe cyclique d ordre m. L'angle en ce point conique est alors
2n/m.

3) Si S est une surface de Riemann, toute différentielle quadratique
(cf. § 4) définit une structure de s.e.s.c.

4) Si S est une surface euclidienne (avec ou sans singularités) et S' est
un revêtement ramifié de S alors S' est une s.e.s.c. Si p e S est un point
de branchement d'ordre m et si c'est de plus un point conique d'angle 0,
alors tout point p' au-dessus de p est un point conique d'angle 0m.
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§ 3. Un peu de géométrie globale

On appelle géodésique d'une s.e.s.c. toute courbe minimisant la longueur

entre deux quelconques de ses points assez proches.

Il est évident qu'une géodésique d'une s.e.s.c. correspond (dans toute carte)

à un segment de droite euclidienne qui peut, le cas échéant, être brisée

en un point singulier; elle y forme alors un angle ^ n. En particulier
une géodésique ne passe jamais par une singularité conique dont la courbure

concentrée est positive (car l'angle total est < 27t).

Proposition 1. Soit S une s.e.s.c. complète.

i) Si p, q e S il existe une géodésique de longueur d(p ; q) reliant p
à q.

ii) Toute classe d'homotopie peut être représentée par une géodésique de

longueur minimale.

Cette proposition est vraie dans le cas beaucoup plus général des

« Espaces de longueurs » (cf. [4], page 6, pour une preuve).

Proposition 2. Toute s.e.s.c. compacte admet une triangulation géodésique
telle que chaque point singulier soit un sommet et chaque arête soit incidente
à deux faces différentes.

(On appellera « normale » une telle triangulation, l'existence de triangulations
normales montre que l'exemple 1 du § 2 est, en fait, le cas général.)

Preuve. Soit {Ua} un recouvrement de S par des ouverts isométriques
à un disque du plan euclidien ou du cône standard. Choisissons Fa c= Ua
un fermé dont le bord est une ligne polygonale et opérons ce choix de sorte
que les Fa recouvrent encore S. Si Fa n Fß n'est pas vide, c'est un fermé
dont le bord est polygonal; il est donc possible de trianguler les Fa
de façon que toutes les intersections Fa n Fß non vides soient des réunions
de triangles. Il ne reste qu'à subdiviser cette triangulation pour obtenir la
triangulation voulue.

Proposition 3 (Formule de Gauss-Bonnet). Si S est une s.e.s.c. compacte
(sans bord) avec singularités en xl9x2,..., xH d'angle 0X, 02,... 0n alors

X kt 2n%{S) (où kt 2n-Qt).
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Preuve. Choisissons une triangulation normale T. Si q est un sommet
de T, posons

e«

si q xt

2ru si q est un point régulier

Posons également kq 2n — Qq.

Soient a;b;c respectivement le nombre de sommets, d'arêtes et de faces
de T. Comme T est une triangulation, on a 2b 3c donc

2n%(S) 2na — 2nb + 2kc 2na — ne.

Chaque triangle est un triangle euclidien, donc

nb £0,

(la somme étant prise sur l'ensemble des sommets de T). On a donc

2nX(S)2 £ (271-0,) £(27r-e;) £*

Corollaire 1. Si S est une s.e.s.c. homéomorphe à la sphère S2,

alors il existe au moins trois singularités de courbure concentrée positive.

Preuve. k{ est strictement inférieur à 2, donc s'il existe moins de trois
singularités à courbure positive, on a

L kt<47127
i

Corollaire 2. Si S est une s.e.s.c. dont toutes les singularités ont
une courbure concentrée négative, alors une géodésique minimale reliant deux

points p,qe S est unique dans sa classe d'homotopie relative.

Preuve. Quitte à passer au revêtement universel, on peut supposer S

simplement connexe. S'il existait deux géodésiques reliant p à q, elles
borderaient un (ou plusieurs) disque à bord polygonal dont au plus deux
angles sont inférieurs à tu. En recollant deux exemplaires de ce disque sur
leur bord on obtiendrait une s.e.s.c. homéomorphe à S2 avec moins de trois
points coniques à courbure concentrée positive.
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§4. Les différentielles quadratiques

Soit S une surface de Riemann. On notera TS son fibré tangent, c'est

une variété analytique complexe de dimension 2. Si p e S, on notera TpS

la fibre au-dessus de p (l'espace tangent en p).

Définition. Une différentielle quadratique sur S est une fonction
holomorphe.

qui, restreinte à chaque fibre, est une forme quadratique.
Rappelons que les seules formes quadratiques sur C( TpS) sont

Donc si U a S est le domaine d'une coordonnée z, alors toute différentielle

quadratique œ est donnée par une fonction holomorphe p: U -> C telle que
cd \i(z)dz2. Si z' /(z) est une autre coordonnée sur U et p' la fonction
correspondante, alors on doit avoir :

Notons Q(S) l'espace vectoriel complexe des différentielles quadratiques
sur S. Remarquons que si S est une surface close de genre > 0, <2(S)

n'est pas réduit à 0 (2(5) contient les carrés des différentielles abéliennes,
cf. [2] ou [6]). Soit G) e Q(S) — {0} et z une coordonnée au voisinage d'un
point p e S pour laquelle co s'écrit p(z)dz2. Supposons que p ait en p
un zéro d'ordre m. Alors on dira que m est l'ordre de co en p. Il est
immédiat que ce nombre ne dépend pas de la coordonnée choisie.

Lemme 1. Soit p e S et co une différentielle quadratique non nulle
d'ordre m en p. Alors il existe une coordonnée z au voisinage de p

ä

telle que z(p) 0 et co zmdz2. De plus, cette coordonnée est unique
k2n

a une rotation d angle
^

radians près (k est un entier).

co: TS - C

t - pt2 (p e C est une constante)

On appelle z la coordonnée « normale » ou « distinguée » en p.

Preuve.

Existence. Il suffit de reprendre la démonstration de la proposition 2 du § 1.
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Unicité. Si zmdz2 wmdw2, alors

Une solution est donnée par

d\V IrO TT

w eidz => eid -— + e~idm/2 => d(l + m/2) kn => d
dz m + 2

Cette solution est unique une fois une condition initiale donnée.

Proposition 1. Soit S une surface de Riemann close et soit ce> une

différentielle quadratique non nulle sur S.

Alors (ù définit sur S une structure euclidienne à singularités coniques.
Si x1,...,xn sont les zéros de oo et ont pour ordre m1,...,mn alors

x±,..., xn sont les singularités coniques et ont pour angle (m1 + 2)71,..., (m„ + 2)tc

respectivement.

Preuve. La métrique est donnée par ds2 := | co |. La proposition 2 du § 1

implique les propriétés énoncées.

Corollaire. Soit S une surface de Riemann close de genre g et

co g 2(S) — {0}. Alors le nombre de zéros de co (comptés avec multiplicités)
est 4g — 4. (En particulier, il n'existe aucune différentielle quadratiques non
nulle sur une surface de Riemann homéomorphe à S2).

Preuve. Si xt est un zéro d'ordre mt, la courbure concentrée est

kt —mt7i. On applique la formule de Gauss-Bonnet.

En plus d'une structure de s.e.s.c., une différentielle quadratique induit
sur S deux feuilletages mesurés, orthogonaux l'un à l'autre (avec des

singularités), définis par :

X est un vecteur horizontal si et seulement si co(X) est un réel positif

Y est un vecteur vertical si et seulement si o)(7) est un réel négatif.

Dans [5], Hubbard et Masur étudient ces feuilletages et leurs liens avec la
théorie des différentielles quadratiques. La proposition 1 dit que certaines

structures de s.e.s.c. sur une surface close peuvent être obtenues à partir
d'une différentielle quadratique, à condition que les angles des points
coniques soient tous des multiples entiers de n. Cette condition n'est

toutefois pas suffisante, le contre-exemple le plus simple est peut-être donné
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par la surface euclidienne (close et de genre 2) avec une unique singulan e

conique d'angle 6rc obtenue en identifiant de la façon usuelle les bords

d'un octogone régulier du plan euclidien.

Figure 3

Si la structure de s.e.s.c. provenait d'une différentielle quadratique, il

existerait un feuilletage géodésique sur S0 (le feuilletage horizontal). Les

feuilles devraient être des droites parallèles dans l'octogone rencontrant deux

côtés identifiés selon des angles égaux. Cela est clairement impossible si les

côtés identifiés ne sont pas parallèles.

Il est intéressant de noter que les différentielles quadratiques jouent un rôle

central dans la théorie des déformations (des « modules ») des surfaces de

Riemann (cf. [1]).
Pour une théorie complète des différentielles quadratiques, on peut se

[ référer à [7].

§ 5. Classification des s.e.s.c.

Rappelons qu'une métrique ds\ sur une variété riemannienne (M,ds2)

est conforme s'il existe une fonction h: M -> R telle que

ds2 e2hds2
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Lorsquil existe des singularités coniques, h peut prendre des valeurs infinies
(avec croissance logarithmique).

Le résultat suivant classe toutes les s.e.s.c. closes et orientables.

Théorème. Soit S une surface close et orientable, xx,..., xn e S et
0n > 0 tels que

I(2Jt-0,) 2n%(S).
i

Alors dans chaque structure conforme sur S, il existe une structure
euclidienne pour laquelle xt est une singularité conique d'angle 0f(i= 1, 2,... n).
Cette structure est unique si on la normalise (par exemple en posant:
Aire totale de S i).

Démonstration.

Unicité. Si ds et ds' sont deux telles structures, alors par conformité il
existe une fonction h telle que ds' ehds. Alors h doit être une fonction
harmonique (pour la structure conforme donnée) et sans singularité
(cf. prop. 3, § 1). Comme S est compacte, h est constante et comme l'aire
est normalisée, cette constante est nulle.

Existence. Supposons que S soit de genre g > 0, alors il existe sur la
surface de Riemann S une différentielle quadratique non nulle co. Soient

J>k les zéros de œ, alors dsl | co | définit une métrique euclidienne
conforme sur S avec singularités coniques en ys de poids m/2 (m,- est
l'ordre du zéro yy, cf. prop. 1, § 4). On a

I K/2) 2g - 2Ç ß, (j3,. A _

Donc en particulier :

£ß,. + I(-m,/2) 0.
i j

Pour conclure, nous utiliserons le lemme ci-dessous :

Lemme. Soit S une surface de Riemann close, x1,..., x„e S et

ai —? e IL Supposons ^ CLi 0. Alors il existe une fonction harmonique
i

h: S -» R avec singularités logarithmiques de poids af en xt(i= 1, 2,..., n).
Si h et h' sont deux telles fonctions, elles diffèrent par une constante.
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Il existe donc une fonction harmonique -> jR avec singularités

logarithmiques de poids

f ßi en X;(i l,n)\ —mj/2eny}(j=l,...,

alors

ds2e2hdsl

est la métrique cherchée (cf. prop. [3], § 1).

Ce raisonnement ne convient pas si 0, la sphère mérite donc des

considérations particulières :

Par le théorème d'uniformisation de Riemann (cf. [6]), il n'existe (à

isomorphisme près) qu'une structure conforme sur S2. On peut donc poser

S2 Cu {oo}.
Soit at e C u {oo} la coordonnée de on peut supposer que at + co.

Soit aussi ßi - 1 alors on a

I ßi - 2
i

On pose :

ds2 (niz-«ii2ßi)i^i2
i

Alors ds2 est bien une métrique euclidienne (log | z — |Pi est har-
i

monique) et at est un point conique d'angle 0;. Il ne reste plus qu'à

vérifier que oo est un point régulier. Pour cela, on fait l'inversion w 1/z

_ | 12\ _donc | dz |2 -—-r • On a
V M /

n \z-at\2* ni^r^n -^i2ßi iwrnu "^i2Pi
i i i

(car^ßi -2);
i

donc,

ds2 (Y\\z-ai\2^\dz\2iwrnu-^i2ßiMwiviwr
i i

=(ni1 - wai i2Pi) i dwi2i

est une métrique euclidienne régulière en w 0 (c'est-à-dire z=oo).
Ceci achève donc la preuve du théorème.
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Appendice

Le but de cet appendice est de montrer comment le lemme utilisé
dans la démonstration précédente découle du théorème de Hodge:

Lemme. SoitS une surface de Riemann close, xl,x„eS et
ai ' —' an e Supposons ^ otj 0. Alors il existe une fonction harmonique

i
h: S -> R avec singularités logarithmiques de poids a£ en xfi 1, 2,n).

Si h et h' sont deux telles fonctions, elles diffèrent par une constante.

Avant de prouver ce lemme, quelques rappels sur la théorie de Hodge
seront nécessaires :

Si S est une surface de Riemann, alors S est munie d'une structure
presque complexe, c'est-à-dire d'un morphisme (linéaire) de fibré J : TS - TS
tel que J2 —I (identité). J peut être défini à l'aide d'une métrique
conforme en posant Y JX si et seulement si {X ; Y} est une base ortho-
normée d'orientation positive, pour tout vecteur unité X.
Si co est une 1-forme sur S, on définit *co par:

*co(X) -œ(JX) ;

* est également un morphisme de fibré *: T*S - T*S tel que *2 -1.
Si z x + iy est une coordonnée sur S, alors

*dx dy, *dy ~dx, *dz -idz, *dz

Si / est une fonction, on a

d*df= (I? + d^)dx^y 2UzidZrM-
•

On dit qu'une 1-forme est harmonique si d(o d* co 0, donc co est
harmonique si et seulement si c'est localement la différentielle d'une fonction
harmonique.

Theoreme de Hodge. Si co est une 1-forme différentielle sur S, alors
il existe u, v e C00(S) et co0 une 1-forme harmonique tels que
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co co0 + du + *dv.

Nous ne prouvons pas ce théorème ici (cf. [6] ou [8]).

Preuve du lemme.

Unicité. Soient h et h' deux fonctions harmoniques avec les mêmes singularités

logarithmiques, alors h—h' est une fonction harmonique sans

singularités, donc constante puisque S est compacte.

Existence. Par linéarité, il suffit de montrer que si p,qeS alors il existe

h ; s —» R, harmoniques avec singularités logarithmiques de poids — 1 en p

et +1 en q (la fonction voulue s'obtient ensuite comme combinaison linéaire

de telles fonctions). On peut, pour la même raison, supposer que p et q

appartiennent à un même domaine U d une coordonnée z. Soit D un sous-

domaine contenant p et q et tel que D c= U. Donnons-nous ensuite une

fonction lisse % : S -+ R telle que

X I D
1 et X I S-17 0 •

On définit f: U - C par /(z) %(z) log {(z- q)/(z - p)) et l'on étend à / à

S tout entier en posant f\s-u Considérons la 1-forme

c df-i*df=2d£dz.

Remarquons que Ç 0 sur D u (S— U).

Le théorème de Hodge permet d'écrire

Ç (ù0 + du + *dv

l avec cd0 harmonique. Posons ensuite

G) df — du co0 + i*df + *dv;

alors co est fermée car dco d(df — du) 0, oo est cofermée car

** — 1 donc d*co d*co0 — id2f — d2v 0.

Donc co est harmonique.
Posons

h Re(/-u) ~ ((y + (/-«));

alors h est harmonique puisque
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d*dh — — d*(d(f — u) + d(f — co)) - d*((0-l-co) 0.

h a clairement les singularités voulues.
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