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REPRESENTATION DE GELFAND-GRAEV 71

8 (v) pour Ay, A, caractéres de F;, ona

1 g+ ; Ga(A1A) Go(AzA)

) g(hy) Go(ALA

_ 90 9k Goltila) 1) 500) M= D) (A1) o)
g(hihy)

ici A, (resp. \,) dénote la restriction de A, (resp. A,) a F g

Pon somme sur les caractéres A de F; dont la restriction @ F”

soit triviale, €, désigne un élément de F 5 tel que 4”1l = —1

3 Les cing identités sont des cas particuliers d’une identité plus générale
~ qui fait Pobjet du théoreme 2 de notre publication [4]. La démonstration
" se base sur étude de certaines algébres commutatives de degré 4 sur F et
fait intervenir le groupe symétrique des permutations de quatre é€léments
ainsi que le groupe diédrale D, du carré. L’identité générale s’énonce pour
chaque o € D,, mais elle ne dépend que de la classe de conjugaison de o.
Les cing classes de conjugaison de Dy fournissent les cing identités de

Barnes.

Dans la suite de cet article nous calculons la trace de lalgébre A,
~(§5) et nous utilisons les identités de Barnes (i) et (iv) pour exhiber les
homomorphismes d’algébres de 4, dans C indépendamment de la table des
caractéres (§ 6). La comparaison de leur somme avec la trace montre que
la liste des homomorphismes est compléte et sans répetitions.

§5. CALCUL DE LA TRACE DE L’ALGEBRE 4,

On note T, la trace de lalgébre 4,, o€ X fixé. Soit B la base de 4,
| formée par I'unité et les b(y), avec ye X; pour be B et ae 4,, on définit
R - le coefficient <b'| a> dans C par la condition suivante:
a= Y <bla>bh;

beB

@ on a, pour toutac 4,,

Tfa) = Y <b'|ab> .

beB

| On obtient

T, (1) = dim¢(4,) = g
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et
Ta(b(Y1)) = Z <b(y,) | blyy) bly,)>

puisque <1'|b(y)> = 0, pour tout y e X. D’apres '(5), 'on calcule

<bly2) [ b(v1) b(v2)> = g7 g—1)"2(oy1) (— 1) g(0v172) 9v1Y5 L) 975 )
= —q Mg—1)"Xoryy) (— 1) g0y172) 9(v173 Y,
pour v,, v, € X, dou

T b(vs) = —q~"g—1)"Hay,) (1) Y g(oy172) 9(v175 D),

ici 'on somme sur y, € X et y, est dans X. On a donc le théoréme suivant :

THEOREME 2. La trace T, de Palgébre A, prend les valeurs suivantes
sur les générateurs: T(1) = q et

(6) TM) = =g Mg=1D) ) (=1) Y gB) 9B,

B1B2=ay2

ici y,B; et B, désignent des éléments de X.

LEMME 2. Pour BeX, ona
(7) (g—1)7* ; AB 9(B1) 9(B2) = ). e(2a) B(a),
avec B;,P,€X et aeF*.

Cest un cas particulier du lemme 5, (b) quon démontrera au § 5.

Plus explicitement, on obtient
[ (@—1)3B), si 2 =0 dans F,

(@=D7" > 9B B = |

B1B2=8

1 :
| B (5) g(B), sinon.

COROLLAIRE 1. On a explicitement

—q~ " y(—=1) 8oy?), si la caractéristique de F est 2,
(8) Tob(v)) =
—q 1 @—1)7 o) (= 1) (v (2) g(ory?), sinon .
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