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REPRESENTATION DE GELFAND-GRAEV
ET IDENTITES DE BARNES

LE CAS DE GL, D'UN CORPS FINI

par Anna HELVERSEN-PASOTTO

§ 1. INTRODUCTION

Le but de cet article est d’expliquer comment ’étude de la représentation
de Gelfand-Graev du groupe GL, d’un corps fini nous a amenés aux
identités de Barnes (i) et (iv) de notre publication [4] de 1978. Une autre
approche — par modéles de Weil — a été trouvee par J. Soto Andrade
en 1979 et est publiée dans [7]. Cette derniére a été adaptée au cas d’un
corps local non-archimédien par W. Li, cf. [8].

Voici une description de notre méthode: Soit F le corps fini a ¢
éléments et G = GL(2, F) le groupe général linéaire des 2 x 2 matrices
inversibles a coefficients dans F. Pour b € F, posons

u(b)=<(1) l;) et U = {ub)|beF}.

} - Soit \y un caractére additif non-trivial de F a valeurs complexes. On pose

Mu(b)) = Y(b), pour tout b € F, et

V = Ind§(\);

§ cette représentation induite porte le nom de « représentation de Gelfand-

Graev » dans un cadre plus général, cf. [9] et [11], et Pon sait que son

¥ . algébre d’entrelacement A = Endg(V) est commutative; elle s’identifie a

une sous-algébre de l'algébre du groupe C [G]; ici C désigne le corps des

8 . nombres complexes.

Nous décomposons l'algebre A, suivant les caracteres centraux de G,

B cn somme directe de g — 1 sous-algébres A4, et nous déterminons la structure
BB dc chaque composante en termes de générateurs et relations; ceci met

d’ailleurs la commutativité en évidence. Une premiére description est donnée
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58 A. HELVERSEN-PASOTTO

en proposition 1, ici les générateurs sont paramétrés par les éléments du
groupe multiplicatif du corps F.

Par une « transformation de Mellin », nous introduisons de nouveaux
génerateurs, paramétrés par les caractéres multiplicatifs du corps F. La
structure de l'algébre A, est donnée par un seul type de relations (5),
c.f. théoreme 1.

La table des caractéres du groupe G nous permet de déterminer les
homomorphismes d’algébres de A, dans C; les relations (5) donnent ainsi
lieu a des identités de sommes de Gauss; la série principale (resp. discrete)
amene a I'identité (i) (resp. (iv)) de notre publication [4].

Dans une deuxiéme partie de ce travail (§§ 5 et 6) nous changeons de
point de vue:

La démonstration directe des identités (i) et (iv) de notre publication [4],
nous permet de nous « débarrasser » de I'usage de la table des caracteres
de G. Nous parachutons la définition de certains « homomorphismes » en
donnant leurs valeurs sur les générateurs et nous démontrons qu’il s’agit
effectivement d’homomorphismes d’algébres de A dans C en vérifiant que
la relation (5) est respectée, ce qui revient a utiliser les identités de Barnes (i)
et (iv).

Un calcul de la trace de A, nous permet ensuite de prouver que les
homomorphismes ainsi obtenus constituent une liste compléte et sans répé-
titions des homomorphismes d’algebres de 4, dans C.

Une méthode partiellement analogue a 6té appliquée au cas de GL(3, F)
par B. Chang dans [1]. L’auteur détermine des générateurs et relations
pour lalgébre d’entrelacement A; de la représentation de Gelfand-Graev
de GL(3, F), mais n’introduit pas de transformation de Mellin dans la suite.
Il utilise la table des caractéres de GL(3, F) pour déterminer les homo-
morphismes d’algebres de 45 dans C.

Les relations sont vérifiées avec beaucoup de calculs, derricre lesquels se
cachent sans doute des identités.

Une méthode différente a été appliquée au cas de GL(3, F) dans ma
publication [6] qui ne concerne que le cas de la série discreéte. Une trans-
formation de Mellin a été utilisée dans une situation différente, ce qui
fait apparaitre des identités de sommes de Gauss « du type de Barnes»
pour la dimension trois. Ces identités devraient implicitement étre contenues
dans la partie des calculs de Chang concernant la série discréte.

Comme en témoignent plus en détail les introductions de [4], [5] et [6],
une grande partie des idées sous-jacentes a ce travail est due 4 P. Cartier.
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§2. REPRESENTATION DE GELFAND-GRAEV DE G
ET DECOMPOSITION DE SON ALGEBRE D’ENTRELACEMENT A
SUIVANT LES CARACTERES CENTRAUX DE G

Nous gardons les notations de Pintroduction, F désigne le corps fini
a g éléments, F*(resp. F *) désigne le groupe multiplicatif (resp. additif)
de F et G = GL(2, F). Nous fixons, une fois pour toutes, un caractere
non-trivial  de F*. La représentation de Gelfand-Graev V de G est

définie par

ke o R

V = IndS0\),

EEREL. SUNT

" l{), pour b eF, et Mu(b)) = (b), pour

tout be F. Nous allons étudier la structure de lalgebre d’entrelacement
A = Endg(V). A ce propos, il est commode de travailler avec des idem-

potents dans I'algébre C[G] du groupe G.
Posons e, 1= g ' Y Mu ')Ju.Onaef = ¢ etue, = Mu)e, = e, u, pour

uelU

tout ue U. La représentation induite ¥ se realise dans I'idéal a gauche
C[G]e, engendré par I'idempotent e, et I'algebre d’entrelacement A s’identifie
a la sous-algebre e,C[Gle, de l'algebre du groupe.

Soit X le groupe des caractéres de F*. Pour a€ X, on definit un
caractére du centre C de G, quon désignera par le méme symbole o, en
posant

o U = {ub)|beF*},ub) = (1

cla) = (g 2) et ofc(a) = o(@), pour aeF*.

Posons

e,:=(q—1)"1Y ofc™Ne, pour aeX.

ceC

On remarque que

fR

=e,,6,ey, =0, si a#d,aaeX

et que
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ie. les e,,x e X, forment un systtme d’idempotents, deux & deux ortho-
gonaux, de somme 1. Chaque e,, a € X, est un idempotent central, ie. e,
est dans le centre de I'algébre du groupe. Posons

H = CU.
On définit un caractére o de H par
(M) (cuw) = alc) Mu), pour ceC,ueU.
Posons
V., = Ind§(a)), pour tout oeX;

cette représentation induite se réalise dans Iidéal a4 gauche C[G]e,e,
et 'on a

V=aV,.

acX

L’algebre d’entrelacement A, de V, s’identifie 4 Palgébre e,e,C[Gle,e, qui
est égale a ¢,C[G]e,e, , d’ou

A= @ A4,.

acX

Dans la suite, on se fixe un caractére central o et I'on étudie Palgébre A,.

§ 3. DESCRIPTION DE A, EN TERMES DE GENERATEURS ET RELATIONS

Posons e = e, avec O = o, on a alors 4, = e C[G] e = Endg(Ind (0)).
Soit R un systéme de représentants des doubles classes de G suivant H.
On sait que I'ensemble

B = {ere|reR,ere # 0}

forme une base de A4, en tant qu’espace vectoriel sur C. Pour h, ' € H, r € R,
Ton a
e hrh'e = O(hh) ere .

Pour tout g € G, on définit un caractére g6 de g H g~ par (g0) (x) = 6(g~ 'xg),
si x € g Hg~ 1. On sait que, pour tout g € G, la condition ege # 0 équivaut a

e/HngHg_l =4 G/Hr\gHg—1 .

Rappelons que
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1 b a O y
u(b)=<0 1), pour beF+,c(a)=<0 a)’ pour a€eF™,

U= {ub)|beF*}et C={ca)|acF *1 et introduisons, en plus, les nota-
tions suivantes: «

0 1
d(a)=<g (1)>, pour aeF*,D = {da)|aeF*} et z=<1 O>'

On a la décomposition de Bruhat

(1) G=CUD u CUDzU

et on vérifie facilement qu’on a, parmi d’autres, les relations suivantes,
(2) d(a) u(b) = u(ab) d(a),ac F*,beF",

(3) zua)z = cla)d(—a ) u(—a)zu(a ), ae F™,

qui nous servirons dans la suite.

La réunion de D et Dz forme un systéme de représentants des doubles
classes de G suivant H = CU, comme on le remarque a l'aide de (1). On
calcule

(d(a)8) (c u(b)) = O(d(a") c u(b)d(a))
= O(cu(a™'b)), dapres (2),
= afc) Wa™'b),

pour ae F*,ceC et beF*. Or dHd ' = H, pour tout deD et le
calcul précédent montre que, pour d € D,

0/y = d0/y sietseulementsi d = 1.

Pour de D, on a donc ede # 0, si et seulement si d = 1. Examinons
maintenant le cas d’un représentant r € Dz; on a r = d(a)z, avec a€ F™, et

rHr ' = dazCUzda ')=CzUz = {(Z 0>
a

aeF",beF““},
d’ou
HnrHr 1 =C.

Mais 6/, = dz /. pour tout deD. On a donc edze # 0, pour tout
deD. Posons B = {e¢} U {edze|de D}. Alors B est une base de I'espace
vectoriel sous-jacent a A,. En particulier, on a
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dim(4,) = ¢ etdonc dimg(d) = g(g—1);

cela correspond bien aux résultats plus généraux de [9] et [11].
L’¢lément e est l'unité de Ialgébre A,, dans la suite on le désignera
aussi par 1; pour tout ae F *, on pose

bla) =eda)ze.
On définit le symbole de Kronecker & pour ae F* par

1 si a=1,
d(a) = -
0 si a#1.

PROPOSITION 1.  L’unité et les éléments b(a), avec aeF*, forment une
base de lespace vectoriel sous-jacent a Palgébre A,. La structure d’algébre
s’exprime par la relation suivante :

(4) b(ay)b(a,)
=q ! o(asa, 1) ofay) + g1 Z \lf(a(al +a,)—a” 1)05(“_ 1)b(_a2a1a2) )

ou on somme sur tous les ae F* et ou a,,a,eF~*.

En effet, on a, pour a,, a, € F*,
b(ay)b(ay) = ed(a,)z ed(a,)ze = ed(aq)ze,d(a,)ze
= g~ ), ed(a,)2\(—b)u(b)d(ar)ze (beF [)
b

g~ ‘edaz)d(a; az Ve + ¢~ Y, \(—a) ed(a;)zu(@)d(ay)ze

ae F*. Mais cay)e, = ofaye, et
d(ay)zu(a)d(ay)z = c(a)u(a™*a,)d(—a*a a,)zu(a 'a,) ;)
d’apres (2) et (3). Il s’ensuit que
blay)b(a,)
= g ' 8aytay)a(a;) + g1 Za: U(—a+a"Ya, +a,))a)ed(—a2a,a,)ze
=g '8a;ta)ua)) + g1 ; Y(a(a; +az)—a ™ Yo(a™Y)b(—aa,a,),

ou 'on somme sur a € F*. | C.Q.F.D.
On remarque en particulier que l'algébre A est commutative, ce qui
correspond bien 4 la théorie générale, cf. [9], [11].
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Par une « transformation de Mellin », on introduit de nouveaux géne-
rateurs b(y) de 4,: on pose

b(y) = (g—1)"* >, v(@)ba),ae F*,ye X .

On a la formule d’inversion
b(a) = ) y(a™ ") b(y)
Y

ou 'on somme sur vy € X.
La relation (4) se transforme de la maniére suivante:

b(yy) (v2)
= (q— 1)—2 z v1(ay)ya(a,) bla)b(a,), aq,a; € F*,

ai,a2 .

= q Yg—1)"% ) (ay1Y2) (@)

+q Yg—-1)"% Y lala,+ay)—a” Yo(a™ My (ar)ya(a)b(— a’a,a,)

= q_l(q_l)_l 0(0ty17Y2)
+ g Mg—1D)"% Y lalay +ax)—a" oda yi(ar)ya(a)y(—aar tay Hbly)

=g Mg—1)"" 3(ary,v2)
+q g—1"> ), la;+ay+a) (@yyyl) (1)

a,ay,az,y

(ay1Y2) (@) (Y1Y—1) (ay) (v2y~ 1) (a2)b(y)
=q l(q —1) ! o(oy1Y2)
+ g7 HMg—1)"2(ory1y2) (—Dglory1v2) Y, Y(— Dglyay ™ Daly2y™ Hb(y) ;

ici 'on somme sur a,a;,a,€ F* et ye X. Le symbole de Kronecker & est
defini, pour B € X, par

8(B) =
0 si B#1.

La somme de Gauss g(B) est définie, pour tout B € X, par
gB) = > W(a)B(a),ae F* .

Le résultat des calculs ci-dessus s’énonce maintenant sous la forme suivante :
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THEOREME 1.
base de lespace vectoriel sous-jacent a lalgébre A, .

A. HELVERSEN-PASOTTO

L’unité et les éléments

s’exprime par la relation suivante :

(5)

pour Y.,Y,€ X; on somme sur yeX.

b(y),

avec

b(y,) b(y,) = g "(g—1)"" 8(ayy v2)
+ g Mg—1)" 2 (oyyv2) (= 1) gloyyv2) Y, v(—1) gly1y Dgly2y ™ Hb(y)

§4. RAPPEL DE LA TABLE DES CARACTERES DE G
CALCUL DES VALEURS DES CARACTERES DE G SUR LES GENERATEURS DE A,

vye X, forment une
La structure d’algébre

Les caractéres sont en « dualité » avec les classes de conjugaison. Cor-
respondant aux quatre «types» de telles classes, il y a quatre « séries »
de caractéres. Toute la situation se résume dans le tableau suivant:

x ~ x4

caractéres T ot T v i
classes de conjugaison Lvex Ney
para- WFV €
X neX neXx dul modulo
repré- diviseurs metres modiro A ~ A4
sentant élémentaires (1, V) ~ (U, )
& B X—a X 2 2
5 u Py aekl u(a) q n(a) (g+1) po(a) (g—1) Aa)
1 ,
(g “) g aeF~ u(a) 0 wo(a) — Aa)
a _
1 a, d e F*
a 0 a+d u(a) v(d)
X—a)(X-
(o d) (X-a)(X=d) modulo Wad) | w@d) L) v L
(@, d) ~ (d, a)
1 xeE*
-1 Te() X —Tr(x)X+N(x) modulo u(NG) | —p(NE)) 0 —(A+A9) (v
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Ici E désigne le corps fini a g> éléments, Tr (resp. N) dénote la trace
(resp. norme) de E sur F, i.e. pour x € E, on a

Tr(x) = x + x2 et N(x) = xx?,

Y désigne le groupe des caractéres de E™.
Une des nombreuses références pour le calcul des caracteres de G est [9].
Pour tout caractére ¥ de G, nous désignons aussi par x l'extension par
linéarité de ¥ & C [G] et nous nous proposons d’en calculer la restriction
a la sous-algébre A, . Pour l'unité e de A4,, on obtient

1
1e) = xles) = —— . B~ x(h) = <O, Resffyx> = <Indj 6, x>

IH'heH

3 et d’'une maniére explicite:

we) = ¢ Hg—1)7" ), @) V() xc(a) ub)), aeF*,beF";

a,b

l © or la suite des diviseurs &lémentaires de c(a) u(b) est 1, (X—a)? si b # 0,

$ etX—a X —asib=0pouracF*, beF* dou:

w0) = ¢ Ng—1)"* Y &) ¥d) x(l, (X —a)?) + Y. &a) (X —a, X —a))

" a,b¥F0

B 1 o be F; mais | étant un caractére non-trivial de F*, on a

Y yb) = —1,beF, don

b0
W) = g g—-D)" Y &a) [x(X—a, X—a)—x(1,(X—a)’)], acF™.

En utilisant la table des caracteéres, on obtient, pour p, v € X,

xie) = 0,%40) = 8! ), 7y v(e) = 8(0™ L)

et ya(e) = 8(a”'A), ou A dénote la restriction de A & F*, pour AeY.

D’apres [2], Corollaire 1.2, les homomorphismes d’algebres de 4, dans C
sont donnés par les caractéres y de G, tels que y(e) = 1. Nous calculons,-
dans la suite, leurs valeurs sur les générateurs b(y) de A, avec ye X.

LEMME 1. Soit X un caractéerede G et yeX; ona

x(b(Y))
=q g—-1)"2y(—1) ) ZF (@™ *y~?) (@) v(c) W(a™*b) x(1, X>*—bX +¢),

ici o dénote le caractere central fixé.
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En effet, on a x(b(y)) = (g—1)"* ) v(@)x(a), aeF™.
Or
ba) = eda)ze = ¢~ 2(@—1)"2 Y afaya)) V(b +by)clay)u(by)d(@)zc(ar)u(by)

aj,az,b1,b2

=q g—-17"! Z a(a;) V(by +b,) c(a,) u(b,) d(a)zu(b,), a, , a, € F*,b;,byeF".

ay,bi,b2

La suite des diviseurs élémentaires de c(a,) u(b,) d(a) z u(b,) est égale a
1, X2 — ayb,+b,)X — ala, poura,,acF*,b;,b,e F', d’ou

1b@) = ¢ Hg—1)"" Y aa) W(b) (1, X*>—a;bX —aia),a; e F*,beF".

ai, b

= ¢ Yg—1)"' Y &a) Vai'b) x(1, X*~bX—ala),a, eF*,beF".

ai,b

On obtient donc

wWb) = ¢ Hg—1)"2 Y ola;’)v(@ Wa;'b)x(1, X*—bX —aja)a,a,€ F . bel

a,ai,b
=g g-12 zba(afl)v(—a;%)\T/(a;lb)x(l,XZ—bX+c)
= ¢ Yg—1)"2y(-1) Zb(a-lv—Z)(a) v(e) Wa~'b) x(1, X2 —bX +¢),

ce qui prouve le lemme 1.

PROPOSITION 2. Les valeurs des caractéres de G sur les générateurs
de A sont données par:

xae) = xaub(y) =0,
xie) = 3o 'u2), 1iby) = g Yg—1)" 3@ 'p?) (=1 glyw)?*,
Xy, ole) = 8o tuv), 1y, o(b() = g Hg— 17 8(a” Tpo) (oy) (—1) glvw) g(vv) ,
xale) = 8@ ), xalb(y) = —q g—1) T 3™ (ay) (—1) G(Y*A);
ici p,v,yeX,o caractére central fixé, AeY; L dénote la restriction

de A a F* et vy* dénote le composé de vy avec la norme de E™
sur F*: la somme de Gauss G(AY*) est définie par

GAY*) = . (A7*) () W(Tr(x)).

xeE %

Démonstration. Les valeurs sur I'unité e ont déja été calculées au debut
du paragraphe. De y;(1, X*—bX +c¢) = p(c), pour tout beF*, ceF”™,
i€ X on déduit que x \(b(y)) = 0, pour tout y € X.
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; D’aprés le lemme 1, on obtient

b ab0) = 4 Ha—D "2 v(=D)
L

§ daprés la table des caractéres, on a

Y (oc‘f v~2) (a)y(c) W(a™*b) x 41, X*—bX +0);

a b

0
141, X*—bX +c) = wa,a,) si X*—bX+c
— u(N(x))
(X —a)? avec aeF”™

= { (X—a;(X—a,)) avec ay,a,€F* a; #a,
(X—x)(X—x%) avec xeE* —F”

d’ou

b)) = ¢ (g—1)7? v(—l)% Y (et v %) v(asaz) WlaHay +ay)) way a,)

a; Fa

=)D Y @y (@ (NG Fa THOmNG)

xFx9

ici 'on somme sur a, a,, a, € F* et xe E*. On ne change rien a la valeur
de x3b(y)) si dans les sommations on enléve la restriction a; # a, et
x # x%. Aprés un changement d’indices de sommation, I’on obtient

| 1
1Ub(Y) = ¢ Hg—1)7? Y(—l)—z-( Y. (@7 p?) (a) v(aia,) V(a, +a,) pa,ay)

a,a,az

— Y (" *'u?) (@) Y(N)W(Tr(x)) w(N(x))), a, a;, a, e F*,x e E*,

1
=q Yg—1) " y(—1) 8"t p?) 5 La(ym)* — G((yw*)] ,

.

{: ou G((yw*) = ), (yp) (N(x)) W(Tr(x)). D’aprés le théoréme de Davenport
1 xeE *

- et Hasse [3], on a G((yw)*) = —g(yH)?, d’ou

£

xUb(y) = ¢ Hg—1)" " y(—1) 8o~ *p?) glyw)* .

B ¢ calcul de A, o(b(y)) est plus facile, on obtient, d’aprés le lemme 1 et
la table des caractéres |
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Ao@) = ¢ gD 72 v(=1) Y (@ * 772 (@) vaia,) Wa” Hay +ay)) pay) §

a,aj,az

a,a;,a,e F*,
= q Mg—D2(ywo) (=1) Y (e 'po) (@) (vw) (c1) (yv) (c1) Wley +¢5), B

a,c1,C2

a,c,,c, e F*
= q q—1)"Hoy) (—1) 8(c™ ') glyp) g(yv) ;

le calcul de y,(b(y)) est analogue et est laissé au lecteur. La démonstration
de la proposition 2 est ainsi terminée.

Remarque 1. Soit ¢ un caractére de G tel que y(e) = 1. Un tel caractére
définit un homomorphisme d’algébres de A, dans C, comme on I'a déja
remarqué, c.f. [2]. On a donc

X(b(Yl)) X(b(Yz)) = X(b(%)b(“:’z)) )

pour v;, v,€ X, et la relation (5) du théoreme 1 donne ainsi lieu a
'identité suivante:

(5) 2b(yD) x(b(y2) = a Hg—1)~" 8(y,v2)
+ g Hg—1)"*(ay1y2) (— 1) gloyyv2) Y, v(—1) glysy ™) gCv2y ™) x(b(y))

G A e A T B B ke SRR SR S SR

RSP s S K

i
1
H
H

pour v, Y, € X, sommation sur y € X.

Remarque 2. En specialisant la remarque 1, pour y, = ¥ (resp. X = X, v>
resp. x = Ya) avec pe X tel que p* = o (resp. avec p,ve X tels que
p#v et pv = o, resp. avec AeY tel que A # A% et A = o) et en
appliquant la proposition 2, on obtient les identités suivantes:
5t g(v1W)* g(v21)* = q(g—1) 8(y1y,1)

+(@—1D7" gly1v2k?) 3 9ray ™Y glv2y ™) gwy)?, .
Y

resp.

- gly11) g(y1v) g(vap) g(v2v) = qlg—1) v,y 1v) (pv) (—1)
+ (@17 glysyamv) Y glvay ™) glv2y ™) g(uy) g(vy)

resp.

(5)a G(YTA) G(y3A) = q(g—1) d(y1v.M) M—1)
— (@—1)" gly172N Y glviy ™Y 9(v2y ™Y Giy*A),

pour v, , Y, € X, sommation sur y € X.
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Remarque 3. On observe que les identités (5),,, [resp. (5)5] considérees

ve X [resp. A € Y] contiennent Iidentité (5)% comme cas
= Aq, A = p o N].

k
8

“ipour tous les p,
§ particulier « dégénéré », correspondant ip = v[resp. A

Remarque 4. Pour tout € X,ona 5(B) g(B) = — 1. Les identités peuvent

- donc s’énoncer sous la forme suivante:

HOR (G—D"1 Y glyry™ ) glv2y™ 1) g(uy) g(vv)

_g0ral) g0V 92l 902Y) gy By yamy) () (— 1),
g(Y1Y2HV)

: pour tous Yy, Y2, W, VE X, sommation sur y € X, et
(O —(g=1)" Y gy gy~ Y GO*A)
Y

_ GOt G 3A)
g(Y1Y2M)
pour tous y;,Y2€ X, A€Y, sommation sur y € X, A dénote la restriction
de Ad F~.

+ glg—1) 8(y17M) M—1),

Nous reconnaissons ainsi les identités (i) et (iv) du théoréeme 1 de notre
publication [4], dont nous rappelons ’énoncé ci-dessous, et nous voyons bien
comment la série principale (resp. discréte) de caractéres %, , (T€sp. ¥Xa)

_améne aux identités de Barnes (i) (resp. (iv)). Ceci termine la premicre

partie de cet article.

5 RAPPEL DU THEOREME 1 DE [4]. Soit F (resp. F,, resp. F, ) e
@ corps fini @ q (resp. g%, resp. q*) ¢éléments; on note F5 (resp.
~: FX) le groupe multiplicatif de F, (resp. Iy ), et on se fixe un caractere
% 8 non-trivial exp du groupe additif F +  Pour un caractére o de F™, on
B3 pose

Gy(o) = g(®) = . ofa) exp (a) ,

a

ou Pon somme sur tous les ae F*. On note Tr, (resp. Tr,) la trace
de F, (resp. F,) sur F, et lPonnote N (resp. N,,) la norme de
F, sur F (resp. F, sur F,). Pour un caractere A de F3,

| on note G,(A) la somme de Gauss suivante

Go(A) = Y Ax) exp (Try(x) »
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ou Pon somme sur tous les x e F;. De maniére analogue, pour un caractére
® de Fj, on pose

G4(®) = ), B(2) exp (Tru(2)),

ou Pon somme sur tous les zeFj;. On a les cing identités suivantes:

() Pour quatre caractéres d,,0,,05,0, de F*, ona

(@—D7" X g(oy0) gla0™ ") gloser) glege™ )

= glo0p) glonous) glonseny) glon,oty) + q(g—1) 6(ot;ox003004) (01 03) (— 1),
glon 00050L)

ici lon somme sur les caractéres o de F™;
(i) pour un caractére ® de F,, ona

G, (@)

——— + q(g—1) 8(p) D(e,) ,
g(9)

—(g+1)71 ; G4(®(A°N4/2)) =

ici Pon somme sur les caractéeres A de F5 dont la restriction a F*
soit triviale, €, dénote un élément de F, tel que €4 ! = —1;
¢ dénote la restrictionde ® a4 F™;

(i) pour A;, A, caractéresde F5, ona

(@—1)7" X Go(A1(00N)) Gy(Ay(aeN) ™)

_ GyAsAy) Go(ALAY)
9(7%7”2)

+ q(g—1) 3(A1;) Ay (—1),

-

ici Ay (resp. A, ) désigne la restriction de A, (resp. A,) a
F*, lon somme sur tous les caractéres o de F™*; ‘

(iv) pour o,,a, caractéresde F*, A caractérede F,, ona

—(g—1)" ! Z gloy o) glonpor) Gz(A(O“’N)_ 1)

_ GalMouN) GolAeael)) 1) ooty 1),

g(ot10A)

ici A désigne la restriction de A a F*, lon somme sur tous les
caractéres o de F*;




REPRESENTATION DE GELFAND-GRAEV 71

8 (v) pour Ay, A, caractéres de F;, ona

1 g+ ; Ga(A1A) Go(AzA)

) g(hy) Go(ALA

_ 90 9k Goltila) 1) 500) M= D) (A1) o)
g(hihy)

ici A, (resp. \,) dénote la restriction de A, (resp. A,) a F g

Pon somme sur les caractéres A de F; dont la restriction @ F”

soit triviale, €, désigne un élément de F 5 tel que 4”1l = —1

3 Les cing identités sont des cas particuliers d’une identité plus générale
~ qui fait Pobjet du théoreme 2 de notre publication [4]. La démonstration
" se base sur étude de certaines algébres commutatives de degré 4 sur F et
fait intervenir le groupe symétrique des permutations de quatre é€léments
ainsi que le groupe diédrale D, du carré. L’identité générale s’énonce pour
chaque o € D,, mais elle ne dépend que de la classe de conjugaison de o.
Les cing classes de conjugaison de Dy fournissent les cing identités de

Barnes.

Dans la suite de cet article nous calculons la trace de lalgébre A,
~(§5) et nous utilisons les identités de Barnes (i) et (iv) pour exhiber les
homomorphismes d’algébres de 4, dans C indépendamment de la table des
caractéres (§ 6). La comparaison de leur somme avec la trace montre que
la liste des homomorphismes est compléte et sans répetitions.

§5. CALCUL DE LA TRACE DE L’ALGEBRE 4,

On note T, la trace de lalgébre 4,, o€ X fixé. Soit B la base de 4,
| formée par I'unité et les b(y), avec ye X; pour be B et ae 4,, on définit
R - le coefficient <b'| a> dans C par la condition suivante:
a= Y <bla>bh;

beB

@ on a, pour toutac 4,,

Tfa) = Y <b'|ab> .

beB

| On obtient

T, (1) = dim¢(4,) = g
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et
Ta(b(Y1)) = Z <b(y,) | blyy) bly,)>

puisque <1'|b(y)> = 0, pour tout y e X. D’apres '(5), 'on calcule

<bly2) [ b(v1) b(v2)> = g7 g—1)"2(oy1) (— 1) g(0v172) 9v1Y5 L) 975 )
= —q Mg—1)"Xoryy) (— 1) g0y172) 9(v173 Y,
pour v,, v, € X, dou

T b(vs) = —q~"g—1)"Hay,) (1) Y g(oy172) 9(v175 D),

ici 'on somme sur y, € X et y, est dans X. On a donc le théoréme suivant :

THEOREME 2. La trace T, de Palgébre A, prend les valeurs suivantes
sur les générateurs: T(1) = q et

(6) TM) = =g Mg=1D) ) (=1) Y gB) 9B,

B1B2=ay2

ici y,B; et B, désignent des éléments de X.

LEMME 2. Pour BeX, ona
(7) (g—1)7* ; AB 9(B1) 9(B2) = ). e(2a) B(a),
avec B;,P,€X et aeF*.

Cest un cas particulier du lemme 5, (b) quon démontrera au § 5.

Plus explicitement, on obtient
[ (@—1)3B), si 2 =0 dans F,

(@=D7" > 9B B = |

B1B2=8

1 :
| B (5) g(B), sinon.

COROLLAIRE 1. On a explicitement

—q~ " y(—=1) 8oy?), si la caractéristique de F est 2,
(8) Tob(v)) =
—q 1 @—1)7 o) (= 1) (v (2) g(ory?), sinon .
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§ 6. HOMOMORPHISMES D’ALGEBRES DE A DANS C

On pose H, := F x F et H,:= Fp. On note H;* le groupe multi-
plicatif de Ialgébre H;, pour i = 1,2, et I'on pose & = 1 eteg =—1,
Cest-a-dire qu’on associe le signe ¢; & 'algébre H;. Pour x € Hy, x = (X, X,)
avec Xx;,x, € F,, on pose X:= (x,,X); pour x€ H,, on pose x:= x2:
on associe ainsi & chaque x e H; le conjugé x de x, pour i = 1,2. On
définit la norme N (resp. la trace T) de H; sur F, par Nx := x X (resp.
Tx:= x + X), pour i = 1,2. Pour un caractére multiplicatif B de F, le

| composé de B avec la norme de H; sur F définit un caractére p* du
groupe multiplicatif H;*, pour i = 1,2. On plonge F dans H, en appliquant
|4 acF sur (a,a)e Hy, on plonge F dans H, en tant que seul sous-corps a

X

4 g éléments; pour un caractére ¢ de H;*, on note ¢, la restriction de ¢

?; a FY,pour i = 1,2. On définit la somme de Gauss d’un caractere ¢ du
. groupe multiplicatif H;* par

G(d):= Y Y(T(x)) d(x) avec xeH;,i=12.

PROPOSITION 3. Soient i = 1,2 et ¢ un caractére de H; tel que
¢, = o Il existe alors un homomorphisme de C-algébres & de A,
~dans C tel que ‘

e Bbt) = a7 @1 ) (~1) Gr*4),
~ pour tout vy e X.

, La preuve de I'existence d’un tel homomorphisme consiste en la vérifi-
5 cation de la relation:

(T)(b(%)) ‘T)(b(')’z)) = (T)(b(h)b(?'z)) ’

| pour tous vy, 7Y, € X. D’apres (5) ceci équivaut a I'identité suivante:

g~ g—1)"*(v1v2) (—1) G(y1d) G(y3d) = ¢ Hg—1)" ! 8(ory17,)

+ &g 2q—1)"(v1v2) (— 1) gloy,v2) D g1y~ ) glyy ™Y G(y* o),

3 Y

pour v, v, € X;

BE cettc identité est équivalente &
G(y¥9) G(y39)

glory1Ys)
= g(q—1)7" Y glysy ) g(y,y™Y) G(y*d), pour y,,v,€X;
Y

+ q(g—1) 8(oy;v2) a(—1)

'on somme sur y e X.
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Cette derniére est un cas particulier du théoréme 1 de [51, le cas de
H; = F x F correspond a I'identité (i) et le cas de H » = F,. correspond a
I'identité (iv) du théoréme 2 de [5]. Une démonstration détaillée est indiquée
en [4].

La démonstration de la proposition (3) est ainsi achevée.

Nous nous proposons maintenant de démontrer que tout homomor-
phisme d’algebres de A4, dans C est de la forme ® avec un caractére
multiplicatif ¢ de H;, i = 1 ou 2.

LEMME 3. Soient m >0 un entier et R la C-algébre C™. Pour
1 <i<m, soit p; la projectionde R sur C donnée par p{x):= x;,
pour x€R,x = (xy,..,X,). On a les propriétés suivantes:

(@) Chaque p; est un homomorphisme de C-algebres, pour 1 <i < m.

(b) Tout homomorphisme de C-algébres de R dans C est un des D;
avec 1 <i<m.

() La somme des p; est égale d la trace Tr de R sur C, Cest-
d-dire que p; + .. + p,, = Tr.

(d Si H = (hj);.; est une famille d’homomorphismes de C-algébres

h;:R - C telle que h; = nTr, alors H contient tout homomor-
J q o

je
phisme d’algébres de R dans C exactement n fois, pour n >0
entier.

Seul le point (d) nécessite une vérification. D’aprés (b), on sait que
chaque hjfjeJ) est un des projecteurs p;(1<i<m). Pour tout 1 < i < m,
soit n; le nombre de fois ou la projection p, intervient dans la famille H
et soit ¢; I'élément de R tel que p;(e;) = 1 et pye;) = 0 pour tout k # i
avec 1 < k < m. On trouve

m

n = ), mpile;) = Z hi(e;) = nTr(e) = n,
k=1 JjeJ

pour tout 1 < i < m. La famille H contient donc tout homomorphisme de

C-algebres de R dans C exactement n fois. C.QF.D.

LEMME 4 (Poisson). Soit H un groupe abélien fini et soit H' un
sous-groupe de H. Etant donné un caractére y de H', on note C(x)
Pensemble des caractéres v de H tels que la restriction de v a H
soit égale a . On a alors, pour tout x e H,
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0, si x¢H,
(card C(y))~" Y Vlx) =

YeC(x)

v(x), si xeH.

La preuve du lemme de Poisson est classique; nous Pappliquons main-
tenant au groupe multiplicatif H;* de I'algébre H; pour i = 1, 2. Soit toujours
« un caractére fixé de F*; notons C;(¢) 'ensemble des caractéres ¢ de
H tels que la restriction ¢, de ¢ a F J soit égale a o. On obtient:

LEMME 5. On a, pour i = 1,2,

4 (2) card o) = g — &,
{ ® (ard Ci(w)™ 3 G(0) = 2 e2a)da), aeFy .

¢eCi(o) a

I En effet, on a card C;(o) = (card F*)~ ! card H;* et donc card C;(o)
B =4 — letcard Cy(®) = g + 1, d’ou I'assertion (a).
D’autre part, on a

(card C;())™* ), G(d) = (card C;(@)™* >, W(Tx) Y d(x)

oeCi(a) xeH; deCi(a)

g = Y V¥(2a) a), acF,,
d’apres le lemme 4, d’ou (b).

PROPOSITION 4. La somme des homomorphismes §:A, » C avec
de Cy(o) U Cylar) est égalea 2T, (deux foisla trace de A,).

En effet, on remarque tout d’abord qu’on a bien

(1) = card C (o) + card Cy(a) = 2g = 2 T(1).

deC1(a)uCa()

Soit maintenant y € X ; on obtient

Y, b)) = &g Mg—D o) (=1 Y Gr*¢)

$eCi(a) ¢eCi(a)

= &g g—-D) ) (=) ¥ G

yeCi(ay?)

= eq =1 g—e) o) (- 1) Y ea) (@7 (@), ey

d’ou
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Sb(v) = —2¢7Hg—1)" o) (= 1) . e2a) (0y?) (@), aeF[,
$eCi(a)uC2(w) a
= 2 T(b(y)),
d’apres (6) et (7) (théoréme 2 et lemme 2). C.Q.F.D.

X

Pour tout caractére ¢ de H*, on définit le caractére conjugué ¢ de
H; par ¢(x) : = ¢(x), pour tout xe H,i = 1, 2.

Soit ¢ un caractére multiplicatif de H,, i = 1,2: on remarque que
¢ = ¢ si et seulement s’il existe B € X, tel que p* = d.

Pour tout ¢ e Cy(®) U Cy(a), on a ¢ = cT>, puisque G(y*¢) = G(y*P),
pour tout y € X.

D’autre part, soit Be X et soit ¢, le composé de B avec la norme de
H;" sur F*, pour i = 1,2. On a alors ¢; € C{p?) et

g; G(v*0,) = &, G(y*d,),

pour tout ye X; ici I'on applique le théoréme de Hasse et Davenport,
c.f. [3], qui dit, dans ce cas:

G(y*d2) = —g(vB)*.

Il s’ensuit que les homomorphismes ¢, et $, sont égaux.
Vu le lemme 3, (d) et la proposition 4, il S’ensuit maintenant le théoréme
suivant:

THEOREME 3. Tout homomorphisme de C-algébres de A, dans C
est de la forme ¢ avec ¢ dans Cy() U Cy(). Pour i= 1,2 et
O, VeCix), ona & = sietseulement si =V ou ¢ =\ Pour
d1€Ci() et deCyl), ona &, = b, si et seulement sil existe un
caractére B de F* tel que &, (resp. &,) soit le composé de
avec la norme de F x F (resp. Fp) sur F.
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