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§6. Homomorphismes d'algèbres de A dans C

On pose H± : F x F et H2 : Fq2. On note H* le groupe

multiplicatif de l'algèbre Ht, pour i 1,2, et l'on pose ^ 1 et s2 — 1,

c'est-à-dire qu'on associe le signe à l'algèbre Ht. Pour xe Hlfx (x1,x2)

avec x1,x2eFq, on pose x: pour xeH2, on pose x: x*;

on associe ainsi à chaque xe Ht le conjugé x de x, pour i 1, 2. On

définit la norme N (resp. la trace T) de Ht sur Fq par Nx : x x (resp.

7x : x + x), pour i 1, 2. Pour un caractère multiplicatif ß de F, le

composé de ß avec la norme de Ht sur F définit un caractère ß* du

groupe multiplicatif FI* pour i 1, 2. On plonge F dans H1 en appliquant

ae F sur (a, a)eH1, on plonge F dans H2 en tant que seul sous-corps à

g éléments ; pour un caractère 4> de H * on note la restriction de §
à F *, pour z 1, 2. On définit la somme de Gauss d'un caractère c|> du

groupe multiplicatif H *
par

G(cj)) : Yj ^(P(x)) 4>(x) avec xe FI* ,i 1, 2

Proposition 3. Soient i 1,2 et c() un caractère de H * tel que

(j)^ oc. Il existe alors un homomorphisme de C-algèbres $ de Aa

dans C tel que

(9) $(%)) s iq~\q-1)"Vy) (-1) G(y*4>),

pour tout y e X.

La preuve de l'existence d'un tel homomorphisme consiste en la vérification

de la relation :

$(%i))$(%2)) $(%i)%2)),

pour tous y1, y2 e X. D'après (5) ceci équivaut à l'identité suivante :

«~2(G— i)~2(YIY2) (—1) G(r Ï4>) G(Y*4>) q'Kq-i)'1 5(aYiY2)

+ Si«"2(3-l)"3(YiY2)(-l)fif(aYiY2)E0(YiY_1)éf(Y2Y-1) G(Y*4>),
y

pour y1,y2eX;
cette identité est équivalente à

G(yî^) „+ *-l)8(«Tlti«<-l)
Z^YiY_1)ff(Y2Y-1) G(y*<(>), pour
y

l'on somme sur y e X.
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Cette dernière est un cas particulier du théorème 1 de [5], le cas de
Hx F x F correspond à l'identité (i) et le cas de H2 Fq2 correspond à
1 identité (iv) du théorème 2 de [5]. Une démonstration détaillée est indiquée
en [4].

La démonstration de la proposition (3) est ainsi achevée.
Nous nous proposons maintenant de démontrer que tout homomor-

phisme d algèbres de Aa dans C est de la forme <j) avec un caractère
multiplicatif <(> de Hi9 i 1 ou 2.

Lemme 3. Soient m ^ 0 un entier et R la C-algèbre Cm. Pour
1 ^ i ^ m, soit pi la projection de R sur C donnée par pt(x) : xi9
pour x e R, x (xl9..., xm). On a les propriétés suivantes:

(a) Chaque pt est un homomorphisme de C-algèbres, pour 1 < i ^ m.

(b) Tout homomorphisme de C-algèbres de R dans C est un des pt
avec 1 ^ i ^ m.

(c) La somme des pt est égale à la trace Tr de R sur C, c'est-
à-dire que p± + + pm Tr.

(d) Si H (hj)jeJ est une famille d'homomorphismes de C-algèbres
hj-R * C telle que ^ hj n Tr, alors H contient tout homomor-

jeJ
phisme d'algèbres de R dans C exactement n fois, pour n > 0
entier.

Seul le point (d) nécessite une vérification. D'après (b), on sait que
chaque hfjeJ) est un des projecteurs Pour tout 1 C i < m,
soit nt le nombre de fois où la projection pt intervient dans la famille H
et soit e; l'élément de R tel que pfa) 1 et pk(ei) 0 pour tout h * i
avec 1 ^ k ^ m. On trouve

m

"i E nk Pk(et E Mei) «Tr (e;)
k -1 jeJ

pour tout 1 ^ i ^ m. La famille H contient donc tout homomorphisme de
C-algèbres de R dans C exactement n fois. C.Q.F.D.

Lemme 4 (Poisson). Soit H un groupe abélien fini et soit H' un
sous-groupe de H. Etant donné un caractère % de H', on note C(%)
l'ensemble des caractères ^ de H tels que la restriction de \|/ à H'
soit égale à %. On a alors, pour tout x e H,
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(cardC(x)) 1 X W*)
0, si x

vj/eC(x)

xW >
si xe H'

La preuve du lemme de Poisson est classique ; nous 1 appliquons

maintenant au groupe multiplicatif H * de l'algèbre Ht pour i 1, 2. Soit toujours

a un caractère fixé de Fx; notons C,(a) l'ensemble des caractères <|> de

H* tels que la restriction cj)^ de <|) à F* soit égale à oc. On obtient:

Lemme 5. On a, pour i 1, 2,

(a) card Cf(a) q — 8;,

(b) (card C^oc))-1 £ G((|)) £ eQa) a(a)' ae Fq *

<l>eCi(a) a

En effet, on a card C, (a) (card F*)-1 card Hf et donc card C^a)

q -1 et card C2(a) q + 1, d'où l'assertion (a).

D'autre part, on a

(cardC^a))-1 X G(<(>) (card C^cc))-1 Xx M7*) X
<()eCi(a) xeHi <t>eCi(a)

XM2a) a(a), aeF*,
a

d'après le lemme 4, d'où (b).

Proposition 4. La somme des homomorphismes $ : Aa -+ C avec

(|) g Ci(a) u C2(a) est égale à 2 Ta (deux fois la trace de AJ.

En effet, on remarque tout d'abord qu'on a bien

£ $(1) card Cx(a) + card C2(oc) 2q 2 Ta(1).
<j>eCi(a)uC2(a)

Soit maintenant y g X ; on obtient

X $(%)) £i X g(Y*<W
<J>eCi(ot) <i>eCi(a)

+eCi(«r2)

ei3_1(3-ir1(«-e.-)(aY)(-l)Xe(2a)(ay2)(a)> aeF« '>

a

d'où
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«CidUw $(&(Y)) "2^1(«-1)-Vy) (-1) Ç e(2a) (ay2) (a), a e

2r„(6(T)),

d'après (6) et (7) (théorème 2 et lemme 2). C.Q.F.D.

Pour tout caractère cj) de if*, on définit le caractère conjugué de
Ht par <j>(x) : cj>(x), pour tout xe H*, i 1, 2.

Soit un caractère multiplicatif de Ht, i 1,2: on remarque que
cj) <|) si et seulement s'il existe ß e X, tel que ß* <j>.

Pour tout cj) e Ci(a) u C2(a), on a $ $, puisque G(y*cj)) G(y*$),
pour tout y eX

Dautre part, soit ßeX et soit cj)£ le composé de ß avec la norme de
H * sur Fx, pour i 1, 2. On a alors cj); e C;(ß2) et

Si Gty*^) £2 G(y*^)2),

pour tout y s X; ici l'on applique le théorème de Hasse et Davenport,
c.f. [3], qui dit, dans ce cas :

G(y*cj)2) -#(yß)2

Il s'ensuit que les homomorphismes et $2 sont égaux.
Vu le lemme 3, (d) et la proposition 4, il s'ensuit maintenant le théorème

suivant :

Théorème 3. Tout homomorphisme de C-algèbres de Au dans C
est de la forme $ avec cj) dans Ct{a) u C2(oc). Pour i 1,2 et
cj), \j/ e CM on a $ \j/ si et seulement si cj> v|/ ou cj> \j/. Pour
cj)i e C±(a) et cj)2 e C2(a), on a $2 si et seulement s'il existe un
caractère ß de Fx tel que cj)x (resp. cj)2J soit le composé de ß
avec la norme de F x F (resp. Fq2) sur F.
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