Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 32 (1986)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: REPRÉSENTATION DE GELFAND-GRAEV ET IDENTITÉS DE

BARNES LE CAS DE GL2 D'UN CORPS FINI

Autor: Helversen-Pasotto, Anna

Kapitel: §4. Rappel de la table des caractères de G CALCUL DES VALEURS

DES CARACTÈRES DE G SUR LES GÉNÉRATEURS DE \$A \alpha\$

DOI: https://doi.org/10.5169/seals-55078

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Théorème 1. L'unité et les éléments $b(\gamma)$, avec $\gamma \in X$, forment une base de l'espace vectoriel sous-jacent à l'algèbre A_{α} . La structure d'algèbre s'exprime par la relation suivante:

(5)
$$b(\gamma_1) b(\gamma_2) = q^{-1} (q-1)^{-1} \delta(\alpha \gamma_1 \gamma_2) + q^{-1} (q-1)^{-2} (\alpha \gamma_1 \gamma_2) (-1) g(\alpha \gamma_1 \gamma_2) \sum_{\gamma} \gamma(-1) g(\gamma_1 \gamma^{-1}) g(\gamma_2 \gamma^{-1}) b(\gamma)$$

pour $\gamma_1, \gamma_2 \in X$; on somme sur $\gamma \in X$.

 \S 4. Rappel de la table des caractères de G calcul des valeurs des caractères de G sur les générateurs de A_α

Les caractères sont en « dualité » avec les classes de conjugaison. Correspondant aux quatre « types » de telles classes, il y a quatre « séries » de caractères. Toute la situation se résume dans le tableau suivant:

		caractères	χ^1_μ	χ^q_μ	χ _{μ, υ}	χ_{Λ}
classes de conjugaison					$\mu, \upsilon \in X$	$\Lambda \in Y$
repré- sentant	diviseurs élémentaires	para- mètres	$\mu \in X$	μ ∈ <i>X</i>	$\mu \neq \upsilon$ modulo $(\mu, \upsilon) \sim (\upsilon, \mu)$	$ \Lambda \sim \Lambda^q $
$\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$	X- a X- a	$a \in F^{\times}$	$\mu^2(a)$	$q \mu^2(a)$	(q+1) μυ(a)	$(q-1) \Lambda(a)$
$\begin{pmatrix} a & a \\ 0 & a \end{pmatrix}$	$1 (X-a)^2$	$a \in F^{\times}$	$\mu^2(a)$	0	μυ(<i>a</i>)	$-\Lambda(a)$
$\begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$	(X-a)(X-d)	$a, d \in F^{\times}$ $a \neq d$ modulo $(a, d) \sim (d, a)$	μ(<i>ad</i>)	μ(<i>ad</i>)	$\mu(a) \upsilon(d) + \mu(d) \upsilon(a)$	0
$\begin{pmatrix} 0 & N(x) \\ -1 & Tr(x) \end{pmatrix}$	$1 X^2 - \operatorname{Tr}(x)X + \operatorname{N}(x)$	$x \in E^{\times}$ $x \notin F^{\times}$ modulo $x \sim x^{q}$	μ (N(x))	$-\mu(N(x))$	0	$-(\Lambda + \Lambda^q)(x)$

Ici E désigne le corps fini a q^2 éléments, Tr (resp. N) dénote la trace (resp. norme) de E sur F, i.e. pour $x \in E$, on a

$$Tr(x) = x + x^q$$
 et $N(x) = x x^q$,

Y désigne le groupe des caractères de E^{\times} .

Une des nombreuses références pour le calcul des caractères de G est [9]. Pour tout caractère χ de G, nous désignons aussi par χ l'extension par linéarité de χ à C [G] et nous nous proposons d'en calculer la restriction à la sous-algèbre A_{α} . Pour l'unité e de A_{α} , on obtient

$$\chi(e) = \chi(e_{\theta}) = \frac{1}{|H|} \sum_{h \in H} \theta(h^{-1}) \chi(h) = \langle \theta, \text{Res}_{H}^{G} \chi \rangle = \langle \text{Ind}_{H}^{G} \theta, \chi \rangle$$

et d'une manière explicite:

$$\chi(e) = q^{-1}(q-1)^{-1} \sum_{a,b} \bar{\alpha}(a) \, \bar{\psi}(b) \, \chi(c(a) \, u(b)), \quad a \in F^{\times}, \, b \in F^{+};$$

or la suite des diviseurs élémentaires de c(a) u(b) est 1, $(X-a)^2$, si $b \neq 0$, et X - a, si b = 0, pour $a \in F^{\times}$, $b \in F^{+}$, d'où:

$$\chi(e) = q^{-1}(q-1)^{-1} \sum_{a,b\neq 0} \bar{\alpha}(a) \bar{\psi}(b) \chi(1,(X-a)^2) + \sum_{a} \bar{\alpha}(a) \chi(X-a,X-a)$$

 $a, b \in F$; mais ψ étant un caractère non-trivial de F^+ , on a

$$\sum_{b \neq 0} \psi(b) = -1, b \in F, \quad \text{d'où}$$

$$\chi(e) = q^{-1}(q-1)^{-1} \sum_a \bar{\alpha}(a) \left[\chi(X-a, X-a) - \chi(1, (X-a)^2) \right], \quad a \in F^\times.$$

En utilisant la table des caractères, on obtient, pour $\mu, \nu \in X$,

$$\chi_{\mu}^{1}(e) = 0, \chi_{\mu}^{q}(e) = \delta(\alpha^{-1} \mu^{2}), \chi_{\mu, \nu}(e) = \delta(\alpha^{-1} \mu \nu)$$

et $\chi_{\Lambda}(e) = \delta(\alpha^{-1}\lambda)$, où λ dénote la restriction de Λ à F^{\times} , pour $\Lambda \in Y$. D'après [2], Corollaire 1.2, les homomorphismes d'algèbres de A_{α} dans C sont donnés par les caractères χ de G, tels que $\chi(e) = 1$. Nous calculons, dans la suite, leurs valeurs sur les générateurs $b(\gamma)$ de A_{α} avec $\gamma \in X$.

LEMME 1. Soit χ un caractère de G et $\gamma \in X$; on a

$$\chi(b(\gamma)) = q^{-1}(q-1)^{-2} \gamma(-1) \sum_{\substack{a, c \in F^{\times} \\ b \in F^{+}}} (\alpha^{-1} \gamma^{-2}) (a) \gamma(c) \overline{\psi}(a^{-1}b) \chi(1, X^{2} - bX + c),$$

ici a dénote le caractère central fixé.

En effet, on a $\chi(b(\gamma)) = (q-1)^{-1} \sum_{a} \gamma(a) \chi(a)$, $a \in F^{\times}$.

Or

$$\begin{array}{ll} b(a) \ = \ ed(a)ze \ = \ q^{-2}(q-1)^{-2} \sum_{a_1,\,a_2,\,b_1,\,b_2} \alpha(a_1a_2) \ \psi(b_1+b_2)c(a_1)u(b_1)d(a)zc(a_2)u(b_2) \\ \\ = \ q^{-2}(q-1)^{-1} \sum_{a_1,\,b_1,\,b_2} \bar{\alpha}(a_1) \ \bar{\psi}(b_1+b_2) \ c(a_1) \ u(b_1) \ d(a)zu(b_2), \ a_1,\,a_2 \in F^\times, \ b_1,\,b_2 \in F^+, \ a_1,\,b_2 \in F^+, \ b_2 \in F^+, \ b_3,\,b_4 \in F^+, \ b_4,\,b_5 \in F^+, \ b_5,\,b_7 \in F^+, \ b_7,\,b_7 \in F^+, \ b_7,$$

La suite des diviseurs élémentaires de $c(a_1)$ $u(b_1)$ d(a) z $u(b_2)$ est égale à 1, $X^2 - a_1(b_1 + b_2)X - a_1^2a$, pour a_1 , $a \in F^{\times}$, b_1 , $b_2 \in F^{+}$, d'où

$$\begin{split} \chi\big(b(a)\big) &= q^{-1}(q-1)^{-1} \sum_{a_1,b} \bar{\alpha}(a_1) \; \bar{\psi}(b) \; \chi(1,X^2-a_1bX-a_1^2a), \, a_1 \in F^\times, \, b \in F^+ \; . \\ &= q^{-1}(q-1)^{-1} \sum_{a_1,b} \bar{\alpha}(a_1) \; \bar{\psi}(a_1^{-1}b) \; \chi(1,X^2-bX-a_1^2a), \, a_1 \in F^\times, \, b \in F^+. \end{split}$$

On obtient donc

$$\begin{split} \chi\big(b(\gamma)\big) &= q^{-1}(q-1)^{-2} \sum_{a,\,a_1,\,b} \alpha(a_1^{-1}) \,\gamma(a) \,\bar{\psi}(a_1^{-1}b) \,\chi(1,\,X^2-bX-a_1^2a),\,a,\,a_1 \in F^\times,\,b \in F^\times \\ &= q^{-1}(q-1)^{-2} \sum_{a_1,\,c,\,b} \alpha(a_1^{-1}) \,\gamma(-a_1^{-2}c) \,\bar{\psi}(a_1^{-1}b) \,\chi(1,\,X^2-bX+c) \\ &= q^{-1}(q-1)^{-2} \,\gamma(-1) \sum_{a,\,c,\,b} (\alpha^{-1} \,\gamma^{-2}) \,(a) \,\gamma(c) \,\bar{\psi}(a^{-1}b) \,\chi(1,\,X^2-bX+c) \,, \end{split}$$

ce qui prouve le lemme 1.

PROPOSITION 2. Les valeurs des caractères de G sur les générateurs de A sont données par :

$$\begin{split} \chi_{\mu}^{1}(e) &= \chi_{\mu}^{1}\big(b(\gamma)\big) = 0 \;, \\ \chi_{\mu}^{q}(e) &= \delta(\alpha^{-1}\mu^{2}), \, \chi_{\mu}^{q}\big(b(\gamma)\big) = q^{-1}(q-1)^{-1}\delta(\alpha^{-1}\mu^{2}) \; \gamma(-1) \; g(\gamma\mu)^{2} \;, \\ \chi_{\mu,\,\nu}(e) &= \delta(\alpha^{-1}\mu\nu), \, \chi_{\mu,\,\nu}\big(b(\gamma)\big) = q^{-1}(q-1)^{-1}\delta(\alpha^{-1}\mu\nu) \; (\alpha\gamma) \; (-1) \; g(\gamma\mu) \; g(\gamma\nu) \;, \\ \chi_{\Lambda}(e) &= \delta(\alpha^{-1}\lambda), \, \chi_{\Lambda}\big(b(\gamma)\big) = -q^{-1}(q-1)^{-1} \; \delta(\alpha^{-1}\lambda) \; (\alpha\gamma) \; (-1) \; G(\gamma^{*}\Lambda) \;; \end{split}$$

ici $\mu, \nu, \gamma \in X, \alpha$ caractère central fixé, $\Lambda \in Y$; λ dénote la restriction de Λ à F^{\times} et γ^* dénote le composé de γ avec la norme de E^{\times} sur F^{\times} ; la somme de Gauss $G(\Lambda\gamma^*)$ est définie par

$$G(\Lambda \gamma^*) = \sum_{x \in E^*} (\Lambda \gamma^*) (x) \psi(\operatorname{Tr}(x)).$$

Démonstration. Les valeurs sur l'unité e ont déjà été calculées au début du paragraphe. De $\chi^1_{\mu}(1, X^2 - bX + c) = \mu(c)$, pour tout $b \in F^+$, $c \in F^\times$, $\mu \in X$ on déduit que $\chi^1_{\mu}(b(\gamma)) = 0$, pour tout $\gamma \in X$.

D'après le lemme 1, on obtient

$$\chi_{\mu}^{q}(b(\gamma)) = q^{-1}(q-1)^{-2} \gamma(-1) \sum_{a,c,b} (\alpha^{-1} \gamma^{-2}) (a) \gamma(c) \overline{\psi}(a^{-1}b) \chi_{\mu}^{q}(1, X^{2}-bX+c);$$

d'après la table des caractères, on a

$$\chi^{q}_{\mu}(1, X^{2} - bX + c) = \begin{cases} 0 \\ \mu(a_{1}a_{2}) \\ -\mu(N(x)) \end{cases} \quad \text{si} \quad X^{2} - bX + c$$

$$= \begin{cases} (X - a)^{2} & \text{avec} \quad a \in F^{\times} \\ (X - a_{1}(X - a_{2})) & \text{avec} \quad a_{1}, a_{2} \in F^{\times}, a_{1} \neq a_{2} \\ (X - x)(X - x^{q}) & \text{avec} \quad x \in E^{\times} - F^{\times} \end{cases}$$

ďoù

$$\chi_{\mu}^{q}(b(\gamma)) = q^{-1}(q-1)^{-2} \gamma(-1) \frac{1}{2} \sum_{\substack{a \\ a_1 \neq a_2}} (\alpha^{-1} \gamma^{-2}(a)) \gamma(a_1 a_2) \overline{\psi}(a^{-1}(a_1 + a_2)) \mu(a_1 a_2)$$

$$- q^{-1}(q-1)^{-2} \gamma(-1) \frac{1}{2} \sum_{\substack{a \\ x \neq x^q}} (\alpha^{-1} \gamma^{-2}) (a) \gamma(N(x)) \overline{\psi}(a^{-1} Tr(x)) \mu(N(x)),$$

ici l'on somme sur a, a_1 , $a_2 \in F^{\times}$ et $x \in E^{\times}$. On ne change rien à la valeur de $\chi^q_{\mu}(b(\gamma))$ si dans les sommations on enlève la restriction $a_1 \neq a_2$ et $x \neq x^q$. Après un changement d'indices de sommation, l'on obtient

$$\begin{split} \chi^{q}_{\mu}(b(\gamma)) &= q^{-1}(q-1)^{-2} \gamma(-1) \frac{1}{2} \left(\sum_{a, a_{1}, a_{2}} (\alpha^{-1} \mu^{2}) (a) \gamma(a_{1}a_{2}) \psi(a_{1}+a_{2}) \mu(a_{1}a_{2}) \right) \\ &- \sum_{a, x} (\alpha^{-1}\mu^{2}) (a) \gamma(N(x)) \psi(Tr(x)) \mu(N(x)), a, a_{1}, a_{2} \in F^{\times}, x \in E^{\times}, \\ &= q^{-1}(q-1)^{-1} \gamma(-1) \delta(\alpha^{-1} \mu^{2}) \frac{1}{2} \left[g(\gamma \mu)^{2} - G((\gamma \mu)^{*}) \right], \end{split}$$

où $G((\gamma \mu)^*) = \sum_{x \in E^*} (\gamma \mu) (N(x)) \psi(Tr(x))$. D'après le théorème de Davenport et Hasse [3], on a $G((\gamma \mu)^*) = -g(\gamma \mu)^2$, d'où

$$\chi^{q}_{\mu}(b(\gamma)) = q^{-1}(q-1)^{-1} \gamma(-1) \delta(\alpha^{-1}\mu^{2}) g(\gamma\mu)^{2}$$
.

Le calcul de $\chi_{\mu, \nu}(b(\gamma))$ est plus facile, on obtient, d'après le lemme 1 et la table des caractères

$$\begin{split} \chi_{\mu,\,\upsilon}\big(b(\gamma)\big) &= \, q^{-\,1}(q-1)^{-\,2}\,\,\gamma(-\,1)\, \sum_{a,\,a_1,\,a_2} (\alpha^{-\,1}\,\,\gamma^{-\,2})\,(a)\,\,\gamma(a_1a_2)\,\,\bar{\psi}\big(a^{-\,1}(a_1+a_2)\big)\,\,\mu(a_1)\,\,\psi(a$$

le calcul de $\chi_{\Lambda}(b(\gamma))$ est analogue et est laissé au lecteur. La démonstration de la proposition 2 est ainsi terminée.

Remarque 1. Soit χ un caractère de G tel que $\chi(e)=1$. Un tel caractère définit un homomorphisme d'algèbres de A_{α} dans C, comme on l'a déjà remarqué, c.f. [2]. On a donc

$$\chi(b(\gamma_1)) \chi(b(\gamma_2)) = \chi(b(\gamma_1)b(\gamma_2)),$$

pour γ_1 , $\gamma_2 \in X$, et la relation (5) du théorème 1 donne ainsi lieu à l'identité suivante:

$$(5)^{\chi} \qquad \chi(b(\gamma_1)) \chi(b(\gamma_2)) = q^{-1}(q-1)^{-1} \delta(\alpha \gamma_1 \gamma_2) + q^{-1}(q-1)^{-2}(\alpha \gamma_1 \gamma_2) (-1) g(\alpha \gamma_1 \gamma_2) \sum_{\gamma} \gamma(-1) g(\gamma_1 \gamma^{-1}) g(\gamma_2 \gamma^{-1}) \chi(b(\gamma))$$

pour γ_1 , $\gamma_2 \in X$, sommation sur $\gamma \in X$.

Remarque 2. En spécialisant la remarque 1, pour $\chi = \chi^q_{\mu}$ (resp. $\chi = \chi_{\mu,\nu}$, resp. $\chi = \chi_{\Lambda}$) avec $\mu \in X$ tel que $\mu^2 = \alpha$ (resp. avec $\mu, \nu \in X$ tels que $\mu \neq \nu$ et $\mu \nu = \alpha$, resp. avec $\Lambda \in Y$ tel que $\Lambda \neq \Lambda^q$ et $\lambda = \alpha$) et en appliquant la proposition 2, on obtient les identités suivantes:

$$(5)_{\mu}^{q} \qquad g(\gamma_{1}\mu)^{2} g(\gamma_{2}\mu)^{2} = q(q-1) \delta(\gamma_{1}\gamma_{2}\mu^{2})$$

$$+ (q-1)^{-1} g(\gamma_{1}\gamma_{2}\mu^{2}) \sum_{\gamma} g(\gamma_{1}\gamma^{-1}) g(\gamma_{2}\gamma^{-1}) g(\mu\gamma)^{2}, .$$

resp.

$$\begin{array}{ll} (5)_{\mu,\nu} & g(\gamma_1\mu) \; g(\gamma_1\nu) \; g(\gamma_2\mu) \; g(\gamma_2\nu) \; = \; q(q-1) \; \delta(\gamma_1\gamma_2\mu\nu) \; (\mu\nu) \; (-1) \\ & + \; (q-1)^{-1} \; g(\gamma_1\gamma_2\mu\nu) \sum_{\gamma} g(\gamma_1\gamma^{-1}) \; g(\gamma_2\gamma^{-1}) \; g(\mu\gamma) \; g(\nu\gamma) \; , \end{array}$$

resp.

$$(5)_{\Lambda} \qquad G(\gamma_1^*\Lambda) G(\gamma_2^*\Lambda) = q(q-1) \delta(\gamma_1\gamma_2\lambda) \lambda(-1) - (q-1)^{-1} g(\gamma_1\gamma_2\lambda) \sum_{\gamma} g(\gamma_1\gamma^{-1}) g(\gamma_2\gamma^{-1}) G(\gamma^*\Lambda),$$

pour γ_1 , $\gamma_2 \in X$, sommation sur $\gamma \in X$.

Remarque 3. On observe que les identités $(5)_{\mu,\nu}$ [resp. $(5)_{\Lambda}$] considérées pour tous les $\mu, \nu \in X$ [resp. $\Lambda \in Y$] contiennent l'identité $(5)_{\mu}^{q}$ comme cas particulier « dégénéré », correspondant à $\mu = \nu$ [resp. $\Lambda = \Lambda^{q}$, $\Lambda = \mu \circ N$].

Remarque 4. Pour tout $\beta \in X$, on a $\delta(\beta)$ $g(\beta) = -1$. Les identités peuvent donc s'énoncer sous la forme suivante:

$$(5)_{\mu,\nu} \qquad (q-1)^{-1} \sum_{\gamma} g(\gamma_1 \gamma^{-1}) g(\gamma_2 \gamma^{-1}) g(\mu \gamma) g(\nu \gamma)$$

$$= \frac{g(\gamma_1 \mu) g(\gamma_1 \nu) g(\gamma_2 \mu) g(\gamma_2 \nu)}{g(\gamma_1 \gamma_2 \mu \nu)} + q(q-1) \delta(\gamma_1 \gamma_2 \mu \nu) (\mu \nu) (-1),$$

pour tous $\gamma_1, \gamma_2, \mu, \nu \in X$, sommation sur $\gamma \in X$, et

$$(5)_{\Lambda} - (q-1)^{-1} \sum_{\gamma} g(\gamma_1 \gamma^{-1}) g(\gamma_2 \gamma^{-1}) G(\gamma^* \Lambda)$$

$$= \frac{G(\gamma_1^* \Lambda) G(\gamma_2^* \Lambda)}{g(\gamma_1 \gamma_2 \lambda)} + q(q-1) \delta(\gamma_1 \gamma_2 \lambda) \lambda(-1),$$

pour tous $\gamma_1, \gamma_2 \in X, \Lambda \in Y$, sommation sur $\gamma \in X$, λ dénote la restriction de Λ à F^{\times} .

Nous reconnaissons ainsi les identités (i) et (iv) du théorème 1 de notre publication [4], dont nous rappelons l'énoncé ci-dessous, et nous voyons bien comment la série principale (resp. discrète) de caractères $\chi_{\mu,\nu}$ (resp. χ_{Λ}) amène aux identités de Barnes (i) (resp. (iv)). Ceci termine la première partie de cet article.

RAPPEL DU THÉORÈME 1 DE [4]. Soit F (resp. F_2 , resp. F_4) le corps fini à q (resp. q^2 , resp. q^4) éléments; on note F_2^{\times} (resp. F_4^{\times}) le groupe multiplicatif de F_2 (resp. F_4), et on se fixe un caractère non-trivial exp du groupe additif F^+ . Pour un caractère α de F^{\times} , on pose

$$G_1(\alpha) = g(\alpha) = \sum_a \alpha(a) \exp(a),$$

où l'on somme sur tous les $a \in F^{\times}$. On note Tr_2 (resp. Tr_4) la trace de F_2 (resp. F_4) sur F, et l'on note N (resp. $N_{4/2}$) la norme de F_2 sur F (resp. F_4 sur F_2). Pour un caractère Λ de F_2^{\times} , on note $G_2(\Lambda)$ la somme de Gauss suivante

$$G_2(\Lambda) = \sum_{x} \Lambda(x) \exp (\operatorname{Tr}_2(x))$$
,

où l'on somme sur tous les $x \in F_2^{\times}$. De manière analogue, pour un caractère Φ de F_4^{\times} , on pose

$$G_4(\Phi) = \sum_z \Phi(z) \exp (\operatorname{Tr}_4(z)),$$

où l'on somme sur tous les $z \in F_4^{\times}$. On a les cinq identités suivantes:

(i) Pour quatre caractères $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ de F^{\times} , on a

$$\begin{split} &(q-1)^{-1} \sum_{\alpha} g(\alpha_1 \alpha) \ g(\alpha_2 \alpha^{-1}) \ g(\alpha_3 \alpha) \ g(\alpha_4 \alpha^{-1}) \\ &= \frac{g(\alpha_1 \alpha_2) \ g(\alpha_2 \alpha_3) \ g(\alpha_3 \alpha_4) \ g(\alpha_4 \alpha_1)}{g(\alpha_1 \alpha_2 \alpha_3 \alpha_4)} \ + \ q(q-1) \ \delta(\alpha_1 \alpha_2 \alpha_3 \alpha_4) \ (\alpha_1 \alpha_3) \ (-1) \ , \end{split}$$

ici l'on somme sur les caractères α de F^{\times} ;

(ii) pour un caractère Φ de F_4^{\times} , on a

$$- (q+1)^{-1} \sum_{\Lambda} G_4(\Phi(\Lambda \circ N_{4/2})) = \frac{G_4(\Phi^{q+1})}{g(\varphi)} + q(q-1) \, \delta(\varphi) \, \Phi(\varepsilon_0) \,,$$

ici l'on somme sur les caractères Λ de F_2^{\times} dont la restriction à F^{\times} soit triviale, ϵ_0 dénote un élément de F_2 tel que $\epsilon_0^{q-1}=-1$; ϕ dénote la restriction de Φ à F^{\times} ;

(iii) pour Λ_1, Λ_2 caractères de F_2^{\times} , on a

$$\begin{split} & (q-1)^{-1} \sum_{\alpha} G_2 \! \left(\Lambda_1 (\alpha \circ \mathbf{N}) \right) G_2 \! \left(\Lambda_2 (\alpha \circ \mathbf{N})^{-1} \right) \\ & = \frac{G_2 \! \left(\Lambda_1 \Lambda_2 \right) G_2 \! \left(\Lambda_1 \Lambda_2^q \right)}{g \! \left(\lambda_1 \lambda_2 \right)} + q \! \left(q - 1 \right) \delta \! \left(\lambda_1 \lambda_2 \right) \lambda_1 \! \left(- 1 \right), \end{split}$$

ici λ_1 (resp. λ_2) désigne la restriction de Λ_1 (resp. Λ_2) à F^{\times} , l'on somme sur tous les caractères α de F^{\times} ;

(iv) pour α_1, α_2 caractères de F^*, Λ caractère de $F_2^*,$ on a

$$\begin{split} &-(q-1)^{-1}\sum_{\alpha}g(\alpha_{1}\alpha)\;g(\alpha_{2}\alpha)\;G_{2}\big(\Lambda(\alpha\circ\mathbf{N})^{-1}\big)\\ &=\frac{G_{2}\big(\Lambda(\alpha_{1}\circ\mathbf{N})\big)\;G_{2}\big(\Lambda(\alpha_{2}\circ\mathbf{N})\big)}{g(\alpha_{1}\alpha_{2}\lambda)}\;+\;q(q-1)\;\delta(\alpha_{1}\alpha_{2}\lambda)\;\lambda(-1)\;, \end{split}$$

ici λ désigne la restriction de Λ à F^{\times} , l'on somme sur tous les caractères α de F^{\times} ;

(v) pour Λ_1 , Λ_2 caractères de F_2^{\times} , on a

$$(q+1)^{-1} \sum_{\Lambda} G_2(\Lambda_1 \Lambda) G_2(\Lambda_2 \Lambda)$$

$$= \frac{g(\lambda_1) g(\lambda_2) G_2(\Lambda_1 \Lambda_2)}{g(\lambda_1 \lambda_2)} + q(q-1) \delta(\lambda_1 \lambda_2) \lambda_1(-1) (\Lambda_1 \Lambda_2) (\varepsilon_0),$$

ici λ_1 (resp. λ_2) dénote la restriction de Λ_1 (resp. Λ_2) à F^{\times} , l'on somme sur les caractères Λ de F^{\times}_2 dont la restriction à F^{\times} soit triviale, ϵ_0 désigne un élément de F^{\times}_2 tel que $\epsilon_0^{q-1}=-1$.

Les cinq identités sont des cas particuliers d'une identité plus générale qui fait l'objet du théorème 2 de notre publication [4]. La démonstration se base sur l'étude de certaines algèbres commutatives de degré 4 sur F et fait intervenir le groupe symétrique des permutations de quatre éléments ainsi que le groupe diédrale D_4 du carré. L'identité générale s'énonce pour chaque $\sigma \in D_4$, mais elle ne dépend que de la classe de conjugaison de σ . Les cinq classes de conjugaison de D_4 fournissent les cinq identités de Barnes.

Dans la suite de cet article nous calculons la trace de l'algèbre A_{α} (§ 5) et nous utilisons les identités de Barnes (i) et (iv) pour exhiber les homomorphismes d'algèbres de A_{α} dans ${\bf C}$ indépendamment de la table des caractères (§ 6). La comparaison de leur somme avec la trace montre que la liste des homomorphismes est complète et sans répétitions.

\S 5. Calcul de la trace de l'algèbre A_lpha

On note T_{α} la trace de l'algèbre A_{α} , $\alpha \in X$ fixé. Soit B la base de A_{α} formée par l'unité et les $b(\gamma)$, avec $\gamma \in X$; pour $b \in B$ et $a \in A_{\alpha}$, on définit le coefficient $\langle b' \mid a \rangle$ dans \mathbb{C} par la condition suivante:

$$a = \sum_{b \in B} \langle b' | a > b;$$

on a, pour tout $a \in A_{\alpha}$,

$$T_{\alpha}(a) = \sum_{b \in B} \langle b' \mid ab \rangle.$$

On obtient

$$T_{\alpha}(1) = \dim_{\mathbf{C}}(A_{\alpha}) = q$$