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52 X. SAINT RAYMOND

points arbitrairement proches de x, dans S = {x e R"| ¢(x) = ¢(x,)} ou le
probléme n’est pas caractéristique, nous pouvons appliquer le théoréme 1.1;
si le probléme est caractéristique en tous les points de S, c’est que la
variété intégrale de ¥ passant par x, reste localement dans S, et nous
pouvons appliquer le théoréme 5.3.

CHAPITRE 6: ROLE DU TERME D’ORDRE ZERO

Aux théorémes 1.1, 2.2, 4.2 et 5.3, nous avons di modifier le terme
d’ordre zéro pour montrer qu’il n’y avait pas unicité de Cauchy. Il est alors
naturel de se demander si de tels problémes possédent tout de méme la
propri¢té d’unicité pour certains termes d’ordre zéro. La réponse a cette
question est positive comme nous le verrons ci-dessous.

Cependant, le role du terme d’ordre zéro est encore mal connu. Nous
nous bornerons ici a énoncer deux remarques qui suggérent la nature des
conditions a imposer. La premiére d’entre elles (théoréme 6.1) est diie a
Lewy [15].

Avant d’énoncer le premier théoréme, rappelons que la résolubilité locale
d’un champ complexe non dégénére a été étudiée par Nirenberg et Tréves [17],
et que sous les hypotheéses du théoréme 2.2, ainsi que sous les hypothéses

du théoréme 5.3 si rg &£ > 3, le champ L n’est localement résoluble en aucun -

point d’'un voisinage de x,; de méme, les hypothéses des théorémes 1.1 et 4.2
entrainent qu’il existe de nombreux points voisins de x, ou L n’est pas
localement résoluble. Il en résulte qu’il existe des fonctions C*® ¢ telles que
I'équation Lv — ¢ = 0 ne posséde pas de solution v au voisinage de ces
points.

THEOREME 6.1. Soit A [(c,) [Pensemble des points de R" au voisinage
desquels léquation Lv(x) + co(x) = 0 ne posséde pas de solution ve C’.
S’il existe un voisinage Q de x, tel que

N eo) 2 Q1 = {xe Q| o(x) = 9(xo)} ,
alors pour tout voisinage ® de x, et toute ue Cl(w) solution du systéme

(6.1) { (L+co)u(x) = 0 dans o et

ux) =0 dans o- = {xeo|ox) < ®(xo)} 5

la fonction u sannule au voisinage de x, .
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Démonstration. Soit u € Ci(w) une solution du probléme (6.1). Supposons
quelle n’est pas nulle dans ® N Q. Alors, comme u(x) = 0 dans o_,
il existe un ouvert contenu dans ® N Q, ou u ne prend pas la valeur 0; cet
ouvert contient donc un point x; € .47;(co) et une boule o, de centre
x,:u(x) # 0 pour tout x € ®;. Dans ®;, on peut alors écrire u(x) = '™
pour une fonction v e Ci(®,). Or (6.1) implique que Lo(x) + co(x) = 0 dans
®,, ce qui contredit le fait que x; € A i(co). Donc u = 0 dans @ N Q.

Dans le théoréme suivant, nous nous plagons résolument dans une
situation ot 'on a déja montré quil n’y avait pas unicité pour un terme
dordre zéro donné c¢, (situation fournie par exemple par I'un des théo-
rémes 1.1, 2.2, 42 ou 5.3), et nous cherchons pour quels autres termes
d’ordre zéro ¢ lopérateur L + ¢ ne posséde toujours pas la propriété
d’unicité.

Pour un fermé F, nous noterons C/(F) 'ensemble des fonctions v € Cj(lg )
possédant la propriété suivante: pour tout x € F et tout multi-indice de
longueur inférieureo a j, il existe un voisinage o, de x tel que 0% v reste
bornée dans o, N F.

THEOREME 6.2. Supposons quil existe un voisinage ® de Xx, et
des fonctions uy € C(0) et coe C®(w) tels que

{ (L+colug(x) = 0 dans o, et
Xo €ESUPP Uy < ®, = {xe®| Q(x) = (xo)} -

Si d{: plus Péquation Lv(x) + c(x) — co(x) = 0 posséde une solution
ve Ci(supp u,), alors il existe une fonction ue Clw) telle que

(L+cu(x) = 0 dans o, et
Xo ESUPP U C M .

Démonstration. 11 suffit de prendre u(x) = e"@ugy(x).

Application. Comme illustration de ce dernier théoréme, reprenons un
probléme abordé au chapitre 5.

Supposons qu’il existe un voisinage Q d’'un point x, € R" dans lequel
| le champ L vérifie la condition (P) et % est de rang constant. Deux
exemples d’une telle situation sont fournis par le cas ou L est un champ réel
| (non dégénéré en x,) et le cas ot X = Re L et Y = Im L sont linéairement
indépendants en x, et commutent au voisinage de x,([X, Y] =0).
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Notons ¥~ la variété intégrale de ¥ passant par x,; alors, en ras-
semblant les résultats des théorémes 5.2, 5.3 et 6.2, et en rappelant que
sous la condition (P), L est localement résoluble (cf. Nirenberg et Tréves [17]),
on s’aper¢oit quon a démontré I'équivalence des deux propriétés suivantes:

1. Unicité locale en x,: pour tout voisinage o de x,,

ue Clw),
(L+co)u(x) = 0 dans o, et = u = 0 au voisinage de x, .
ux) = 0dans o_ = {xea|o(x) < o(xy)}

2. Pour tout voisinage © de x5, ¥ no ¢ 0, = {xc0| k) > ©(x0)}.
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