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52 X. SAINT RAYMOND

points arbitrairement proches de x0 dans S {xeRn\ <p(x) <p(x0)} où le
problème n'est pas caractéristique, nous pouvons appliquer le théorème 1.1;
si le problème est caractéristique en tous les points de S, c'est que la
variété intégrale de 3? passant par x0 reste localement dans S, et nous
pouvons appliquer le théorème 5.3.

Chapitre 6: Rôle du terme d'ordre zéro

Aux théorèmes 1.1, 2.2, 4.2 et 5.3, nous avons dû modifier le terme
d'ordre zéro pour montrer qu'il n'y avait pas unicité de Cauchy. Il est alors
naturel de se demander si de tels problèmes possèdent tout de même la
propriété d'unicité pour certains termes d'ordre zéro. La réponse à cette
question est positive comme nous le verrons ci-dessous.

Cependant, le rôle du terme d'ordre zéro est encore mal connu. Nous
nous bornerons ici à énoncer deux remarques qui suggèrent la nature des

conditions à imposer. La première d'entre elles (théorème 6.1) est dûe à

Lewy [15].
Avant d'énoncer le premier théorème, rappelons que la résolubilité locale

d'un champ complexe non dégénéré a été étudiée par Nirenberg et Trêves [17],
et que sous les hypothèses du théorème 2.2, ainsi que sous les hypothèses
du théorème 5.3 si rg ^ 3, le champ L n'est localement résoluble en aucun
point d'un voisinage de x0 ; de même, les hypothèses des théorèmes 1.1 et 4.2
entraînent qu'il existe de nombreux points voisins de x0 où L n'est pas
localement résoluble. Il en résulte qu'il existe des fonctions C00 c telles que
l'équation Lv — c 0 ne possède pas de solution v au voisinage de ces

points.

Théorème 6.1. Soit J^j(c0) /'ensemble des points de R" au voisinage
desquels l'équation Lv(x) + c0(x) 0 ne possède pas de solution v e Cj.
S'il existe un voisinage Q de x0 tel que

Jffc<f) Q+ {x g Q, I cp(x) ^ (p(*o)} >

alors pour tout voisinage œ de x0 et toute u e CJ(co) solution du système

^2) | (L + c0)w(x) 0 dans œ et

| u(x) 0 dans œ_ {x e œ | cp(x) < cp(x0)}

la fonction u s'annule au voisinage de x0.
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Démonstration. Soit u g Cj(©) une solution du problème (6.1). Supposons

qu'elle n'est pas nulle dans © n Q. Alors, comme u(x) 0 dans co_,

il existe un ouvert contenu dans © n Q+ où m ne prend pas la valeur 0; cet

ouvert contient donc un point x1eJrJ(c0) et une boule ©x de centre

x1 : u(x) i=- 0 pour tout x g ©!. Dans ©x, on peut alors écrire u(x) e

pour une fonction v g C\(ù1 Or (6.1) implique que Lv(x) + c0(x) 0 dans

ce qui contredit le fait que x1ejVj(c0). Donc u — 0 dans © n Q.

Dans le théorème suivant, nous nous plaçons résolument dans une

situation où l'on a déjà montré qu'il n'y avait pas unicité pour un terme

d'ordre zéro donné c0 (situation fournie par exemple par l'un des

théorèmes 1.1, 2.2, 4.2 ou 5.3), et nous cherchons pour quels autres termes

d'ordre zéro c l'opérateur L + c ne possède toujours pas la propriété

d'unicité. 0
Pour un fermé F, nous noterons Cj(F) l'ensemble des fonctions v g Cj(F)

possédant la propriété suivante : pour tout xgF et tout multi-indice a de

longueur inférieure à j, il existe un voisinage ©a de x tel que d^v reste

bornée dans ©a n F.

Théorème 6.2. Supposons qu'il existe un voisinage © de x0 et

des fonctions u0 g Cj(©) et c0 g C°°(©) tels que

(L + c0)w0(x) 0 dans ©, et

x0 g supp u0 a ©+ {x g © | cp(x) ^ cp(x0)}

Si de plus l'équation Lv(x) + c(x) — c0(x) 0 possède une solution

v g CJ(supp Uq alors il existe une fonction u e CJ(©) telle que

f (L+c)m(x) 0 dans ©, et

| x0 g supp u c= ©+

Démonstration. Il suffit de prendre w(x) eu(x)w0(x).

Application. Comme illustration de ce dernier théorème, reprenons un
problème abordé au chapitre 5.

Supposons qu'il existe un voisinage Q d'un point x0 g Rn dans lequel
le champ L vérifie la condition (P) et F£ est de rang constant. Deux
exemples d'une telle situation sont fournis par le cas où L est un champ réel
(non dégénéré en x0) et le cas où X Re L et Y Im L sont linéairement
indépendants en x0 et commutent au voisinage de x0([X, Y] 0).
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Notons if la variété intégrale de f£ passant par x0; alors, en
rassemblant les résultats des théorèmes 5.2, 5.3 et 6.2, et en rappelant que
sous la condition (P), L est localement résoluble (cf. Nirenberg et Trêves [17]),
on s aperçoit qu'on a démontré l'équivalence des deux propriétés suivantes :

1. Unicité locale en x0 : pour tout voisinage co de x0,

U G C^Gö)

(L + c0)u(x) 0 dans co, et

u(x) 0 dans œ_ {xe co | <p(x) ^ <p(x0)}

2. Pour tout voisinage co de x0, f n co ^ œ+ {x g co | <p(x) > <p(x0)}.

u 0 au voisinage de x0
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