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PROBLEMES DE CAUCHY 49

§ etun T > 0 avec b(y, T) # 0 pour tout y tel que |y | < 8 (sinon, changer ¢t
: ien —1t). Prenons alors sur ¥ les coordonnées (z,t) ou z est I'abscisse
| ~ curviligne associée au champ b(y, T)-d,;, on notera z, I’abscisse de xg.
8 11 existe alors un o > 0 tel que K = [zo—a, zo+a] x [—T, T] soit un
voisinage compact de x, dans ¥~ contenu dans le voisinage précédent.

Dans ces conditions, tout point de K est dans le support de u; en effet,
§  (20,0) = X, € supp u par hypothése, puis étant donné (z, ) € K, on obtient par
l rutilisation répétée du théoréme 5.1 avec tantdt X, tantot Y, que

(z,t) = et~ DXz TX(z) 0)esuppu n K.

Remarque. Le théoréme de Bony (théoréme 5.1 ci-dessus) permet aussi de
 démontrer des théorémes d’unicité globale. A titre d’exemple, énongons le
résultat pour un probléme mi-local, mi-global: dans

Q= {yeR |y +* <2},

considérons le champ

1
=0, +ie?*to, si y<-—1,
L=0, si y=z-—1.

Alors, pour tout voisinage @ de (0, 0) et toute u € C'(Q) solution du systéme

{ (L+coJu(x) = 0 dans Q et
ux) =0 dans o_ = {yt)eonlt <0},

la fonction u s’annule au voisinage de (0, 0).
(On remarquera que ce probléme ne posséde pas la propriété d’unicité
locale; en effet, dans @ = {(y,©) e R* | y* 4 t* < 1}, la fonction

0

y 1
u(y,t)=exp<-—J CO(Z,t)dZ—?> si t>0,
uy,t) =0 st t<0,

est C®, solution de (L+co)u(x) = 0 dans o, et vérifie suppu = o,
= {(y,)ew]|t = 0})

- 5.2. CONTRE-EXEMPLE A L’UNICITE LORSQUE LE RANG DE % EST CONSTANT

B vvwig 7y T

i Lorsque le rang de % est constant, le champ L vérifie la condition (R)
' d’aprés le théoréme de Frobenius (cf. 1.2). Dans ’énoncé suivant, ¥~ désigne
la variété intégrale de % passant par x,.
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THEOREME 5.3.  Supposons qu’il existe un voisinage Q de x, tel que le
rang de & soit constant dans Q et que

VnQcQ, ={xeQ|e(x) = ox)} .

Alors il existe un voisinage © de Xo, € C(w) et aeC®w) tels que

(L+co+ayu(x) = 0 dans o,
(54) Vnocsuppu c o, = {xeo|ok) > @x,)}, et
VaeN", 0% a(xy) = 0 (a est « plate » en Xo) .

De plus, si ¢, = 0, on peut choisir a = 0.

Démonstration. Le rang de % étant constant, on peut trouver des coor-
données locales dans un voisinage o de x, qui redressent les variétés intégrales
de %, ou plus précisément, des coordonnées x — (x', x", x,) avec

= (X150 X,) €6 X" = (Xpp 1, X, ), telles que:

xl
1. x, = (0,0,0)
2. do(xo) = (0,0, 1).
3.

Les variétés intégrales de ¥ ont pour équations x” — Cte, x, = Cte
(en particulier, ¥~ a pour équation x” = 0, X, = 0).

Dans ce qui va suivre, nous aurons éventuellement besoin de réduire le
voisinage ®. Le nombre d’étapes étant fini, et les propriétés obtenues restant
vraies si on réduit le voisinage, nous utiliserons toujours la méme lettre ®
sans préciser les modifications de ce dernier.

Comme L reste tangent aux variétés intégrales de %, nous avons L{i(x) = 0
dans o si Y(x) = x> — | x” | % Posons

5 s Ug(x) = exp(—I/\ll(x)) si xeo et Yx) >0, et
(5:3) upx) =0 si xeo et Yx)<O0.

Alors uy € C*(0), Lug(x) = O dans wet ¥ n o < supp uo puisque uy(x’, 0, €)
>0 pour tout x' et tout & >0 tels que (x,0,¢)ew. Pour voir que
Supp Uy < ., il faut exprimer ¢ dans les coordonnées (x/, x”, Xp)-

Par le théoréme des fonctions implicites (cf. le point 2 ci-dessus), il existe
une fonction @oe C*(R"™1) telle que @(x) > ¢(xy) équivaut dans ® a
Xn + ©o(X', x") = 0. L’hypothése sur ¥~ du théoréme nous indique que
®o(x’, 0) > 0 dans o (cf. le point 3 ci-dessus), donc par développement
de Taylor en x” a lordre zéro, @y(x’,x") > —C | x"| dans ® pour une
constante C < oo(C>0). Si donc on a choisi ® assez petit pour que
| x"| < C™3 dans o,

}
iz
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ug0) # 0= Y(x) > 0= x, > | X" [P = x, + @olx, ) > 0= 0(x) > 0

B8 d'ou supp up < @ .
E Nous avons donc donné une solution du probléme (5.4) lorsque ¢y = O.
8 Sinon, le champ L étant non dégénéré, choisissons (lemme 1.3) des coor-

| données (y, t) telles que
g2 1 x, = (0,0)
;.ﬁi 2. L+ ¢y = 0, +ib(y, )+ 0, + c(y, t) & un facteur non nul pres.

Pour tout j € N, posons alors

biy) = 0{b(»,0) et cy) = 0{c(0),

§ 4 puis par récurrence,

; vo(y) = 0,
; (5.6)

Jj
Uj+1(}’) = = kZO Cl}:bk(J’)‘ ayvj——k(y) — cj()’) pour j=0.

Par le théoréme de Borel (cf Hormander [11, th. 1.2.6]), il existe une
} fonction v e C*(o) telle que 9/ v(y, 0) = v;(y). Par (5.6), nous obtenons que la
f fonction |

ay, 1) = — (0(y, O)+ib(y, ) » D,0(y, D) +c(¥, 1)

| est plate en (0, 0).
;  La fonction u(x) = €"®u,(x), ol u, est donnée par (5.5) et v par ce qui
-~ précede est alors solution du probleme (5.4).

Remarques. 1) Pour une discussion du réle du terme d’ordre Z€ro, on
¥4 sc reportera au chapitre suivant.

4§ 2 On notera que par les théorémes 5.2 et 5.3 nous avons completement
B Y ¢lucidé la question de l'unicité pour les problémes caractéristiques de rang
constant. En effet, distinguons les deux situations suivantes:

o — Le rang de % est inférieur ou égal a 2. La condition nécessaire et
suffisante pour qu’il y ait unicité (pour toute perturbation a plate en x,)
est alors que la variété intégrale de ¥ passant par x, ne reste pas loca-
lement dans {@(x) = ¢(x,)} (C’est nécessaire par le théoreme 5.3, et suffisant
par le théoréme 5.2).

| B — Le rang de & est supérieur ou égal a 3. Alors il n’y a jamais
unicité « stable ». En effet, deux cas peuvent se produire: s’il existe des
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points arbitrairement proches de x, dans S = {x e R"| ¢(x) = ¢(x,)} ou le
probléme n’est pas caractéristique, nous pouvons appliquer le théoréme 1.1;
si le probléme est caractéristique en tous les points de S, c’est que la
variété intégrale de ¥ passant par x, reste localement dans S, et nous
pouvons appliquer le théoréme 5.3.

CHAPITRE 6: ROLE DU TERME D’ORDRE ZERO

Aux théorémes 1.1, 2.2, 4.2 et 5.3, nous avons di modifier le terme
d’ordre zéro pour montrer qu’il n’y avait pas unicité de Cauchy. Il est alors
naturel de se demander si de tels problémes possédent tout de méme la
propri¢té d’unicité pour certains termes d’ordre zéro. La réponse a cette
question est positive comme nous le verrons ci-dessous.

Cependant, le role du terme d’ordre zéro est encore mal connu. Nous
nous bornerons ici a énoncer deux remarques qui suggérent la nature des
conditions a imposer. La premiére d’entre elles (théoréme 6.1) est diie a
Lewy [15].

Avant d’énoncer le premier théoréme, rappelons que la résolubilité locale
d’un champ complexe non dégénére a été étudiée par Nirenberg et Tréves [17],
et que sous les hypotheéses du théoréme 2.2, ainsi que sous les hypothéses

du théoréme 5.3 si rg &£ > 3, le champ L n’est localement résoluble en aucun -

point d’'un voisinage de x,; de méme, les hypothéses des théorémes 1.1 et 4.2
entrainent qu’il existe de nombreux points voisins de x, ou L n’est pas
localement résoluble. Il en résulte qu’il existe des fonctions C*® ¢ telles que
I'équation Lv — ¢ = 0 ne posséde pas de solution v au voisinage de ces
points.

THEOREME 6.1. Soit A [(c,) [Pensemble des points de R" au voisinage
desquels léquation Lv(x) + co(x) = 0 ne posséde pas de solution ve C’.
S’il existe un voisinage Q de x, tel que

N eo) 2 Q1 = {xe Q| o(x) = 9(xo)} ,
alors pour tout voisinage ® de x, et toute ue Cl(w) solution du systéme

(6.1) { (L+co)u(x) = 0 dans o et

ux) =0 dans o- = {xeo|ox) < ®(xo)} 5

la fonction u sannule au voisinage de x, .
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