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§ 6. HOMOMORPHISMES D’ALGEBRES DE A DANS C

On pose H, := F x F et H,:= Fp. On note H;* le groupe multi-
plicatif de Ialgébre H;, pour i = 1,2, et I'on pose & = 1 eteg =—1,
Cest-a-dire qu’on associe le signe ¢; & 'algébre H;. Pour x € Hy, x = (X, X,)
avec Xx;,x, € F,, on pose X:= (x,,X); pour x€ H,, on pose x:= x2:
on associe ainsi & chaque x e H; le conjugé x de x, pour i = 1,2. On
définit la norme N (resp. la trace T) de H; sur F, par Nx := x X (resp.
Tx:= x + X), pour i = 1,2. Pour un caractére multiplicatif B de F, le

| composé de B avec la norme de H; sur F définit un caractére p* du
groupe multiplicatif H;*, pour i = 1,2. On plonge F dans H, en appliquant
|4 acF sur (a,a)e Hy, on plonge F dans H, en tant que seul sous-corps a

X

4 g éléments; pour un caractére ¢ de H;*, on note ¢, la restriction de ¢

?; a FY,pour i = 1,2. On définit la somme de Gauss d’un caractere ¢ du
. groupe multiplicatif H;* par

G(d):= Y Y(T(x)) d(x) avec xeH;,i=12.

PROPOSITION 3. Soient i = 1,2 et ¢ un caractére de H; tel que
¢, = o Il existe alors un homomorphisme de C-algébres & de A,
~dans C tel que ‘

e Bbt) = a7 @1 ) (~1) Gr*4),
~ pour tout vy e X.

, La preuve de I'existence d’un tel homomorphisme consiste en la vérifi-
5 cation de la relation:

(T)(b(%)) ‘T)(b(')’z)) = (T)(b(h)b(?'z)) ’

| pour tous vy, 7Y, € X. D’apres (5) ceci équivaut a I'identité suivante:

g~ g—1)"*(v1v2) (—1) G(y1d) G(y3d) = ¢ Hg—1)" ! 8(ory17,)

+ &g 2q—1)"(v1v2) (— 1) gloy,v2) D g1y~ ) glyy ™Y G(y* o),

3 Y

pour v, v, € X;

BE cettc identité est équivalente &
G(y¥9) G(y39)

glory1Ys)
= g(q—1)7" Y glysy ) g(y,y™Y) G(y*d), pour y,,v,€X;
Y

+ q(g—1) 8(oy;v2) a(—1)

'on somme sur y e X.
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Cette derniére est un cas particulier du théoréme 1 de [51, le cas de
H; = F x F correspond a I'identité (i) et le cas de H » = F,. correspond a
I'identité (iv) du théoréme 2 de [5]. Une démonstration détaillée est indiquée
en [4].

La démonstration de la proposition (3) est ainsi achevée.

Nous nous proposons maintenant de démontrer que tout homomor-
phisme d’algebres de A4, dans C est de la forme ® avec un caractére
multiplicatif ¢ de H;, i = 1 ou 2.

LEMME 3. Soient m >0 un entier et R la C-algébre C™. Pour
1 <i<m, soit p; la projectionde R sur C donnée par p{x):= x;,
pour x€R,x = (xy,..,X,). On a les propriétés suivantes:

(@) Chaque p; est un homomorphisme de C-algebres, pour 1 <i < m.

(b) Tout homomorphisme de C-algébres de R dans C est un des D;
avec 1 <i<m.

() La somme des p; est égale d la trace Tr de R sur C, Cest-
d-dire que p; + .. + p,, = Tr.

(d Si H = (hj);.; est une famille d’homomorphismes de C-algébres

h;:R - C telle que h; = nTr, alors H contient tout homomor-
J q o

je
phisme d’algébres de R dans C exactement n fois, pour n >0
entier.

Seul le point (d) nécessite une vérification. D’aprés (b), on sait que
chaque hjfjeJ) est un des projecteurs p;(1<i<m). Pour tout 1 < i < m,
soit n; le nombre de fois ou la projection p, intervient dans la famille H
et soit ¢; I'élément de R tel que p;(e;) = 1 et pye;) = 0 pour tout k # i
avec 1 < k < m. On trouve

m

n = ), mpile;) = Z hi(e;) = nTr(e) = n,
k=1 JjeJ

pour tout 1 < i < m. La famille H contient donc tout homomorphisme de

C-algebres de R dans C exactement n fois. C.QF.D.

LEMME 4 (Poisson). Soit H un groupe abélien fini et soit H' un
sous-groupe de H. Etant donné un caractére y de H', on note C(x)
Pensemble des caractéres v de H tels que la restriction de v a H
soit égale a . On a alors, pour tout x e H,




REPRESENTATION DE GELFAND-GRAEV 75

0, si x¢H,
(card C(y))~" Y Vlx) =

YeC(x)

v(x), si xeH.

La preuve du lemme de Poisson est classique; nous Pappliquons main-
tenant au groupe multiplicatif H;* de I'algébre H; pour i = 1, 2. Soit toujours
« un caractére fixé de F*; notons C;(¢) 'ensemble des caractéres ¢ de
H tels que la restriction ¢, de ¢ a F J soit égale a o. On obtient:

LEMME 5. On a, pour i = 1,2,

4 (2) card o) = g — &,
{ ® (ard Ci(w)™ 3 G(0) = 2 e2a)da), aeFy .

¢eCi(o) a

I En effet, on a card C;(o) = (card F*)~ ! card H;* et donc card C;(o)
B =4 — letcard Cy(®) = g + 1, d’ou I'assertion (a).
D’autre part, on a

(card C;())™* ), G(d) = (card C;(@)™* >, W(Tx) Y d(x)

oeCi(a) xeH; deCi(a)

g = Y V¥(2a) a), acF,,
d’apres le lemme 4, d’ou (b).

PROPOSITION 4. La somme des homomorphismes §:A, » C avec
de Cy(o) U Cylar) est égalea 2T, (deux foisla trace de A,).

En effet, on remarque tout d’abord qu’on a bien

(1) = card C (o) + card Cy(a) = 2g = 2 T(1).

deC1(a)uCa()

Soit maintenant y € X ; on obtient

Y, b)) = &g Mg—D o) (=1 Y Gr*¢)

$eCi(a) ¢eCi(a)

= &g g—-D) ) (=) ¥ G

yeCi(ay?)

= eq =1 g—e) o) (- 1) Y ea) (@7 (@), ey

d’ou
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Sb(v) = —2¢7Hg—1)" o) (= 1) . e2a) (0y?) (@), aeF[,
$eCi(a)uC2(w) a
= 2 T(b(y)),
d’apres (6) et (7) (théoréme 2 et lemme 2). C.Q.F.D.

X

Pour tout caractére ¢ de H*, on définit le caractére conjugué ¢ de
H; par ¢(x) : = ¢(x), pour tout xe H,i = 1, 2.

Soit ¢ un caractére multiplicatif de H,, i = 1,2: on remarque que
¢ = ¢ si et seulement s’il existe B € X, tel que p* = d.

Pour tout ¢ e Cy(®) U Cy(a), on a ¢ = cT>, puisque G(y*¢) = G(y*P),
pour tout y € X.

D’autre part, soit Be X et soit ¢, le composé de B avec la norme de
H;" sur F*, pour i = 1,2. On a alors ¢; € C{p?) et

g; G(v*0,) = &, G(y*d,),

pour tout ye X; ici I'on applique le théoréme de Hasse et Davenport,
c.f. [3], qui dit, dans ce cas:

G(y*d2) = —g(vB)*.

Il s’ensuit que les homomorphismes ¢, et $, sont égaux.
Vu le lemme 3, (d) et la proposition 4, il S’ensuit maintenant le théoréme
suivant:

THEOREME 3. Tout homomorphisme de C-algébres de A, dans C
est de la forme ¢ avec ¢ dans Cy() U Cy(). Pour i= 1,2 et
O, VeCix), ona & = sietseulement si =V ou ¢ =\ Pour
d1€Ci() et deCyl), ona &, = b, si et seulement sil existe un
caractére B de F* tel que &, (resp. &,) soit le composé de
avec la norme de F x F (resp. Fp) sur F.
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