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PROBLEMES DE CAUCHY 45

| fglorsque t> 0 tend vers 0. En effet, comme b(5;) = 0 pour tout k, nous
_obtenons par application répétée du théoreme de Rolle que pour tous j
ot k entiers positifs, il existe un point 04 € 18,4 ;, il tel que 0{b(64) = 0;
la limite annoncée en résulte.

CHAPITRE 5: LE PROBLEME CARACTERISTIQUE

Dans ce chapitre, nous donnons deux résultats: un d’unicité, I'autre de
non-unicite.
Au paragraphe 5.1, nous regardons ce qui subsiste du théoreme 1.2
lorsque nous supprimons I'hypothése que le probléme est non caractéristique.
Le résultat d’unicité (théoréme 5.2) découlera d’un theoreme sur la géométrie
] du support d’une solution (théoréme 5.1) qui est di a Bony (cf. Sjostrand
. [22, th. 8.7] qui en donne une extension aux équations d’ordres supérieurs).
| Puis au paragraphe suivant (5.2) nous construisons un contre-exemple a
Punicité sous la condition que le rang de % est constant. Ce dernier
résultat est di a Saint Raymond [21, th. 2.9].

5.1. RESULTAT D’UNICITE LORSQUE 1g % < 2

Plagons-nous dans les hypothéses du théoréme 1.2, mais sans nous donner
de fonction ¢ ni supposer que le probléme est non caractéristique. Cela
signifie que nous sommes dans I'un des deux cas suivants:

1. L vérifie la condition (R) dans un ouvert Q ou rg. % <2 (cf. 1.2).
2. L vérifie 1a condition (P) dans un ouvert Q (cf. 1.2).

- Donnons-nous de plus une solution u € CY(Q) de I'équation (L+cq)u(x)
; . = 0 dans Q. Alors, pour paraphraser le théoréme 1.2, chaque fois que I’'on
- trouvera X, € Q et ¢ € C*(Q) a valeurs réelles tels qu’il existe un voisinage
g © o de x, avec

xo € (Supp un®) < o, = {xe® | o(x) > 9(x0)} ,

‘?; on pourra affirmer que le probléme en x, est caractéristique, c’est-a-dire que
Lo(xo) = 0 ou encore que X@(xy) = Yo(xo) = 0.(si X=Re L et Y=Im L). 3
"; Cette remarque nous donne une relation entre les champs réels X et Y !

ot le fermé F = supp u dont nous allons analyser les consequences dans le i
prochain théoréme.
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Avant de Iénoncer, rappelons quun champ réel X (éventuellement
degénére) défini dans un ouvert Q vérifie toujours la propriété (R). En effet,
pour les points x ou X s’annule, {x} est une variété intégrale, et dans
Pouvert ou X ne s’annule pas, le rang est constamment ¢gal a 1 d’ou la
propriété gréce au théoréme de Frobenius (cf. 1.2). Si X = = ajx) 9;, nous
noterons e“x, la solution x(f) du systéme différentiel ordinaire su1vant

x5(t) = ax())
x(0) =

Si X =0 en x,, €¥x, reste egal 4 x,, tandis que si X # 0 en x,,
e*x, décrit la courbe intégrale de X passant par x,.

THEOREME 5.1. Soient X wun champ réel défini dans un ouvert Q
de R", et F c Q une partie fermée dans Q. Supposons que pour tout
Xo €Q et toute @€ C®(Q) d valeurs réelles,

[3o ouvertde Q:xoeFnoc o, = {xcn|px) > ¢(x)}]

= Xo(xy) =

Alors, pour tout compact K de Q, il existe &> 0 tel que

Xo€FNK e |t|<e=e%x,eF.

Démonstration. Pour un compact K fixé, choisissons un voisinage
compact W de K (c’est-a-dire KCW W compact de Q); il existe alors
€ > 0 ne dépendant que de K, de W et de X tel que pour x,€K
et te]—eg, e[, ¢*x, soit bien défini et reste dans W: par la suite,
chaque € que nous choisirons sera plus petit que le precedent et ne dépendra
que de K, W, X et F. .

Pour tout x, € K, le systéme |

0,0(t, x) + Xo(t, x) =
(5.1)

@0, x) = | x — xo|*
admet une solution ¢ (dépendant de x,) définie dans ]—e,,e,[ x W
pour un g, > 0. La dérivée par rapport a t de ¢(t, ¢”*x,) est nulle & cause
de I'¢équation (5.1), d’ou @(t, ¢*x,) = @(0, x,) = 0. Puis dérivons la fonction
@(t) = 0;0(t, ¢*x,); nous obtenons (en utilisant (5.1)):
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o'(t) = (0,[a.0(t 0] + X [0;0(t 0)]) [ x=etrsy

= [Xa ’aj] O, X) | x=erxxy = Z ajak(etxxo)(Pk(t)
: K=1

dou @) = 0 puisque c’est vérifi€ en ¢ = 0. Comme 00, x) = | x — X0 |2
il existe un g5 > O tel que si xoe K, xe Wet|t] < &,

1
(5.2) o(t, x) = 5 | x — e%xy|2.

Pour x, € F n K, nous avons 0 = inf ¢(0,x) < inf (0, x) et donc
xeFnW xeFnoW

cette inégalité reste vraie lorsque | £ | < € pour un € > 0. Pour toutt € ] —¢, €[
fixé, il existe donc un point x, € F n W ou o(t, x) atteint sa borne inférieure,
soit

x, € (FaW) « (W), = {xe W ot x) > olt, x)} -

En utilisant ’hypothése du théoréme on obtient X¢(t, x,) = 0, et en utilisant
Péquation (5.1), 0,0(t, x,) = 0. Nous avons donc pour tous |t]| < & et
|s] <,

0((t—S)2) = (p(ta xt) — (P(S, xt) < (p(ta xt) - (P(S’ xs) < (P(t> xs) - (P(S, xs)
— 0((t—9))

. douo(t, x,) = 00, xo) = 0.Par (5.2) nous en déduisons que pour xo € F N K

B oct|t]| <ege¥x, = x,€F.

Pour pouvoir tirer les conséquences pour l'unicité de ce théoréme, il
nous faut introduire un nouvel objet géométrique.

Si L vérifie la condition (P) dans un voisinage Q d’un point x, € R"
choisissons des coordonnées (lemme 1.3) dans lesquelles L s’écrit 0, + ib - 0,
a un facteur non nul pres, et notons ¥, la courbe intégrale du champ réel 0,
passant par x,. Si le rang de £ reste égal a 1 au voisinage de x, sur
Y"1, nous dirons que ¥, est la «feuille de ¥ passant par x,». Si au
contraire on peut trouver des points de ¥"; arbitrairement proches de x,
ou le rang de % est égal & 2, nous savons par la propriété (P) qu’il
existe une variété ¥”, de dimension 2 contenant ¥"; et a laquelle le champ L
reste tangent au voisinage de x,; dans ce deuxiéme cas, nous dirons que
7, est la «feuille de ¥ passant par x,» (on remarquera que ¥, n’est
pas nécessairement une variété intégrale de %, et que dans les deux cas

la feuille de ¥ passant par x, est une notion géométrique indépendante des
coordonnées choisies).

—
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De méme, pour n’énoncer qu’un seul théoréme, si L vérifie la condition (R)
dans un voisinage Q d’un point x, € R”, nous appellerons « feuille de &
passant par x, » la variété intégrale de ¥ passant par x,.

Dans I'énoncé suivant, ¥~ désigne la feuille de ¥ passant par x,.

THEOREME 5.2. Supposons qu’il existe un voisinage Q de xo tel que
Pon se trouve dans l'une des deux situations suivantes -

1. L vérifie la condition (R) et 12 ¥ <2 dans Q.
2. L vérifie la condition (P) dans Q.

Si de plus, pour tout voisinage ® de x,,
Voodo, ={xenlox) > olx))},

alors pour tout voisinage ® de x, et toute ue CYw) solution du systéme

(5.3) { (L4+cou(x) = 0 dans o, et

ux) =0 dans o = {xew| P(x) < @(xo)} ,
la fonction u s’annule au voisinage de x,.

Démonstration. Soit u € C'(w) une solution du probléme (5.3); supposons
que x, € supp u. Nous allons montrer qu’il existe alors un voisinage de x,
sur ¥ entiérement contenu dans supp u. En utilisant ensuite ’hypothése
sur 7~ du théoreme, nous en déduisons qu’il existe des points x € supp u
tels que @(x) < @(xy) ce qui contredit le fait que u = 0 dans @_. Clest
donc que x, ¢ supp u, c’est-a-dire que u = 0 au voisinage de x,.

Montrons donc que si x, € supp u, il existe un voisinage de x, sur ¥~
entierement contenu dans supp u. Le champ L étant non dégénéré, nous
pouvons trouver (lemme 1.3) des coordonnées locales (y, t) telles que

1. x, = (0,0), : *

2. L+cy=0,+ib(y,t): 0, + c(y, t) & un facteur non nul pres.

Comme (L+cq)u(x) = 0 dans o, nous pouvons affirmer grice au théoréme 1.2
que les hypothéses du théoréme 5.1 sont vérifiées dans @ avec F = supp u

et chacun des deux champs réels X = 0, et Y = b(y, t) - 0,. Nous devons
alors distinguer deux cas:

1. Sidim v = 1, il suffit d’éppliquer le theoréme 5.1 avec X et K = {x,}
pour obtenir un voisinage de x, sur ¥~ entiérement contenu dans supp wu.

2. Sidim 7" = 2, nous pouvons trouver un voisinage de x, inclus dans ®
qui soit de la forme {(y,t)eR"| |y| <38 et |[t| < T} pour un & > 0
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§ etun T > 0 avec b(y, T) # 0 pour tout y tel que |y | < 8 (sinon, changer ¢t
: ien —1t). Prenons alors sur ¥ les coordonnées (z,t) ou z est I'abscisse
| ~ curviligne associée au champ b(y, T)-d,;, on notera z, I’abscisse de xg.
8 11 existe alors un o > 0 tel que K = [zo—a, zo+a] x [—T, T] soit un
voisinage compact de x, dans ¥~ contenu dans le voisinage précédent.

Dans ces conditions, tout point de K est dans le support de u; en effet,
§  (20,0) = X, € supp u par hypothése, puis étant donné (z, ) € K, on obtient par
l rutilisation répétée du théoréme 5.1 avec tantdt X, tantot Y, que

(z,t) = et~ DXz TX(z) 0)esuppu n K.

Remarque. Le théoréme de Bony (théoréme 5.1 ci-dessus) permet aussi de
 démontrer des théorémes d’unicité globale. A titre d’exemple, énongons le
résultat pour un probléme mi-local, mi-global: dans

Q= {yeR |y +* <2},

considérons le champ

1
=0, +ie?*to, si y<-—1,
L=0, si y=z-—1.

Alors, pour tout voisinage @ de (0, 0) et toute u € C'(Q) solution du systéme

{ (L+coJu(x) = 0 dans Q et
ux) =0 dans o_ = {yt)eonlt <0},

la fonction u s’annule au voisinage de (0, 0).
(On remarquera que ce probléme ne posséde pas la propriété d’unicité
locale; en effet, dans @ = {(y,©) e R* | y* 4 t* < 1}, la fonction

0

y 1
u(y,t)=exp<-—J CO(Z,t)dZ—?> si t>0,
uy,t) =0 st t<0,

est C®, solution de (L+co)u(x) = 0 dans o, et vérifie suppu = o,
= {(y,)ew]|t = 0})

- 5.2. CONTRE-EXEMPLE A L’UNICITE LORSQUE LE RANG DE % EST CONSTANT

B vvwig 7y T

i Lorsque le rang de % est constant, le champ L vérifie la condition (R)
' d’aprés le théoréme de Frobenius (cf. 1.2). Dans ’énoncé suivant, ¥~ désigne
la variété intégrale de % passant par x,.
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THEOREME 5.3.  Supposons qu’il existe un voisinage Q de x, tel que le
rang de & soit constant dans Q et que

VnQcQ, ={xeQ|e(x) = ox)} .

Alors il existe un voisinage © de Xo, € C(w) et aeC®w) tels que

(L+co+ayu(x) = 0 dans o,
(54) Vnocsuppu c o, = {xeo|ok) > @x,)}, et
VaeN", 0% a(xy) = 0 (a est « plate » en Xo) .

De plus, si ¢, = 0, on peut choisir a = 0.

Démonstration. Le rang de % étant constant, on peut trouver des coor-
données locales dans un voisinage o de x, qui redressent les variétés intégrales
de %, ou plus précisément, des coordonnées x — (x', x", x,) avec

= (X150 X,) €6 X" = (Xpp 1, X, ), telles que:

xl
1. x, = (0,0,0)
2. do(xo) = (0,0, 1).
3.

Les variétés intégrales de ¥ ont pour équations x” — Cte, x, = Cte
(en particulier, ¥~ a pour équation x” = 0, X, = 0).

Dans ce qui va suivre, nous aurons éventuellement besoin de réduire le
voisinage ®. Le nombre d’étapes étant fini, et les propriétés obtenues restant
vraies si on réduit le voisinage, nous utiliserons toujours la méme lettre ®
sans préciser les modifications de ce dernier.

Comme L reste tangent aux variétés intégrales de %, nous avons L{i(x) = 0
dans o si Y(x) = x> — | x” | % Posons

5 s Ug(x) = exp(—I/\ll(x)) si xeo et Yx) >0, et
(5:3) upx) =0 si xeo et Yx)<O0.

Alors uy € C*(0), Lug(x) = O dans wet ¥ n o < supp uo puisque uy(x’, 0, €)
>0 pour tout x' et tout & >0 tels que (x,0,¢)ew. Pour voir que
Supp Uy < ., il faut exprimer ¢ dans les coordonnées (x/, x”, Xp)-

Par le théoréme des fonctions implicites (cf. le point 2 ci-dessus), il existe
une fonction @oe C*(R"™1) telle que @(x) > ¢(xy) équivaut dans ® a
Xn + ©o(X', x") = 0. L’hypothése sur ¥~ du théoréme nous indique que
®o(x’, 0) > 0 dans o (cf. le point 3 ci-dessus), donc par développement
de Taylor en x” a lordre zéro, @y(x’,x") > —C | x"| dans ® pour une
constante C < oo(C>0). Si donc on a choisi ® assez petit pour que
| x"| < C™3 dans o,

}
iz
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ug0) # 0= Y(x) > 0= x, > | X" [P = x, + @olx, ) > 0= 0(x) > 0

B8 d'ou supp up < @ .
E Nous avons donc donné une solution du probléme (5.4) lorsque ¢y = O.
8 Sinon, le champ L étant non dégénéré, choisissons (lemme 1.3) des coor-

| données (y, t) telles que
g2 1 x, = (0,0)
;.ﬁi 2. L+ ¢y = 0, +ib(y, )+ 0, + c(y, t) & un facteur non nul pres.

Pour tout j € N, posons alors

biy) = 0{b(»,0) et cy) = 0{c(0),

§ 4 puis par récurrence,

; vo(y) = 0,
; (5.6)

Jj
Uj+1(}’) = = kZO Cl}:bk(J’)‘ ayvj——k(y) — cj()’) pour j=0.

Par le théoréme de Borel (cf Hormander [11, th. 1.2.6]), il existe une
} fonction v e C*(o) telle que 9/ v(y, 0) = v;(y). Par (5.6), nous obtenons que la
f fonction |

ay, 1) = — (0(y, O)+ib(y, ) » D,0(y, D) +c(¥, 1)

| est plate en (0, 0).
;  La fonction u(x) = €"®u,(x), ol u, est donnée par (5.5) et v par ce qui
-~ précede est alors solution du probleme (5.4).

Remarques. 1) Pour une discussion du réle du terme d’ordre Z€ro, on
¥4 sc reportera au chapitre suivant.

4§ 2 On notera que par les théorémes 5.2 et 5.3 nous avons completement
B Y ¢lucidé la question de l'unicité pour les problémes caractéristiques de rang
constant. En effet, distinguons les deux situations suivantes:

o — Le rang de % est inférieur ou égal a 2. La condition nécessaire et
suffisante pour qu’il y ait unicité (pour toute perturbation a plate en x,)
est alors que la variété intégrale de ¥ passant par x, ne reste pas loca-
lement dans {@(x) = ¢(x,)} (C’est nécessaire par le théoreme 5.3, et suffisant
par le théoréme 5.2).

| B — Le rang de & est supérieur ou égal a 3. Alors il n’y a jamais
unicité « stable ». En effet, deux cas peuvent se produire: s’il existe des
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points arbitrairement proches de x, dans S = {x e R"| ¢(x) = ¢(x,)} ou le
probléme n’est pas caractéristique, nous pouvons appliquer le théoréme 1.1;
si le probléme est caractéristique en tous les points de S, c’est que la
variété intégrale de ¥ passant par x, reste localement dans S, et nous
pouvons appliquer le théoréme 5.3.

CHAPITRE 6: ROLE DU TERME D’ORDRE ZERO

Aux théorémes 1.1, 2.2, 4.2 et 5.3, nous avons di modifier le terme
d’ordre zéro pour montrer qu’il n’y avait pas unicité de Cauchy. Il est alors
naturel de se demander si de tels problémes possédent tout de méme la
propri¢té d’unicité pour certains termes d’ordre zéro. La réponse a cette
question est positive comme nous le verrons ci-dessous.

Cependant, le role du terme d’ordre zéro est encore mal connu. Nous
nous bornerons ici a énoncer deux remarques qui suggérent la nature des
conditions a imposer. La premiére d’entre elles (théoréme 6.1) est diie a
Lewy [15].

Avant d’énoncer le premier théoréme, rappelons que la résolubilité locale
d’un champ complexe non dégénére a été étudiée par Nirenberg et Tréves [17],
et que sous les hypotheéses du théoréme 2.2, ainsi que sous les hypothéses

du théoréme 5.3 si rg &£ > 3, le champ L n’est localement résoluble en aucun -

point d’'un voisinage de x,; de méme, les hypothéses des théorémes 1.1 et 4.2
entrainent qu’il existe de nombreux points voisins de x, ou L n’est pas
localement résoluble. Il en résulte qu’il existe des fonctions C*® ¢ telles que
I'équation Lv — ¢ = 0 ne posséde pas de solution v au voisinage de ces
points.

THEOREME 6.1. Soit A [(c,) [Pensemble des points de R" au voisinage
desquels léquation Lv(x) + co(x) = 0 ne posséde pas de solution ve C’.
S’il existe un voisinage Q de x, tel que

N eo) 2 Q1 = {xe Q| o(x) = 9(xo)} ,
alors pour tout voisinage ® de x, et toute ue Cl(w) solution du systéme

(6.1) { (L+co)u(x) = 0 dans o et

ux) =0 dans o- = {xeo|ox) < ®(xo)} 5

la fonction u sannule au voisinage de x, .
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