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| et un T > 0 avec b(y, T) ^ 0 pour tout y tel que | y \ < 8 (sinon, changer t

1 en -t). Prenons alors sur y les coordonnées (z, t) où z est l'abscisse

curviligne associée au champ b(y,T)-dy; on notera z0 l'abscisse de x0.

Il existe alors un a > 0 tel que K [z0-oc, z0 + a] x [-T, T] soit un

voisinage compact de x0 dans y contenu dans le voisinage précédent.

Dans ces conditions, tout point de K est dans le support de m, en effet,

(Zo 5 0) x0 e supp u par hypothèse, puis étant donné (z, t) e K, on obtient par

l'utilisation répétée du théorème 5.1 avec tantôt X, tantôt Y, que

(z, t) e(t-T)Xe(z-zo)YeTX(zo,0) e supp u n K

Remarque. Le théorème de Bony (théorème 5.1 ci-dessus) permet aussi de

démontrer des théorèmes d'unicité globale. A titre d'exemple, énonçons le

résultat pour un problème mi-local, mi-global : dans

a {{y, t) e R2 I y2 + t2 < 2}

considérons le champ

î
f L dy + iey+1 dt si y < — 1,

si y > - 1
•

Alors, pour tout voisinage œ de (0, 0) et toute u e C1^) solution du système

(L + c0)w(x) 0 dans Q et

u(x) 0 dans œ_ {(y, t) e cd | t ^ 0}

la fonction u s'annule au voisinage de (0, 0).

(On remarquera que ce problème ne possède pas la propriété d'unicité

locale; en effet, dans cû {(y, t) e R2 | y2 + t2 < 1}, la fonction

u(y, t) exp J c0(z, t)dz — si t > 0

u(y, t) 0 si t ^ 0

est C00, solution de (.L + c0)u(x) 0 dans o, et vérifie supp n co+

{(y, t) g (ù\t^ 0}).

I 5.2. Contre-exemple à l'unicité lorsque le rang de 5£ est constant

Lorsque le rang de ££ est constant, le champ L vérifie la condition (£)
d'après le théorème de Frobenius (cf. 1.2). Dans l'énoncé suivant, y désigne
la variété intégrale de if passant par x0.
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Theoreme 5.3. Supposons qu'il existe un voisinage Q de x0 tel que le
rang de ££ soit constant dans Q et que

'V n £1 cz D+ {x g Q | cp(x) ^ (p(xo)}

Alors il existe un voisinage co de x0, u g C°°(ö>) et a g C°°(co) tels que

(L + c0 + a)u(x) 0 dans co,

(5.4) r n œ c supp u c= o>+ {x g cd | cp(x) ^ cp(x0)}, et
Va g N", a(x0) 0 (a est « plate » en x0)

De plus, sz c0 0, on petz£ choisir a 0.

Démonstration. Le rang de étant constant, on peut trouver des
coordonnées locales dans un voisinage œ de x0 qui redressent les variétés intégrales
de ^f, ou plus précisément, des coordonnées x (x', x", xH) avec
x' (xx,..., xr) et x" (x,.+ 1,..., x„_1), telles que:
1. x0 (0, 0, 0).

2. d<p(x0) (0,0, 1).

3. Les variétés intégrales de 3? ont pour équations x" Cte, xn Cte
(en particulier, ir a pour équation x" 0, xM 0).

Dans ce qui va suivre, nous aurons éventuellement besoin de réduire le
voisinage co. Le nombre d'étapes étant fini, et les propriétés obtenues restant
vraies si on réduit le voisinage, nous utiliserons toujours la même lettre co

sans préciser les modifications de ce dernier.
Comme L reste tangent aux variétés intégrales de jSf, nous avons L\|/(x) 0

dans cd si \|/(x) x3 - | x" | 2. Posons

u0(x) exp (- l/v|/(x)) si x g co et \|/(x) > 0, et
u0(x) 0 si x g œ et \|/(x) ^ 0

Alors u0 g C°°(co), Lu0(x) 0 dans co et if n co c supp u0 puisque u0(x\ 0, e)

> 0 pour tout x! et tout s > 0 tels que (x', 0, e) g co. Pour voir que
supp u0 a co+ il faut exprimer cp dans les coordonnées (x', x", xM).

Par le théorème des fonctions implicites (cf. le point 2 ci-dessus), il existe
une fonction cp0 g C°°(RM *) telle que cp(x) ^ cp(x0) équivaut dans co à
xn T- ÇoC*' x ^ 0. L hypothèse sur du théorème nous indique que
cp0(x', 0)^0 dans co (cf. le point 3 ci-dessus), donc par développement
de Taylor en x à 1 ordre zéro, cp0(x', x") ^ — C | x" | dans co pour une
constante C < oo(C>0). Si donc on a choisi co assez petit pour que
I x" I < C~3 dans co,

(5.5)
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u0{x) # 0 => v|/(x) > 0

d'où supp
Uq

x„> x 1.2/3
Xn + cpo(x', x") >0 => cpW > 0

®4

Nous avons donc donné une solution du problème (5.4) lorsque c0 0.

Sinon, le champ L étant non dégénéré, choisissons (lemme 1.3) des

coordonnées (y, t)telles que

1. Xq(0,0).

2. L + c0 S,+ ib(y, t)-ôy + c(y, t) à un facteur non nul près.

Pour tout j e N, posons alors

h/y) d{ b(y, 0) et c/y) d{ c(y, 0),

puis par récurrence,

»oOO o.

(5.6)

fj+i(y) - t C)bk(y)dyvj-k(y)-c/y) pour j>0.
k 0

Par le théorème de Borel (cf. Hörmander [11, th. 1.2.6]), il existe une

fonction v e Cœ(co) telle que d{ v(y, 0) Vj(y). Par (5.6), nous obtenons que la

fonction

; a(y, t) — (dtv(y, t) + ib(y, t) • dyv(y, t) + c(y, t))

I est plate en (0, 0).

La fonction u(x) ev{x)u0(x\ où u0 est donnée par (5.5) et v par ce qui

précède est alors solution du problème (5.4).

Remarques. 1) Pour une discussion du rôle du terme d'ordre zéro, on

se reportera au chapitre suivant.

2) On notera que par les théorèmes 5.2 et 5.3 nous avons complètement
élucidé la question de l'unicité pour les problèmes caractéristiques de rang
constant. En effet, distinguons les deux situations suivantes :

a — Le rang de est inférieur ou égal à 2. La condition nécessaire et

suffisante pour qu'il y ait unicité (pour toute perturbation a plate en x0)
est alors que la variété intégrale de ££ passant par x0 ne reste pas
localement dans {(p(x) ^ cp(^o)} (c'est nécessaire par le théorème 5.3, et suffisant

par le théorème 5.2).

ß — Le rang de $£ est supérieur ou égal à 3. Alors il n'y a jamais
unicité « stable ». En effet, deux cas peuvent se produire : s'il existe des
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points arbitrairement proches de x0 dans S {xeRn\ <p(x) <p(x0)} où le
problème n'est pas caractéristique, nous pouvons appliquer le théorème 1.1;
si le problème est caractéristique en tous les points de S, c'est que la
variété intégrale de 3? passant par x0 reste localement dans S, et nous
pouvons appliquer le théorème 5.3.

Chapitre 6: Rôle du terme d'ordre zéro

Aux théorèmes 1.1, 2.2, 4.2 et 5.3, nous avons dû modifier le terme
d'ordre zéro pour montrer qu'il n'y avait pas unicité de Cauchy. Il est alors
naturel de se demander si de tels problèmes possèdent tout de même la
propriété d'unicité pour certains termes d'ordre zéro. La réponse à cette
question est positive comme nous le verrons ci-dessous.

Cependant, le rôle du terme d'ordre zéro est encore mal connu. Nous
nous bornerons ici à énoncer deux remarques qui suggèrent la nature des

conditions à imposer. La première d'entre elles (théorème 6.1) est dûe à

Lewy [15].
Avant d'énoncer le premier théorème, rappelons que la résolubilité locale

d'un champ complexe non dégénéré a été étudiée par Nirenberg et Trêves [17],
et que sous les hypothèses du théorème 2.2, ainsi que sous les hypothèses
du théorème 5.3 si rg ^ 3, le champ L n'est localement résoluble en aucun
point d'un voisinage de x0 ; de même, les hypothèses des théorèmes 1.1 et 4.2
entraînent qu'il existe de nombreux points voisins de x0 où L n'est pas
localement résoluble. Il en résulte qu'il existe des fonctions C00 c telles que
l'équation Lv — c 0 ne possède pas de solution v au voisinage de ces

points.

Théorème 6.1. Soit J^j(c0) /'ensemble des points de R" au voisinage
desquels l'équation Lv(x) + c0(x) 0 ne possède pas de solution v e Cj.
S'il existe un voisinage Q de x0 tel que

Jffc<f) Q+ {x g Q, I cp(x) ^ (p(*o)} >

alors pour tout voisinage œ de x0 et toute u e CJ(co) solution du système

^2) | (L + c0)w(x) 0 dans œ et

| u(x) 0 dans œ_ {x e œ | cp(x) < cp(x0)}

la fonction u s'annule au voisinage de x0.
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