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REPRÉSENTATION DE GELFAND-GRAEV 71

(v) pour Al5A2 caractères de Fon a

(q+iy1 Y G2(AiA) G2(A2A)
A

gMg(^) G2(AiA2)
1} x } 1} (AiA2) (s0)

0(^2)

ici Xi (resp. X2)dénotela restriction de Aj. (resp. a F

l'on somme sur les caractères A dedont la restriction à F

soit triviale, e0 désigne un élément de tel que
1 -1-

Les cinq identités sont des cas particuliers d'une identité plus générale

qui fait l'objet du théorème 2 de notre publication [4]. La démonstration

se base sur l'étude de certaines algèbres commutatives de degré 4 sur F et

fait intervenir le groupe symétrique des permutations de quatre éléments

ainsi que le groupe diédrale D4 du carré. L'identité générale s'énonce pour

chaque aeD4, mais elle ne dépend que de la classe de conjugaison de ct.

Les cinq classes de conjugaison de DA fournissent les cinq identités de

Barnes.

Dans la suite de cet article nous calculons la trace de l'algèbre Aa

(§ 5) et nous utilisons les identités de Barnes (i) et (iv) pour exhiber les

homomorphismes d'algèbres de Aa dans C indépendamment de la table des

caractères (§ 6). La comparaison de leur somme avec la trace montre que

la liste des homomorphismes est complète et sans répétitions.

§ 5. Calcul de la trace de l'algèbre Aa

I On note Ta la trace de l'algèbre Aa, a eX fixé. Soit B la base de Aa

^ formée par l'unité et les b(y), avec y e X ; pour b e B et a g Aa, on définit

le coefficient <b' | a> dans C par la condition suivante:

a Y <b' \ a > b;
beB

on a, pour tout a e Aa,

FM Y <b' I ab> •

beB

On obtient

Ta(l) dimc(AJ q
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et

T«(%i)) Z <b(y2y I n) b(y2)>
Y2

puisque <l'|b(y)> 0, pour tout yeX. D'après (5), l'on calcule

<b(y2)' I b(yi)b(y2)> q~\q-l)-2^)(-1)0(ocyiY2) gr(YiY2 ') gr(y2y J1)

- 1~ Kl~1) '" 2(a?i) -1) 3(ayyy2) ^(y2y Jx),

pour Yi, y2 e X, d'où

Tx(b(yi))-<ï 1(<Y — 1)~ 2(«yi) (-1) Z 0(aYiY2) 0(YiY2 *)
Y2

ici Ion somme sur y2e X et est dans X. On a donc le théorème suivant:

Théorème 2. La trace Ta de l'algèbre Aa prend les valeurs suivantes
sur les générateurs : Ta(1) q et

(6) Tx(b(y)) -q-\q-l)-*(ay)(-l)£^ 0(ß2),
ßi ß2 =ay2

ici y, ßi et ß2 désignent des éléments de X.

Lemme 2. Pour ß e X, on a

(q-ir1 z ,<?(ßi) 3(ß2) Z e(M ß(a),
ßiß2 ß a

at;ec ß1?ß2eX et aeFx.
C'est un cas particulier du lemme 5, (b) qu'on démontrera au §5.

Plus explicitement, on obtient

(9-1r1 Z 0(ßi)2(ß2)
Pl p2 P

(q—1) ö(ß), si 2 0 dans F,

ß (è) 0(ß)' Sin0n'

Corollaire 1. On aexplicitement

— <1~1 y(—1) b(ay2), si la caractéristique de F est 2,

-q~1 (q-1)" Vy) -1) (a '"l-y~2) (2) <?(aY2), sinon

(8) TJXY))
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