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54 X. SAINT RAYMOND

Notons if la variété intégrale de f£ passant par x0; alors, en
rassemblant les résultats des théorèmes 5.2, 5.3 et 6.2, et en rappelant que
sous la condition (P), L est localement résoluble (cf. Nirenberg et Trêves [17]),
on s aperçoit qu'on a démontré l'équivalence des deux propriétés suivantes :

1. Unicité locale en x0 : pour tout voisinage co de x0,

U G C^Gö)

(L + c0)u(x) 0 dans co, et

u(x) 0 dans œ_ {xe co | <p(x) ^ <p(x0)}

2. Pour tout voisinage co de x0, f n co ^ œ+ {x g co | <p(x) > <p(x0)}.

u 0 au voisinage de x0
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