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60 A. HELVERSEN-PASOTTO

ie. les e,,x e X, forment un systtme d’idempotents, deux & deux ortho-
gonaux, de somme 1. Chaque e,, a € X, est un idempotent central, ie. e,
est dans le centre de I'algébre du groupe. Posons

H = CU.
On définit un caractére o de H par
(M) (cuw) = alc) Mu), pour ceC,ueU.
Posons
V., = Ind§(a)), pour tout oeX;

cette représentation induite se réalise dans Iidéal a4 gauche C[G]e,e,
et 'on a

V=aV,.

acX

L’algebre d’entrelacement A, de V, s’identifie 4 Palgébre e,e,C[Gle,e, qui
est égale a ¢,C[G]e,e, , d’ou

A= @ A4,.

acX

Dans la suite, on se fixe un caractére central o et I'on étudie Palgébre A,.

§ 3. DESCRIPTION DE A, EN TERMES DE GENERATEURS ET RELATIONS

Posons e = e, avec O = o, on a alors 4, = e C[G] e = Endg(Ind (0)).
Soit R un systéme de représentants des doubles classes de G suivant H.
On sait que I'ensemble

B = {ere|reR,ere # 0}

forme une base de A4, en tant qu’espace vectoriel sur C. Pour h, ' € H, r € R,
Ton a
e hrh'e = O(hh) ere .

Pour tout g € G, on définit un caractére g6 de g H g~ par (g0) (x) = 6(g~ 'xg),
si x € g Hg~ 1. On sait que, pour tout g € G, la condition ege # 0 équivaut a

e/HngHg_l =4 G/Hr\gHg—1 .

Rappelons que
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REPRESENTATION DE GELFAND-GRAEV 61

1 b a O y
u(b)=<0 1), pour beF+,c(a)=<0 a)’ pour a€eF™,

U= {ub)|beF*}et C={ca)|acF *1 et introduisons, en plus, les nota-
tions suivantes: «

0 1
d(a)=<g (1)>, pour aeF*,D = {da)|aeF*} et z=<1 O>'

On a la décomposition de Bruhat

(1) G=CUD u CUDzU

et on vérifie facilement qu’on a, parmi d’autres, les relations suivantes,
(2) d(a) u(b) = u(ab) d(a),ac F*,beF",

(3) zua)z = cla)d(—a ) u(—a)zu(a ), ae F™,

qui nous servirons dans la suite.

La réunion de D et Dz forme un systéme de représentants des doubles
classes de G suivant H = CU, comme on le remarque a l'aide de (1). On
calcule

(d(a)8) (c u(b)) = O(d(a") c u(b)d(a))
= O(cu(a™'b)), dapres (2),
= afc) Wa™'b),

pour ae F*,ceC et beF*. Or dHd ' = H, pour tout deD et le
calcul précédent montre que, pour d € D,

0/y = d0/y sietseulementsi d = 1.

Pour de D, on a donc ede # 0, si et seulement si d = 1. Examinons
maintenant le cas d’un représentant r € Dz; on a r = d(a)z, avec a€ F™, et

rHr ' = dazCUzda ')=CzUz = {(Z 0>
a

aeF",beF““},
d’ou
HnrHr 1 =C.

Mais 6/, = dz /. pour tout deD. On a donc edze # 0, pour tout
deD. Posons B = {e¢} U {edze|de D}. Alors B est une base de I'espace
vectoriel sous-jacent a A,. En particulier, on a
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dim(4,) = ¢ etdonc dimg(d) = g(g—1);

cela correspond bien aux résultats plus généraux de [9] et [11].
L’¢lément e est l'unité de Ialgébre A,, dans la suite on le désignera
aussi par 1; pour tout ae F *, on pose

bla) =eda)ze.
On définit le symbole de Kronecker & pour ae F* par

1 si a=1,
d(a) = -
0 si a#1.

PROPOSITION 1.  L’unité et les éléments b(a), avec aeF*, forment une
base de lespace vectoriel sous-jacent a Palgébre A,. La structure d’algébre
s’exprime par la relation suivante :

(4) b(ay)b(a,)
=q ! o(asa, 1) ofay) + g1 Z \lf(a(al +a,)—a” 1)05(“_ 1)b(_a2a1a2) )

ou on somme sur tous les ae F* et ou a,,a,eF~*.

En effet, on a, pour a,, a, € F*,
b(ay)b(ay) = ed(a,)z ed(a,)ze = ed(aq)ze,d(a,)ze
= g~ ), ed(a,)2\(—b)u(b)d(ar)ze (beF [)
b

g~ ‘edaz)d(a; az Ve + ¢~ Y, \(—a) ed(a;)zu(@)d(ay)ze

ae F*. Mais cay)e, = ofaye, et
d(ay)zu(a)d(ay)z = c(a)u(a™*a,)d(—a*a a,)zu(a 'a,) ;)
d’apres (2) et (3). Il s’ensuit que
blay)b(a,)
= g ' 8aytay)a(a;) + g1 Za: U(—a+a"Ya, +a,))a)ed(—a2a,a,)ze
=g '8a;ta)ua)) + g1 ; Y(a(a; +az)—a ™ Yo(a™Y)b(—aa,a,),

ou 'on somme sur a € F*. | C.Q.F.D.
On remarque en particulier que l'algébre A est commutative, ce qui
correspond bien 4 la théorie générale, cf. [9], [11].
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Par une « transformation de Mellin », on introduit de nouveaux géne-
rateurs b(y) de 4,: on pose

b(y) = (g—1)"* >, v(@)ba),ae F*,ye X .

On a la formule d’inversion
b(a) = ) y(a™ ") b(y)
Y

ou 'on somme sur vy € X.
La relation (4) se transforme de la maniére suivante:

b(yy) (v2)
= (q— 1)—2 z v1(ay)ya(a,) bla)b(a,), aq,a; € F*,

ai,a2 .

= q Yg—1)"% ) (ay1Y2) (@)

+q Yg—-1)"% Y lala,+ay)—a” Yo(a™ My (ar)ya(a)b(— a’a,a,)

= q_l(q_l)_l 0(0ty17Y2)
+ g Mg—1D)"% Y lalay +ax)—a" oda yi(ar)ya(a)y(—aar tay Hbly)

=g Mg—1)"" 3(ary,v2)
+q g—1"> ), la;+ay+a) (@yyyl) (1)

a,ay,az,y

(ay1Y2) (@) (Y1Y—1) (ay) (v2y~ 1) (a2)b(y)
=q l(q —1) ! o(oy1Y2)
+ g7 HMg—1)"2(ory1y2) (—Dglory1v2) Y, Y(— Dglyay ™ Daly2y™ Hb(y) ;

ici 'on somme sur a,a;,a,€ F* et ye X. Le symbole de Kronecker & est
defini, pour B € X, par

8(B) =
0 si B#1.

La somme de Gauss g(B) est définie, pour tout B € X, par
gB) = > W(a)B(a),ae F* .

Le résultat des calculs ci-dessus s’énonce maintenant sous la forme suivante :
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THEOREME 1.
base de lespace vectoriel sous-jacent a lalgébre A, .

A. HELVERSEN-PASOTTO

L’unité et les éléments

s’exprime par la relation suivante :

(5)

pour Y.,Y,€ X; on somme sur yeX.

b(y),

avec

b(y,) b(y,) = g "(g—1)"" 8(ayy v2)
+ g Mg—1)" 2 (oyyv2) (= 1) gloyyv2) Y, v(—1) gly1y Dgly2y ™ Hb(y)

§4. RAPPEL DE LA TABLE DES CARACTERES DE G
CALCUL DES VALEURS DES CARACTERES DE G SUR LES GENERATEURS DE A,

vye X, forment une
La structure d’algébre

Les caractéres sont en « dualité » avec les classes de conjugaison. Cor-
respondant aux quatre «types» de telles classes, il y a quatre « séries »
de caractéres. Toute la situation se résume dans le tableau suivant:

x ~ x4

caractéres T ot T v i
classes de conjugaison Lvex Ney
para- WFV €
X neX neXx dul modulo
repré- diviseurs metres modiro A ~ A4
sentant élémentaires (1, V) ~ (U, )
& B X—a X 2 2
5 u Py aekl u(a) q n(a) (g+1) po(a) (g—1) Aa)
1 ,
(g “) g aeF~ u(a) 0 wo(a) — Aa)
a _
1 a, d e F*
a 0 a+d u(a) v(d)
X—a)(X-
(o d) (X-a)(X=d) modulo Wad) | w@d) L) v L
(@, d) ~ (d, a)
1 xeE*
-1 Te() X —Tr(x)X+N(x) modulo u(NG) | —p(NE)) 0 —(A+A9) (v
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