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L'Enseignement Mathématique, t. 32 (1986), p. 57-77

REPRÉSENTATION DE GELFAND-GRAEV
ET IDENTITÉS DE BARNES

LE CAS DE GL2 D'UN CORPS FINI

par Anna Helversen-Pasotto

§ 1. Introduction

Le but de cet article est d'expliquer comment l'étude de la représentation

de Gelfand-Graev du groupe GL2 d'un corps fini nous a amenés aux

identités de Barnes (i) et (iv) de notre publication [4] de 1978. Une autre

approche — par modèles de Weil — a été trouvée par J. Soto Andrade

en 1979 et est publiée dans [7]. Cette dernière a été adaptée au cas d'un

corps local non-archimédien par W. Li, c.f. [8].
Voici une description de notre méthode: Soit F le corps fini à q

éléments et G GL(2, F) le groupe général linéaire des 2 x 2 matrices

inversibles à coefficients dans F. Pour b e F, posons

Soit \|/ un caractère additif non-trivial de F à valeurs complexes. On pose

X(u(b)) \|f(b), pour tout b e F, et

cette représentation induite porte le nom de « représentation de Gelfand-
Graev » dans un cadre plus général, c.f. [9] et [11], et l'on sait que son

algèbre d'entrelacement A EndG(F) est commutative; elle s'identifie à

une sous-algèbre de l'algèbre du groupe C [G]; ici C désigne le corps des

nombres complexes.
Nous décomposons l'algèbre A, suivant les caractères centraux de G,

en somme directe de q — 1 sous-algèbres Aa et nous déterminons la structure
de chaque composante en termes de générateurs et relations; ceci met
d'ailleurs la commutativité en évidence. Une première description est donnée

V IndgO.);
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en proposition 1, ici les générateurs sont paramétrés par les éléments du

groupe multiplicatif du corps F.

Par une « transformation de Mellin », nous introduisons de nouveaux
générateurs, paramétrés par les caractères multiplicatifs du corps F. La
structure de l'algèbre Aa est donnée par un seul type de relations (5),

c.f. théorème 1.

La table des caractères du groupe G nous permet de déterminer les

homomorphismes d'algèbres de Aa dans C; les relations (5) donnent ainsi
lieu à des identités de sommes de Gauss; la série principale (resp. discrète)
amène à l'identité (i) (resp. (iv)) de notre publication [4].

Dans une deuxième partie de ce travail (§§ 5 et 6) nous changeons de

point de vue :

La démonstration directe des identités (i) et (iv) de notre publication [4],
nous permet de nous « débarrasser » de l'usage de la table des caractères

de G. Nous parachutons la définition de certains « homomorphismes » en

donnant leurs valeurs sur les générateurs et nous démontrons qu'il s'agit
effectivement d'homomorphismes d'algèbres de A dans C en vérifiant que
la relation (5) est respectée, ce qui revient à utiliser les identités de Barnes (i)

et (iv).

* Un calcul de la trace de Aa nous permet ensuite de prouver que les

homomorphismes ainsi obtenus constituent une liste complète et sans

répétitions des homomorphismes d'algèbres de Aa dans C.

Une méthode partiellement analogue a été appliquée au cas de GL(3, F)

par B. Chang dans [1]. L'auteur détermine des générateurs et relations

pour l'algèbre d'entrelacement A3 de la représentation de Gelfand-Graev
de GL(3, F), mais n'introduit pas de transformation de Mellin dans la suite.

Il utilise la table des caractères de GL(3, F) pour déterminer les

homomorphismes d'algèbres de A3 dans C.

Les relations sont vérifiées avec beaucoup de calculs, derrière lesquels se

cachent sans doute des identités.

Une méthode différente a été appliquée au cas de GL(3, F) dans ma

publication [6] qui ne concerne que le cas de la série discrète. Une
transformation de Mellin a été utilisée dans une situation différente, ce qui
fait apparaître des identités de sommes de Gauss « du type de Barnes »

pour la dimension trois. Ces identités devraient implicitement être contenues

dans la partie des calculs de Chang concernant la série discrète.

Comme en témoignent plus en détail les introductions de [4], [5] et [6],
une grande partie des idées sous-jacentes à ce travail est due à P. Cartier.
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§ 2. Représentation de Gelfand-Graev de G

ET DÉCOMPOSITION DE SON ALGEBRE D'ENTRELACEMENT A

SUIVANT LES CARACTERES CENTRAUX DE G

Nous gardons les notations de l'introduction, F désigne le corps fini

à q éléments, Fx(resp. F+) désigne le groupe multiplicatif (resp. additif)

de F et G GL(2, F). Nous fixons, une fois pour toutes, un caractère

non-trivial \|/ de F+. La représentation de Gelfand-Graev F de G est

définie par

tout be F. Nous allons étudier la structure de l'algèbre d'entrelacement

A EndG(F). A ce propos, il est commode de travailler avec des idem-

potents dans l'algèbre C[G] du groupe G.

Posons ex: q'1 E Mw 1)w. On a ex — ex et u ex h(u)ex ex u, pour

tout ueU. La représentation induite V se réalise dans l'idéal à gauche

C[G]ex engendré par l'idempotent ex et l'algèbre d'entrelacement A s'identifie

à la sous-algèbre exC[G]ex de l'algèbre du groupe.
Soit X le groupe des caractères de Fx. Pour oc e X, on définit un

caractère du centre C de G, qu'on désignera par le même symbole oc, en

posant

V Indg(X),

(o 1)' ^our ^6et ^our

ueU

Posons

e« : te -1) 1E a(c *)c> P°ur a G X •

On remarque que

ea9 ea ea. 0, si oc # oc', a, a' e A

et que

E ea i ;
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i.e. les ea,CLEX, forment un système d'idempotents, deux à deux
orthogonaux, de somme 1. Chaque ea, a eX, est un idempotent central, i.e. ea

est dans le centre de l'algèbre du groupe. Posons

H CU.

On définit un caractère aiX de H par

(aÀ,) (eu) a(c) À,(w), pour c e C,u e U

Posons

Fa Ind£(aÀ,), pour tout a e X ;

cette représentation induite se réalise dans l'idéal à gauche C [G] ea %
et l'on a

F © Va.
aeX

L'algèbre d'entrelacement Aa de Va s'identifie à l'algèbre eaexC[G]eaex qui
est égale à exC[G]eaex, d'où

A © Aa.
aeX

Dans la suite, on se fixe un caractère central a et l'on étudie l'algèbre Aa.

§ 3. Description de Aa en termes de générateurs et relations

Posons e ee avec 0 atX, on a alors Aa e C[G] e EndG(lndg(0)).
Soit R un système de représentants des doubles classes de G suivant H.
On sait que l'ensemble

B {ere | r e R, ere ^ 0}

forme une base de Aa en tant qu'espace vectoriel sur C. Pour h,h'eH,re R,
l'on a

e hrh'e Q(hh') ere

Pour tout g e G, on définit un caractère gQ de g H g'1 par (#0) (x) Q(g~1xg),
si xeg Hg'1. On sait que, pour tout g e G, la condition ege ^ 0 équivaut à

Q/HngHg—1 G ^/HngHg~ 1 •

Rappelons que
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11(b) Q J), pour feeF+,c(a) (^ pour aeF*,

U {«(6) | b e F + } et C {c(a) | a e Fx} et introduisons, en plus, les nota-

tions suivantes :

d(a) pour a 6 Fx, D{d{a)
\

a

eFx} et z ^ Q

On a la décomposition de Bruhat

(1) G CU D u CU D zU

et on vérifie facilement qu'on a, parmi d'autres, les relations suivantes,

(2) d(a) u(b) u(ab) d(a), a e Fx,b e F+

(3) z u(a) z c(a) d(-a~2) u(-a) z w(a_1), aeFx

qui nous servirons dans la suite.

La réunion de D et Dz forme un système de représentants des doubles

classes de G suivant H CU, comme on le remarque à l'aide de (1). On

calcule

(d(a)Q) (c u(b)) Q(d(a~x) c u(b)d(a))

0(c u(a_1ù)), d'après (2),

a(c)\l/(a-16),

pour a e Fx,c e C et beF+. Or dHd_1 H, pour tout deD et le

calcul précédent montre que, pour deD,

0/H dQ/H si et seulement si d 1.

Pour deD, on a donc ede ^ 0, si et seulement si d 1. Examinons

maintenant le cas d'un représentant r e Dz ; on a r d(a)z, avec a e Fx, et

a 0

b a
aeFx,beFHrHr-1 d(a)z CU zdia"1) CzU z

d'où

H nrHr'1 C.

Mais 0/c dz 0/c pour tout deD. On a donc edze ^ 0, pour tout
deD. Posons B {e} u {e dze | d e D}. Alors B est une base de l'espace

vectoriel sous-jacent à Aa. En particulier, on a
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dimc(^4a) q et done dimcfi4)

cela correspond bien aux résultats plus généraux de [9] et [11],
L'élément e est l'unité de l'algèbre A„, dans la suite on le désignera

aussi par 1 ; pour tout a eFx,on pose

b(a) e e

On définit le symbole de Kronecker ô pour par

il si 1,

0 si a ^ 1.

Proposition 1. L'unité et les éléments avec e Fx,
base de l espace vectoriel sous-jacent à l'algèbre Aa. La structure d'algèbre
s'exprime par la relation suivante :

(4) b(a1)b(a2)

q
1

S(a1a2 *) afüq) + g"1 £ +a2) —
a

où l'on somme sur tous les a e F* et où a1,a2eFx.
En effet, on a, pour a1, a2 e Fx,

Hai)b(a2) ed(ai)zed(a2)ze ed(a1

Z ed(al)z^(-b)u(b)d(a2)ze (beF+)
b

q 1ec(a2)d(a1 a2 *)e + q~1 Y, M~a) ed(a1)zu(a)d(a2)ze
a

a g Fx. Mais c(a2)ea oc(a2)ea et

d(a1)zu(a)d(a2)z c{a)u(a~1a))d(-'

d'après (2) et (3). Il s'ensuit que

b(ai)b(a2)

q'1 SCar^zWai) + q~1YJty(-a + a-1{a1+a2))a{a)ed(-a-2a1a2)ze
a

q
1 3(a11 fl2)a(ßi) + q'1 £ ty(a(a1 + ci2) — — a2^^),

a

où l'on somme sur ae Fx. C.Q.F.D
On remarque en particulier que l'algèbre A est commutative, ce qui

correspond bien à la théorie générale, c.f. [9], [11],
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Par une « transformation de Mellin », on introduit de nouveaux

générateurs b(y) de Aa : on pose

b{y) E y(a)b(a
a

On a la formule d'inversion

b{a) Ey^"1) b(y)
y

où l'on somme sur y e X.
La relation (4) se transforme de la manière suivante :

b{yi) (y2)

(<?-l)~2 E Yi(ßi)Y2(a2) è(ôi)Ka2),
ai,a2

5"1(«-l)"2E(a'YiY2) (a)
a

+ E *K«(ai + a2)-«_ 1)Yi(ai)Y2(a2)W-«2aia2)
a, ai,fl2

§(aYiY2)

+ q'Kq-l)"2 E + ^(ï)
a,ai,«2,y

-r'te-ir1 S(aYiY2)

+ 3_1(3-1)"2 E v|/(ai + a2 + a) (aYYiY2) (— 1)

a,ai,ai,y

(aYiY2) (<*) (YiY-1) («1) (Y2Y_1) (ß2)%)

g_1(«-l)_1 8(aYiY2)

+ 3_1(«-1) 2(aYiY2) —l)0(aYiY2) E Y(-1¥YiY"1)Ô'(Y2Y"1)WY) ;
y

ici l'on somme sur a, ax, a2 e F* et y e X. Le symbole de Kronecker 8 est

défini, pour ß e X, par

m
1 si ß 1,

0 si ß 1

La somme de Gauss g(ß) est définie, pour tout ß e X, par

0(ß) ZW ${a),aeF"
a

Le résultat des calculs ci-dessus s'énonce maintenant sous la forme suivante :
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Théorème 1. L'unité et les éléments b(y), avec y g X, forment une

base de l'espace vectoriel sous-jacent à l'algèbre Aa. La structure d'algèbre

s'exprime par la relation suivante :

(5) b(Yi) b(y2)

+ q~\q-iy2(ay^)(- 1) gia-hh) £ Y(— 1Y~ 1)^(y)
Y

pour y1, y2 g X ; on somme sur y g X.

§ 4. Rappel de la table des caractères de G

CALCUL DES VALEURS DES CARACTÈRES DE G SUR LES GÉNÉRATEURS DE Aa

Les caractères sont en « dualité » avec les classes de conjugaison.
Correspondant aux quatre « types » de telles classes, il y a quatre « séries »

de caractères. Toute la situation se résume dans le tableau suivant:

caractères Xq
V xA

classes de conjugaison

paramètres p e A peA

p, u e X
p F u

modulo
(p, u) ~ (u, p)

Ae Y

modulo
A ~ A9

représentant

diviseurs
élémentaires

(:
Il £5

£5

a e Fx n2(«) q p2(a) (q +1) pu(fl) (<7-l) Ma)

(: :)
1

(.X-a)2 a e Fx H2(û) 0 pu(fl) -Ma)

C9
1

(X-a) (X-d)

a, de Fx
a F d

modulo
{a, d) ~ (4 a)

Mad) Mad)
p(ûr) u(4)

+ p(4) u(ff)
0

/ 0 N(x) \
V-l Tr(x)J

1

X2-Tr(x)X+N(x)

xeEx
x $ Fx
modulo
X ~ xfl

H(NW) -H(NW) 0 -(A + Aq) (A
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Ici E désigne le corps fini a q2 éléments, Tr (resp. N) dénote la trace

(resp. norme) de E sur F, i.e. pour xeE, on a

Tr(x) x + xq et N(x) x xq,

Y désigne le groupe des caractères de E x.

Une des nombreuses références pour le calcul des caractères de G est [9].

Pour tout caractère x de G, nous désignons aussi par % l'extension par
linéarité de x à C [G] et nous nous proposons d'en calculer la restriction

à la sous-algèbre Aa. Pour l'unité e de Aa, on obtient

l(e) x(e9) PETT Z 0(fe_1)xW <6,Resgx> <Indg0,x>
I H I heH

et d'une manière explicite :

X(e) q'Kq-l)'1 £ â(a) \j/(b) x(c(a) u(b)), aeFx,beF+ ;

a,b

or la suite des diviseurs élémentaires de c(a)u(b) est 1, (X — a)2, si b / 0,

et X — a, X — a, si b 0, pour a e Fx, b e F+, d'où:

%(e) 4"\<1~ 1)'"1 E ü(0) MP) ~«)2) + E &(fl) X(X~a,X-a))
a,b± 0 a

a, be F; mais \|/ étant un caractère non-trivial de F+, on a

£ y\f(b) — 1,b e F, d'où
bf 0

X(e) q-'iq-iy1Z ôc(a) h(X-a,1, (X-a)2)] a e F*
a

En utilisant la table des caractères, on obtient, pour \i,v e X,

xi(e) 0, x£(e) S(a_1 n2X Xn,u(e) 5(OTV)

et Xa(^) ô(a-1X), où X dénote la restriction de A à fx, pour A e Y.

D'après [2], Corollaire 1.2, les homomorphismes d'algèbres de Aa dans C
sont donnés par les caractères x de G, tels que %(e) 1. Nous calculons,-
dans la suite, leurs valeurs sur les générateurs b{y) de Aa avec y e X.

Lemme 1. Soit x un caractère de G et y e X ; on a

x(%))

q~\q-ï)~2r(-l) Z (a-1Y~2)(a)Y(c) Wa_1*>)x(l>-X'2-&X" + c),
a, ceF x
beF +

ici a dénote le caractère central fixé.



66 A. HELVERSEN-PASOTTO

En effet, on a %(b(y)) (4 — 1)
1 Z ï(a)%(a)> a G ^ X

a

Or

ù(a) ed(a)ze q~2(q — l)-2 Z a(a1a2) + ^2)c(aiM^iM(a)zc(fl2M^2)
a\, a2,b\,b2

q~2(q-1)_1 S â(a1)\i/(è1+b2)c(a1)M(fc1)i(a)zM(b2), a^aie Fx,fc1,b2eF+
ai,bi,b2

La suite des diviseurs élémentaires de c^) w(^1) d(a) z u(fr2) est égale à

1, X2 - a1(b1 + b2)X - afa, pour al5 a eFx, bx,b2e F + d'où

%(b(a)) q~1(q — l)~1 £ ä(ax) y\f(b) %(l, X2 — afioX — a\a), ax g Fx, ù g F+
ai, b

q-'iq-iy1 Z â(a1)^(ar1b)x(l,^2-^-«?«).«ie-FX'beF +
-

a i, b

On obtient donc

x(b(y)) q'\q-iy2Z y(a) ^(a^b) x(l X2
a,ai,b

q-^q-iy2Za(a T ') Y(- a i" 2c) ^(a r ^ Xd, *2 ~ *>* + c)
ai,c,b

q~\q-i)~2y(-i) Z (a_1 y~2)(«)y(c) t(«_1fc)x(i>
a,c,b

ce qui prouve le lemme 1.

Proposition 2. Les valeurs des caractères de G sur les générateurs

de A sont données par :

Xl(e)X,!(Wy)) 0,

Xl(e) 5(oc-V2),X^(Y)) «~I(«-l)_1S(a"V),y(-l)0(YH)2»

Xn,u(e) 5(a"V»).Xn,«(%)) 1)"^(a"V) (aY) (-1) 0(YH) 0(Y«),

XA(e) 5(a~ 'X), Xa(My)) -<T d"1 5(a"xX) (ay) (-1) G(y*A) ;

ici p, i), y g X, oc caractère central fixé, A e Y ; X dénote la restriction

de A à Fx et y* dénote le composé de y avec la norme de Ex

sur Fx ; la somme de Gauss G(Ay*) est définie par

G{Ay*)Z (aY*) (*) ^(Tr(x)) •

xgE x

Démonstration. Les valeurs sur l'unité e ont déjà été calculées au début

du paragraphe. De xid> X2-bX + c)p(c), pour tout b e ce F".

p e Xon déduit que xJ(My)) °> Pour tout
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D'après le lemme 1, on obtient

«(%))= q'^q-iy2y(-l) Z (et'1 y'2)
a,c,b

d'après la table des caractères, on a

X5(l ,X2-bX + c)

0

n(«ia2)

— |i(N(x))

SI X2-bX + c

(X — a)2 avec aeFx
(X — a1(X — a2)) avec al9 a2 e Fx, ^ a2

(X — x)(X — xq) avec xeEx—Fx

d'où

X&;(%))= qHq -l) 2 y( — 1) x Z (a 1 f 2(a)) Y(ßia2) Vi + «2)) H(«i «2)
^ a

a 1 =^«2

- ç-^-l)"2 y(— 1)4 Z (a"1 Y~2) (a) y(N(x)) \j/(a~'Trfx^Nlx)),
a

xfxi

ici l'on somme sur a, al9 a2e Fx et x e Ex. On ne change rien à la valeur
de %q(b(y)) si dans les sommations on enlève la restriction a1 ^ a2 et

x ^ xq. Après un changement d'indices de sommation, l'on obtient

X^(y)) q'Kq-iy2 Y(-l)h Z (a"1 H2) («) Y(«i«2) t(«i + «2)

- Z (<*~V) («) Y(N(x))\|/(Tr(x)) n(N(x))), x

q Hq-Ï) 1 Y(-1) 5(a 1 p2) - YP)2-G((YP)*)]

où G((yh)*) Z (YP) (N(x)) \|/(Tr(x)). D'après le théorème de Davenport
xeE x

et Hasse [3], on a G((yp)*) — ^(yji)2, d'où

%l(b{yj) q'Ki-ir1Y(-I) 5(a_V2) YIO2 •

Le calcul de u(My)) est plus facile, on obtient, d'après le lemme 1 et
la table des caractères
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%H,JHy)) q Hq-l) 2 y(— 1) E (a 1
Y 2) (a) yOg^) \|i(a 1(a1+a2))\^a1)

a,ai,a2

a, al9 a2 e Fx

=«-1(«-1)"2(yhu)(-1) E (a"Vu)(a)(Yn)(c1)(yu)(c1)*l/(c1 + c2),
a,ci,C2

a, c1,c2eFx
y) (-1) 8(a" Vu) ^(yjli) gf(yi)) ;

le calcul de Xa(^(y)) est analogue et est laissé au lecteur. La démonstration
de la proposition 2 est ainsi terminée.

Remarque 1. Soit % un caractère de G tel que %(e) 1. Un tel caractère
définit un homomorphisme d'algèbres de Aa dans C, comme on l'a déjà
remarqué, c.f. [2]. On a donc

x(H'Yi))x(Hy2))x(b(Yi)b(y2)),

pour y l7 y2e X, et la relation (5) du théorème 1 donne ainsi lieu à

l'identité suivante :

(5)z x(b(ji)) x(b(y2)) q~\q-
+ q~\q-i)"2(aYiY2) (-1) sr(ayiy2) E y(- 0(yiY~ ')

Y

pour Yi, y2 e X, sommation sur y e X.

Remarque 2. En spécialisant la remarque 1, pour % %q (resp. % %n,v,

resp. x Xa) avec tel que p2 oc (resp. avec p, v e X tels que

p^v et pv oc, resp. avec A e Y tel que A ^ Aq et X a) et en

appliquant la proposition 2, on obtient les identités suivantes :

(5)« g{yiv)2 qiyiv)2 i) 8(YIY2I-I2)

+ («-!)"1 â,(YiY2H2)Eâ'(YiY-1)9,(Y2y_I)â,(^Y)2ï
Y

resp.

(%, v g(Yin)f?(ïiv) éf(y2n) 0(y2v) q(q -1) 5(yiY2hv) (hv) -1)
+ (q-1)-1 g{y%y2nv)E S(YiY_1) 0<Y2Y~ ') i?(^Y) g(vY).

Y

resp.

(5)a G(y *A) G(y fA) q(q -1) öfyiYz*-) K 1)

-{q-1)"1 g(y1X2^)E0(yiY~ *) g(y*A)
Y

pour Yi, y2 e X, sommation sur y e AT.
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Remarque 3. On observe que les identités (5)M,U [resp. (5)A] considérées

pou, tous les P.V6X [resp. A er] contiennent l'idendté (5)« comme cas

particulier « dégénéré », correspondant à \x v [resp. A — A*, A P

Remarque 4.Pour tout ß e X, on a S(ß) g(ß) - 1. Les identités peuvent

donc s'énoncer sous la forme suivante :

(5) {q-1)-:1 X g(YiY~')0(Y2Y"') S(VY)
^'V

Y

fl(Yitt)g(YiV)fl(Y2^)g(Y2v) + _ 1} 5(YlY2pv) (jiv) -1),
fif(YiY2Pv)

pour tous Yl, Y2 > Mb v 6 A) sommation sur Y 6 X,et

(5)a - (q-1)"1E d(YiY"')0(Y2Y"') G(Y*A)
Y

G(Y*A) G(Y fA)
+ ^-1) 5(YlY2X) M -1),

0(YIYA)

pour tous Yl, Y2 e X,Ae Y,sommation sur y e X, X dénote la restnction

de A à F x.

Nous reconnaissons ainsi les identités (i) et (iv) du théorème 1 de notre

publication [4], dont nous rappelons l'énoncé ci-dessous, et nous voyons bien

comment la série principale (resp. discrète) de caractères Xn, v (resp. Xa)

amène aux identités de Barnes (i) (resp. (iv)). Ceci termine la première

partie de cet article.

Rappel du théorème 1 de [4]. Soit F (resp. F2, resp. F±) le

corps fini à q (resp. q2, resp. qA) éléments; on note F2X (resp.

FÏ) le groupe multiplicatif de F2 (resp. et on se fixe un caractère

non-trivial exp du groupe additif F+. Pour un caractère et de F on

pose

Gfa)g(a)X a(a) exP (a) >

a

où l'on somme sur tous les aeF*. On note Tr2 (resp. Tr4) la trace

de F2 (resp. FJ sur F, et l'on note N (resp. N4/2J la norme de

F2 sur F (resp. F4 sur F2). Pour un caractère A de F 2,
on note G2(A) la somme de Gauss suivante

G2(A) X A(x) exp (Tr2(x))
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où Von somme sur tous les x e F 2. De manière analogue, pour un caractère
® de F4, on pose

G4(0>) X a>(z) exp (Tr4(z)),
z

où Von somme sur tous les z e F 4. On a les cinq identités suivantes :

(i) Pour quatre caractères a1,a2,a3,a4 de Fx, on a

(q-1)" 1 E 0(ala) 0(a2a" *) Ôf(a3«) *)
a

0(aia2) 0(a2a3) 3(a3a4) 0(a4ai)
+ 1) Sla^ajcO (oe^) (-1),

^(oc 1OC2OC3CC4)

ici Von somme sur les caractères a de F x
;

(ii) powr tzn caractère Q) de F£, on a

GJ®q+1)
- te+ir^G^CAoN^)) * ; + ^-l)ô(cp)O(80)?

A 0(<P)

z'cz /'on somme sur les caractères A de F % dont la restriction à Fx
soit triviale, s0 dénote un élément de F2 tel que s g-1 — — 1 ;

cp dénote la restriction de <P à Fx ;

(iii) pour A1,A2 caractères de F2, on a

(q-iyl E G^A^aoN)) G2(A2(aoN)"*)
a

G2CA4A2) G2(A1A|)

g(k iX2)
+ ^-1) ô(^2)^(-l),

z'cz À,! fresp. À,2>) désigne la restriction de Ax fresp. A2) à

Fx, Von somme sur tous les caractères a de Fx ;

(iv) pour a1?a2 caractères de Fx, A caractère de F2, on a

-(q-l)"1E ^(aia) 3(a2a) G2(A(a°N)_1)
a

_
G2(A(a1oN)) G2(A(«2qN))

gr(a1a2X)
+ 4(9-1) ô(a1a2A.) X(-1),

ici A, désigne la restriction de A à Fx, l'on somme sur tous les

caractères a. de F* ;
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(v) pour Al5A2 caractères de Fon a

(q+iy1 Y G2(AiA) G2(A2A)
A

gMg(^) G2(AiA2)
1} x } 1} (AiA2) (s0)

0(^2)

ici Xi (resp. X2)dénotela restriction de Aj. (resp. a F

l'on somme sur les caractères A dedont la restriction à F

soit triviale, e0 désigne un élément de tel que
1 -1-

Les cinq identités sont des cas particuliers d'une identité plus générale

qui fait l'objet du théorème 2 de notre publication [4]. La démonstration

se base sur l'étude de certaines algèbres commutatives de degré 4 sur F et

fait intervenir le groupe symétrique des permutations de quatre éléments

ainsi que le groupe diédrale D4 du carré. L'identité générale s'énonce pour

chaque aeD4, mais elle ne dépend que de la classe de conjugaison de ct.

Les cinq classes de conjugaison de DA fournissent les cinq identités de

Barnes.

Dans la suite de cet article nous calculons la trace de l'algèbre Aa

(§ 5) et nous utilisons les identités de Barnes (i) et (iv) pour exhiber les

homomorphismes d'algèbres de Aa dans C indépendamment de la table des

caractères (§ 6). La comparaison de leur somme avec la trace montre que

la liste des homomorphismes est complète et sans répétitions.

§ 5. Calcul de la trace de l'algèbre Aa

I On note Ta la trace de l'algèbre Aa, a eX fixé. Soit B la base de Aa

^ formée par l'unité et les b(y), avec y e X ; pour b e B et a g Aa, on définit

le coefficient <b' | a> dans C par la condition suivante:

a Y <b' \ a > b;
beB

on a, pour tout a e Aa,

FM Y <b' I ab> •

beB

On obtient

Ta(l) dimc(AJ q
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et

T«(%i)) Z <b(y2y I n) b(y2)>
Y2

puisque <l'|b(y)> 0, pour tout yeX. D'après (5), l'on calcule

<b(y2)' I b(yi)b(y2)> q~\q-l)-2^)(-1)0(ocyiY2) gr(YiY2 ') gr(y2y J1)

- 1~ Kl~1) '" 2(a?i) -1) 3(ayyy2) ^(y2y Jx),

pour Yi, y2 e X, d'où

Tx(b(yi))-<ï 1(<Y — 1)~ 2(«yi) (-1) Z 0(aYiY2) 0(YiY2 *)
Y2

ici Ion somme sur y2e X et est dans X. On a donc le théorème suivant:

Théorème 2. La trace Ta de l'algèbre Aa prend les valeurs suivantes
sur les générateurs : Ta(1) q et

(6) Tx(b(y)) -q-\q-l)-*(ay)(-l)£^ 0(ß2),
ßi ß2 =ay2

ici y, ßi et ß2 désignent des éléments de X.

Lemme 2. Pour ß e X, on a

(q-ir1 z ,<?(ßi) 3(ß2) Z e(M ß(a),
ßiß2 ß a

at;ec ß1?ß2eX et aeFx.
C'est un cas particulier du lemme 5, (b) qu'on démontrera au §5.

Plus explicitement, on obtient

(9-1r1 Z 0(ßi)2(ß2)
Pl p2 P

(q—1) ö(ß), si 2 0 dans F,

ß (è) 0(ß)' Sin0n'

Corollaire 1. On aexplicitement

— <1~1 y(—1) b(ay2), si la caractéristique de F est 2,

-q~1 (q-1)" Vy) -1) (a '"l-y~2) (2) <?(aY2), sinon

(8) TJXY))
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§6. Homomorphismes d'algèbres de A dans C

On pose H± : F x F et H2 : Fq2. On note H* le groupe

multiplicatif de l'algèbre Ht, pour i 1,2, et l'on pose ^ 1 et s2 — 1,

c'est-à-dire qu'on associe le signe à l'algèbre Ht. Pour xe Hlfx (x1,x2)

avec x1,x2eFq, on pose x: pour xeH2, on pose x: x*;

on associe ainsi à chaque xe Ht le conjugé x de x, pour i 1, 2. On

définit la norme N (resp. la trace T) de Ht sur Fq par Nx : x x (resp.

7x : x + x), pour i 1, 2. Pour un caractère multiplicatif ß de F, le

composé de ß avec la norme de Ht sur F définit un caractère ß* du

groupe multiplicatif FI* pour i 1, 2. On plonge F dans H1 en appliquant

ae F sur (a, a)eH1, on plonge F dans H2 en tant que seul sous-corps à

g éléments ; pour un caractère 4> de H * on note la restriction de §
à F *, pour z 1, 2. On définit la somme de Gauss d'un caractère c|> du

groupe multiplicatif H *
par

G(cj)) : Yj ^(P(x)) 4>(x) avec xe FI* ,i 1, 2

Proposition 3. Soient i 1,2 et c() un caractère de H * tel que

(j)^ oc. Il existe alors un homomorphisme de C-algèbres $ de Aa

dans C tel que

(9) $(%)) s iq~\q-1)"Vy) (-1) G(y*4>),

pour tout y e X.

La preuve de l'existence d'un tel homomorphisme consiste en la vérification

de la relation :

$(%i))$(%2)) $(%i)%2)),

pour tous y1, y2 e X. D'après (5) ceci équivaut à l'identité suivante :

«~2(G— i)~2(YIY2) (—1) G(r Ï4>) G(Y*4>) q'Kq-i)'1 5(aYiY2)

+ Si«"2(3-l)"3(YiY2)(-l)fif(aYiY2)E0(YiY_1)éf(Y2Y-1) G(Y*4>),
y

pour y1,y2eX;
cette identité est équivalente à

G(yî^) „+ *-l)8(«Tlti«<-l)
Z^YiY_1)ff(Y2Y-1) G(y*<(>), pour
y

l'on somme sur y e X.
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Cette dernière est un cas particulier du théorème 1 de [5], le cas de
Hx F x F correspond à l'identité (i) et le cas de H2 Fq2 correspond à
1 identité (iv) du théorème 2 de [5]. Une démonstration détaillée est indiquée
en [4].

La démonstration de la proposition (3) est ainsi achevée.
Nous nous proposons maintenant de démontrer que tout homomor-

phisme d algèbres de Aa dans C est de la forme <j) avec un caractère
multiplicatif <(> de Hi9 i 1 ou 2.

Lemme 3. Soient m ^ 0 un entier et R la C-algèbre Cm. Pour
1 ^ i ^ m, soit pi la projection de R sur C donnée par pt(x) : xi9
pour x e R, x (xl9..., xm). On a les propriétés suivantes:

(a) Chaque pt est un homomorphisme de C-algèbres, pour 1 < i ^ m.

(b) Tout homomorphisme de C-algèbres de R dans C est un des pt
avec 1 ^ i ^ m.

(c) La somme des pt est égale à la trace Tr de R sur C, c'est-
à-dire que p± + + pm Tr.

(d) Si H (hj)jeJ est une famille d'homomorphismes de C-algèbres
hj-R * C telle que ^ hj n Tr, alors H contient tout homomor-

jeJ
phisme d'algèbres de R dans C exactement n fois, pour n > 0
entier.

Seul le point (d) nécessite une vérification. D'après (b), on sait que
chaque hfjeJ) est un des projecteurs Pour tout 1 C i < m,
soit nt le nombre de fois où la projection pt intervient dans la famille H
et soit e; l'élément de R tel que pfa) 1 et pk(ei) 0 pour tout h * i
avec 1 ^ k ^ m. On trouve

m

"i E nk Pk(et E Mei) «Tr (e;)
k -1 jeJ

pour tout 1 ^ i ^ m. La famille H contient donc tout homomorphisme de
C-algèbres de R dans C exactement n fois. C.Q.F.D.

Lemme 4 (Poisson). Soit H un groupe abélien fini et soit H' un
sous-groupe de H. Etant donné un caractère % de H', on note C(%)
l'ensemble des caractères ^ de H tels que la restriction de \|/ à H'
soit égale à %. On a alors, pour tout x e H,
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(cardC(x)) 1 X W*)
0, si x

vj/eC(x)

xW >
si xe H'

La preuve du lemme de Poisson est classique ; nous 1 appliquons

maintenant au groupe multiplicatif H * de l'algèbre Ht pour i 1, 2. Soit toujours

a un caractère fixé de Fx; notons C,(a) l'ensemble des caractères <|> de

H* tels que la restriction cj)^ de <|) à F* soit égale à oc. On obtient:

Lemme 5. On a, pour i 1, 2,

(a) card Cf(a) q — 8;,

(b) (card C^oc))-1 £ G((|)) £ eQa) a(a)' ae Fq *

<l>eCi(a) a

En effet, on a card C, (a) (card F*)-1 card Hf et donc card C^a)

q -1 et card C2(a) q + 1, d'où l'assertion (a).

D'autre part, on a

(cardC^a))-1 X G(<(>) (card C^cc))-1 Xx M7*) X
<()eCi(a) xeHi <t>eCi(a)

XM2a) a(a), aeF*,
a

d'après le lemme 4, d'où (b).

Proposition 4. La somme des homomorphismes $ : Aa -+ C avec

(|) g Ci(a) u C2(a) est égale à 2 Ta (deux fois la trace de AJ.

En effet, on remarque tout d'abord qu'on a bien

£ $(1) card Cx(a) + card C2(oc) 2q 2 Ta(1).
<j>eCi(a)uC2(a)

Soit maintenant y g X ; on obtient

X $(%)) £i X g(Y*<W
<J>eCi(ot) <i>eCi(a)

+eCi(«r2)

ei3_1(3-ir1(«-e.-)(aY)(-l)Xe(2a)(ay2)(a)> aeF« '>

a

d'où
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«CidUw $(&(Y)) "2^1(«-1)-Vy) (-1) Ç e(2a) (ay2) (a), a e

2r„(6(T)),

d'après (6) et (7) (théorème 2 et lemme 2). C.Q.F.D.

Pour tout caractère cj) de if*, on définit le caractère conjugué de
Ht par <j>(x) : cj>(x), pour tout xe H*, i 1, 2.

Soit un caractère multiplicatif de Ht, i 1,2: on remarque que
cj) <|) si et seulement s'il existe ß e X, tel que ß* <j>.

Pour tout cj) e Ci(a) u C2(a), on a $ $, puisque G(y*cj)) G(y*$),
pour tout y eX

Dautre part, soit ßeX et soit cj)£ le composé de ß avec la norme de
H * sur Fx, pour i 1, 2. On a alors cj); e C;(ß2) et

Si Gty*^) £2 G(y*^)2),

pour tout y s X; ici l'on applique le théorème de Hasse et Davenport,
c.f. [3], qui dit, dans ce cas :

G(y*cj)2) -#(yß)2

Il s'ensuit que les homomorphismes et $2 sont égaux.
Vu le lemme 3, (d) et la proposition 4, il s'ensuit maintenant le théorème

suivant :

Théorème 3. Tout homomorphisme de C-algèbres de Au dans C
est de la forme $ avec cj) dans Ct{a) u C2(oc). Pour i 1,2 et
cj), \j/ e CM on a $ \j/ si et seulement si cj> v|/ ou cj> \j/. Pour
cj)i e C±(a) et cj)2 e C2(a), on a $2 si et seulement s'il existe un
caractère ß de Fx tel que cj)x (resp. cj)2J soit le composé de ß
avec la norme de F x F (resp. Fq2) sur F.
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