Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 32 (1986)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: REPRÉSENTATION DE GELFAND-GRAEV ET IDENTITÉS DE

BARNES LE CAS DE GL2 D'UN CORPS FINI

Autor: Helversen-Pasotto, Anna

Kapitel: §6. HOMOMORPHISMES D'ALGÈBRES DE A DANS C

DOI: https://doi.org/10.5169/seals-55078

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

\S 6. Homomorphismes d'algèbres de A dans ${f C}$

On pose $H_1:=F\times F$ et $H_2:=F_{q^2}$. On note H_i^\times le groupe multiplicatif de l'algèbre H_i , pour i=1,2, et l'on pose $\varepsilon_1=1$ et $\varepsilon_2=-1$, c'est-à-dire qu'on associe le signe ε_i à l'algèbre H_i . Pour $x\in H_1$, $x=(x_1,x_2)$ avec $x_1,x_2\in F_q$, on pose $\bar x:=(x_2,x_1)$; pour $x\in H_2$, on pose $\bar x:=x^q$; on associe ainsi à chaque $x\in H_i$ le conjugé $\bar x$ de x, pour i=1,2. On définit la norme N (resp. la trace T) de H_i sur F_q par $Nx:=x\,\bar x$ (resp. $Tx:=x+\bar x$), pour i=1,2. Pour un caractère multiplicatif β de F, le composé de β avec la norme de H_i sur F définit un caractère β^* du groupe multiplicatif H_i^\times , pour i=1,2. On plonge F dans H_1 en appliquant $a\in F$ sur $(a,a)\in H_1$, on plonge F dans H_2 en tant que seul sous-corps à q éléments; pour un caractère φ de H_i^\times , on note φ_* la restriction de φ à F_q^\times , pour i=1,2. On définit la somme de Gauss d'un caractère φ du groupe multiplicatif H_i^\times par

$$G(\phi) := \sum_{x} \psi(T(x)) \phi(x)$$
 avec $x \in H_i^{\times}, i = 1, 2$.

Proposition 3. Soient i=1,2 et φ un caractère de H_i^\times tel que $\varphi_*=\alpha$. Il existe alors un homomorphisme de \mathbf{C} -algèbres $\widehat{\varphi}$ de A_α dans \mathbf{C} tel que

(9)
$$\widehat{\Phi}(b(\gamma)) = \varepsilon_i q^{-1}(q-1)^{-1}(\alpha\gamma) (-1) G(\gamma^*\Phi),$$

pour tout $\gamma \in X$.

La preuve de l'existence d'un tel homomorphisme consiste en la vérification de la relation:

$$\hat{\Phi}(b(\gamma_1)) \hat{\Phi}(b(\gamma_2)) = \hat{\Phi}(b(\gamma_1)b(\gamma_2)),$$

pour tous $\gamma_1, \gamma_2 \in X$. D'après (5) ceci équivaut à l'identité suivante:

$$\begin{split} q^{-2}(q-1)^{-2}(\gamma_1\gamma_2) \, (-1) \; G(\gamma_1^*\varphi) \; G(\gamma_2^*\varphi) \; &= \; q^{-1}(q-1)^{-1} \; \delta(\alpha\gamma_1\gamma_2) \\ &+ \; \epsilon_i \; q^{-2}(q-1)^{-3}(\gamma_1\gamma_2) \, (-1) \; g(\alpha\gamma_1\gamma_2) \sum_{\gamma} g(\gamma_1\gamma^{-1}) \; g(\gamma_2\gamma^{-1}) \; G(\gamma^*\varphi) \; , \end{split}$$

pour $\gamma_1, \gamma_2 \in X$;

cette identité est équivalente à

$$\frac{G(\gamma_1^* \phi) G(\gamma_2^* \phi)}{g(\alpha \gamma_1 \gamma_2)} + q(q-1) \delta(\alpha \gamma_1 \gamma_2) \alpha(-1)$$

$$= \varepsilon_i (q-1)^{-1} \sum_{\gamma} g(\gamma_1 \gamma^{-1}) g(\gamma_2 \gamma^{-1}) G(\gamma^* \phi), \quad \text{pour} \quad \gamma_1, \gamma_2 \in X;$$

I'on somme sur $\gamma \in X$.

Cette dernière est un cas particulier du théorème 1 de [5], le cas de $H_1 = F \times F$ correspond à l'identité (i) et le cas de $H_2 = F_{q^2}$ correspond à l'identité (iv) du théorème 2 de [5]. Une démonstration détaillée est indiquée en [4].

La démonstration de la proposition (3) est ainsi achevée.

Nous nous proposons maintenant de démontrer que tout homomorphisme d'algèbres de A_{α} dans ${\bf C}$ est de la forme $\widehat{\varphi}$ avec un caractère multiplicatif φ de H_i , i=1 ou 2.

LEMME 3. Soient $m \ge 0$ un entier et R la C-algèbre C^m . Pour $1 \le i \le m$, soit p_i la projection de R sur C donnée par $p_i(x) := x_i$, pour $x \in R$, $x = (x_1, ..., x_m)$. On a les propriétés suivantes :

- (a) Chaque p_i est un homomorphisme de \mathbb{C} -algèbres, pour $1 \leq i \leq m$.
- (b) Tout homomorphisme de ${\bf C}$ -algèbres de ${\bf R}$ dans ${\bf C}$ est un des p_i avec $1 \leqslant i \leqslant m$.
- (c) La somme des p_i est égale à la trace Tr de R sur C, c'està-dire que $p_1+...+p_m=Tr$.
- (d) Si $H=(h_j)_{j\in J}$ est une famille d'homomorphismes de ${\bf C}$ -algèbres $h_j\colon R\to {\bf C}$ telle que $\sum_{j\in J}h_j=n$ Tr, alors H contient tout homomorphisme d'algèbres de R dans ${\bf C}$ exactement n fois, pour n>0 entier.

Seul le point (d) nécessite une vérification. D'après (b), on sait que chaque $h_j(j \in J)$ est un des projecteurs $p_i(1 \le i \le m)$. Pour tout $1 \le i \le m$, soit n_i le nombre de fois où la projection p_i intervient dans la famille H et soit e_i l'élément de R tel que $p_i(e_i) = 1$ et $p_k(e_i) = 0$ pour tout $k \ne i$ avec $1 \le k \le m$. On trouve

$$n_i = \sum_{k=1}^m n_k p_k(e_i) = \sum_{j \in J} h_j(e_i) = n \operatorname{Tr}(e_i) = n,$$

pour tout $1 \le i \le m$. La famille H contient donc tout homomorphisme de C-algèbres de R dans C exactement n fois.

C.Q.F.D.

Lemme 4 (Poisson). Soit H un groupe abélien fini et soit H' un sous-groupe de H. Etant donné un caractère χ de H', on note $C(\chi)$ l'ensemble des caractères ψ de H tels que la restriction de ψ à H' soit égale à χ . On a alors, pour tout $\chi \in H$,

$$\left(\operatorname{card}\ C(\chi)\right)^{-1} \sum_{\psi \in C(\chi)} \psi(x) \ = \ \left\{ \begin{array}{ll} 0 \ , & \operatorname{si} \quad x \notin H' \ , \\ \\ \chi(x) \ , & \operatorname{si} \quad x \in H' \ . \end{array} \right.$$

La preuve du lemme de Poisson est classique; nous l'appliquons maintenant au groupe multiplicatif H_i^{\times} de l'algèbre H_i pour i=1,2. Soit toujours α un caractère fixé de F^{\times} ; notons $C_i(\alpha)$ l'ensemble des caractères ϕ de H_i^{\times} tels que la restriction ϕ_* de ϕ à F_q^{\times} soit égale à α . On obtient:

LEMME 5. On a, pour i = 1, 2,

- (a) card $C_i(\alpha) = q \varepsilon_i$,
- (b) $(\operatorname{card} C_i(\alpha))^{-1} \sum_{\phi \in C_i(\alpha)} G(\phi) = \sum_a e(2a) \alpha(a), \quad a \in F_q^{\times}$.

En effet, on a card $C_i(\alpha) = (\operatorname{card} F^{\times})^{-1} \operatorname{card} H_i^{\times}$ et donc card $C_1(\alpha) = q - 1$ et card $C_2(\alpha) = q + 1$, d'où l'assertion (a). D'autre part, on a

$$(\operatorname{card} C_i(\alpha))^{-1} \sum_{\phi \in C_i(\alpha)} G(\phi) = (\operatorname{card} C_i(\alpha))^{-1} \sum_{x \in H_i} \psi(Tx) \sum_{\phi \in C_i(\alpha)} \phi(x)$$

$$= \sum_a \psi(2a) \alpha(a), \quad a \in F_q^{\times},$$

d'après le lemme 4, d'où (b).

PROPOSITION 4. La somme des homomorphismes $\hat{\phi}: A_{\alpha} \to \mathbb{C}$ avec $\phi \in C_1(\alpha) \cup C_2(\alpha)$ est égale à 2 T_{α} (deux fois la trace de A_{α}).

En effet, on remarque tout d'abord qu'on a bien

$$\sum_{\phi \in C_1(\alpha) \cup C_2(\alpha)} \widehat{\phi}(1) = \operatorname{card} C_1(\alpha) + \operatorname{card} C_2(\alpha) = 2q = 2 T_{\alpha}(1).$$

Soit maintenant $\gamma \in X$; on obtient

$$\begin{split} \sum_{\phi \in C_{i}(\alpha)} \widehat{\phi} \big(b(\gamma) \big) &= \varepsilon_{i} \ q^{-1} (q-1)^{-1} (\alpha \gamma) \ (-1) \sum_{\phi \in C_{i}(\alpha)} G(\gamma^{*} \phi) \\ &= \varepsilon_{i} \ q^{-1} (q-1)^{-1} (\alpha \gamma) \ (-1) \sum_{\psi \in C_{i}(\alpha \gamma^{2})} G(\psi) \\ &= \varepsilon_{i} \ q^{-1} (q-1)^{-1} (q-\varepsilon_{i}) \ (\alpha \gamma) \ (-1) \sum_{a} e(2a) \ (\alpha \gamma^{2}) \ (a), \quad a \in F_{q}^{\times} \ ; \end{split}$$

$$\sum_{\phi \in C_1(\alpha) \cup C_2(\alpha)} \widehat{\phi}(b(\gamma)) = -2q^{-1}(q-1)^{-1}(\alpha\gamma) (-1) \sum_a e(2a) (\alpha\gamma^2) (a), \quad a \in F_q^{\times},$$

$$= 2 T_{\alpha}(b(\gamma)),$$

d'après (6) et (7) (théorème 2 et lemme 2).

C.Q.F.D.

Pour tout caractère ϕ de H_i^{\times} , on définit le caractère conjugué $\overline{\phi}$ de H_i par $\overline{\phi}(x) := \phi(\overline{x})$, pour tout $x \in H_i^{\times}$, i = 1, 2.

Soit ϕ un caractère multiplicatif de H_i , i=1,2: on remarque que $\phi = \overline{\phi}$ si et seulement s'il existe $\beta \in X$, tel que $\beta^* = \phi$.

Pour tout $\phi \in C_1(\alpha) \cup C_2(\alpha)$, on a $\widehat{\phi} = \widehat{\overline{\phi}}$, puisque $G(\gamma^* \overline{\phi}) = G(\gamma^* \overline{\phi})$, pour tout $\gamma \in X$.

D'autre part, soit $\beta \in X$ et soit ϕ_i le composé de β avec la norme de H_i^{\times} sur F^{\times} , pour i=1,2. On a alors $\phi_i \in C_i(\beta^2)$ et

$$\varepsilon_1 G(\gamma^* \phi_1) = \varepsilon_2 G(\gamma^* \phi_2),$$

pour tout $\gamma \in X$; ici l'on applique le théorème de Hasse et Davenport, c.f. [3], qui dit, dans ce cas:

$$G(\gamma^* \phi_2) = -g(\gamma \beta)^2$$
.

Il s'ensuit que les homomorphismes $\hat{\phi}_1$ et $\hat{\phi}_2$ sont égaux.

Vu le lemme 3, (d) et la proposition 4, il s'ensuit maintenant le théorème suivant:

Théorème 3. Tout homomorphisme de \mathbf{C} -algèbres de A_{α} dans \mathbf{C} est de la forme $\widehat{\phi}$ avec φ dans $C_1(\alpha) \cup C_2(\alpha)$. Pour i=1,2 et $\varphi, \psi \in C_i(\alpha)$, on a $\widehat{\varphi} = \widehat{\psi}$ si et seulement si $\varphi = \psi$ ou $\varphi = \overline{\psi}$. Pour $\varphi_1 \in C_1(\alpha)$ et $\varphi_2 \in C_2(\alpha)$, on a $\widehat{\varphi}_1 = \widehat{\varphi}_2$ si et seulement s'il existe un caractère β de F^{\times} tel que φ_1 (resp. φ_2) soit le composé de β avec la norme de $F \times F$ (resp. F_{q^2}) sur F.

RÉFÉRENCES

- [1] Chang, B. Decomposition of Gelfand-Graev characters of $GL_3(q)$. Commun. Algebra 4 (1976), 375-401.
- [2] Curtis, C. W. and T. V. Fossum. On Centralizer Rings and Characters of Representations of Finite Groups. *Math. Zeitschr.* 107 (1968), 402-406.
- [3] DAVENPORT, H. und H. HASSE. Die Nullstellen der Kongruenzzetafunktion in gewissen zyklischen Fällen. J. Reine u. Angew. Math. 172 (1935), 151-182.