Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 32 (1986)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: L'UNICITÉ POUR LES PROBLÈMES DE CAUCHY LINÉAIRES DU

PREMIER ORDRE

Autor: Raymond, Xavier Saint

Kapitel: Chapitre 5: Le problème caractéristique

DOI: https://doi.org/10.5169/seals-55077

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

lorsque t > 0 tend vers 0. En effet, comme $b(\delta_k) = 0$ pour tout k, nous obtenons par application répétée du théorème de Rolle que pour tous j et k entiers positifs, il existe un point $\theta_k^j \in]\delta_{k+j}$, $\delta_k[$ tel que $\partial_t^j b(\theta_k^j) = 0$; la limite annoncée en résulte.

CHAPITRE 5: LE PROBLÈME CARACTÉRISTIQUE

Dans ce chapitre, nous donnons deux résultats: l'un d'unicité, l'autre de non-unicité.

Au paragraphe 5.1, nous regardons ce qui subsiste du théorème 1.2 lorsque nous supprimons l'hypothèse que le problème est non caractéristique. Le résultat d'unicité (théorème 5.2) découlera d'un théorème sur la géométrie du support d'une solution (théorème 5.1) qui est dû à Bony (cf. Sjöstrand [22, th. 8.7] qui en donne une extension aux équations d'ordres supérieurs).

Puis au paragraphe suivant (5.2) nous construisons un contre-exemple à l'unicité sous la condition que le rang de \mathscr{L} est constant. Ce dernier résultat est dû à Saint Raymond [21, th. 2.9].

5.1. Résultat d'unicité lorsque rg $\mathscr{L} \leqslant 2$

Plaçons-nous dans les hypothèses du théorème 1.2, mais sans nous donner de fonction ϕ ni supposer que le problème est non caractéristique. Cela signifie que nous sommes dans l'un des deux cas suivants:

- 1. L vérifie la condition (R) dans un ouvert Ω où rg $\mathcal{L} \leq 2$ (cf. 1.2).
- 2. L vérifie la condition (P) dans un ouvert Ω (cf. 1.2).

Donnons-nous de plus une solution $u \in C^1(\Omega)$ de l'équation $(L+c_0)u(x)$ = 0 dans Ω . Alors, pour paraphraser le théorème 1.2, chaque fois que l'on trouvera $x_0 \in \Omega$ et $\varphi \in C^{\infty}(\Omega)$ à valeurs réelles tels qu'il existe un voisinage ω de x_0 avec

$$x_0 \in (\text{supp } u \cap \omega) \subset \omega_+ = \{x \in \omega \mid \varphi(x) \geqslant \varphi(x_0)\},$$

on pourra affirmer que le problème en x_0 est caractéristique, c'est-à-dire que $L\phi(x_0)=0$ ou encore que $X\phi(x_0)=Y\phi(x_0)=0$ (si $X=\operatorname{Re} L$ et $Y=\operatorname{Im} L$). Cette remarque nous donne une relation entre les champs réels X et Y et le fermé $F=\sup u$ dont nous allons analyser les conséquences dans le prochain théorème.

Avant de l'énoncer, rappelons qu'un champ réel X (éventuellement dégénéré) défini dans un ouvert Ω vérifie toujours la propriété (R). En effet, pour les points x où X s'annule, $\{x\}$ est une variété intégrale, et dans l'ouvert où X ne s'annule pas, le rang est constamment égal à 1 d'où la propriété grâce au théorème de Frobenius (cf. 1.2). Si $X = \sum a_j(x) \partial_j$, nous noterons $e^{tX}x_0$ la solution x(t) du système différentiel ordinaire suivant:

$$\begin{cases} x'_j(t) = a_j(x(t)) \\ x(0) = x_0. \end{cases}$$

Si X=0 en x_0 , $e^{tX}x_0$ reste égal à x_0 , tandis que si $X\neq 0$ en x_0 , $e^{tX}x_0$ décrit la courbe intégrale de X passant par x_0 .

Théorème 5.1. Soient X un champ réel défini dans un ouvert Ω de \mathbf{R}^n , et $F \subset \Omega$ une partie fermée dans Ω . Supposons que pour tout $x_0 \in \Omega$ et toute $\varphi \in C^{\infty}(\Omega)$ à valeurs réelles,

$$\begin{bmatrix} \exists \omega \ ouvert \ de \ \Omega \colon x_0 \in F \cap \omega \subset \omega_+ = \{x \in \omega \mid \varphi(x) \geqslant \varphi(x_0)\} \end{bmatrix}$$
$$\Rightarrow X\varphi(x_0) = 0.$$

Alors, pour tout compact K de Ω , il existe $\epsilon > 0$ tel que

$$x_0 \in F \cap K$$
 et $|t| < \varepsilon \Rightarrow e^{tX} x_0 \in F$.

Démonstration. Pour un compact K fixé, choisissons un voisinage compact W de K (c'est-à-dire $K \subset W$, W compact de Ω); il existe alors $\varepsilon_1 > 0$ ne dépendant que de K, de W et de X tel que pour $x_0 \in K$ et $t \in]-\varepsilon_1$, $\varepsilon_1[$, $e^{tX}x_0$ soit bien défini et reste dans W; par la suite, chaque ε que nous choisirons sera plus petit que le précédent, et ne dépendra que de K, W, X et F.

Pour tout $x_0 \in K$, le système.

(5.1)
$$\begin{cases} \partial_t \varphi(t, x) + X \varphi(t, x) = 0 \\ \varphi(0, x) = |x - x_0|^2 \end{cases}$$

admet une solution φ (dépendant de x_0) définie dans $]-\varepsilon_2, \varepsilon_2[\times W]$ pour un $\varepsilon_2 > 0$. La dérivée par rapport à t de $\varphi(t, e^{tX}x_0)$ est nulle à cause de l'équation (5.1), d'où $\varphi(t, e^{tX}x_0) = \varphi(0, x_0) = 0$. Puis dérivons la fonction $\varphi_j(t) = \partial_j \varphi(t, e^{tX}x_0)$; nous obtenons (en utilisant (5.1)):

$$\varphi'_{j}(t) = \left(\partial_{j} \left[\partial_{t} \varphi(t, x)\right] + X \left[\partial_{j} \varphi(t, x)\right]\right) \big|_{x = e^{tX} x_{0}}$$

$$= \left[X, \partial_{j}\right] \varphi(t, x) \big|_{x = e^{tX} x_{0}} = \sum_{k=1}^{n} \partial_{j} a_{k}(e^{tX} x_{0}) \varphi_{k}(t)$$

d'où $\varphi_j(t) = 0$ puisque c'est vérifié en t = 0. Comme $\varphi(0, x) = |x - x_0|^2$, il existe un $\varepsilon_3 > 0$ tel que si $x_0 \in K$, $x \in W$ et $|t| < \varepsilon_3$,

(5.2)
$$\varphi(t, x) \geqslant \frac{1}{2} |x - e^{tX}x_0|^2.$$

Pour $x_0 \in F \cap K$, nous avons $0 = \inf_{x \in F \cap W} \varphi(0, x) < \inf_{x \in F \cap \partial W} \varphi(0, x)$ et donc cette inégalité reste vraie lorsque $|t| < \varepsilon$ pour un $\varepsilon > 0$. Pour tout $t \in]-\varepsilon$, ε [fixé, il existe donc un point $x_t \in F \cap W$ où $\varphi(t, x)$ atteint sa borne inférieure, soit:

$$x_t \in (F \cap \mathring{W}) \subset (\mathring{W})_+ = \left\{ x \in \mathring{W} \mid \varphi(t, x) \geq \varphi(t, x_t) \right\}.$$

En utilisant l'hypothèse du théorème on obtient $X\varphi(t,x_t)=0$, et en utilisant l'équation (5.1), $\partial_t\varphi(t,x_t)=0$. Nous avons donc pour tous $|t|<\varepsilon$ et $|s|<\varepsilon$,

$$O((t-s)^{2}) = \varphi(t, x_{t}) - \varphi(s, x_{t}) \leq \varphi(t, x_{t}) - \varphi(s, x_{s}) \leq \varphi(t, x_{s}) - \varphi(s, x_{s})$$

$$= O((t-s)^{2})$$

d'où $\varphi(t, x_t) = \varphi(0, x_0) = 0$. Par (5.2) nous en déduisons que pour $x_0 \in F \cap K$ et $|t| < \varepsilon$, $e^{tX}x_0 = x_t \in F$.

Pour pouvoir tirer les conséquences pour l'unicité de ce théorème, il nous faut introduire un nouvel objet géométrique.

Si L vérifie la condition (P) dans un voisinage Ω d'un point $x_0 \in \mathbb{R}^n$, choisissons des coordonnées (lemme 1.3) dans lesquelles L s'écrit $\partial_t + ib \cdot \partial_y$ à un facteur non nul près, et notons \mathscr{V}_1 la courbe intégrale du champ réel ∂_t passant par x_0 . Si le rang de \mathscr{L} reste égal à 1 au voisinage de x_0 sur \mathscr{V}_1 , nous dirons que \mathscr{V}_1 est la «feuille de \mathscr{L} passant par x_0 ». Si au contraire on peut trouver des points de \mathscr{V}_1 arbitrairement proches de x_0 où le rang de \mathscr{L} est égal à 2, nous savons par la propriété (P) qu'il existe une variété \mathscr{V}_2 de dimension 2 contenant \mathscr{V}_1 et à laquelle le champ L reste tangent au voisinage de x_0 ; dans ce deuxième cas, nous dirons que \mathscr{V}_2 est la «feuille de \mathscr{L} passant par x_0 » (on remarquera que \mathscr{V}_2 n'est pas nécessairement une variété intégrale de \mathscr{L} , et que dans les deux cas la feuille de \mathscr{L} passant par x_0 est une notion géométrique indépendante des coordonnées choisies).

De même, pour n'énoncer qu'un seul théorème, si L vérifie la condition (R) dans un voisinage Ω d'un point $x_0 \in \mathbf{R}^n$, nous appellerons « feuille de $\mathscr L$ passant par x_0 » la variété intégrale de $\mathscr L$ passant par x_0 .

Dans l'énoncé suivant, $\mathscr V$ désigne la feuille de $\mathscr L$ passant par x_0 .

Théorème 5.2. Supposons qu'il existe un voisinage Ω de x_0 tel que l'on se trouve dans l'une des deux situations suivantes:

- 1. L vérifie la condition (R) et $\operatorname{rg} \mathscr{L} \leqslant 2$ dans Ω .
- 2. L vérifie la condition (P) dans Ω .

Si de plus, pour tout voisinage ω de x_0 ,

$$\mathcal{V} \cap \omega \neq \omega_+ = \{ x \in \omega \mid \varphi(x) \geqslant \varphi(x_0) \},\,$$

alors pour tout voisinage ω de x_0 et toute $u \in C^1(\omega)$ solution du système

(5.3)
$$\begin{cases} (L+c_0)u(x) = 0 & dans & \omega, \ et \\ u(x) = 0 & dans & \omega_- = \{x \in \omega \mid \varphi(x) \leqslant \varphi(x_0)\}, \end{cases}$$

la fonction u s'annule au voisinage de x_0 .

Démonstration. Soit $u \in C^1(\omega)$ une solution du problème (5.3); supposons que $x_0 \in \text{supp } u$. Nous allons montrer qu'il existe alors un voisinage de x_0 sur $\mathscr V$ entièrement contenu dans supp u. En utilisant ensuite l'hypothèse sur $\mathscr V$ du théorème, nous en déduisons qu'il existe des points $x \in \text{supp } u$ tels que $\varphi(x) < \varphi(x_0)$ ce qui contredit le fait que u = 0 dans ω_- . C'est donc que $x_0 \notin \text{supp } u$, c'est-à-dire que u = 0 au voisinage de x_0 .

Montrons donc que si $x_0 \in \text{supp } u$, il existe un voisinage de $x_0 \in \text{sur } \mathcal{V}$ entièrement contenu dans supp u. Le champ L étant non dégénéré, nous pouvons trouver (lemme 1.3) des coordonnées locales (y, t) telles que

- 1. $x_0 = (0, 0),$
- 2. $L + c_0 = \partial_t + ib(y, t) \cdot \partial_y + c(y, t)$ à un facteur non nul près.

Comme $(L+c_0)u(x)=0$ dans ω , nous pouvons affirmer grâce au théorème 1.2 que les hypothèses du théorème 5.1 sont vérifiées dans ω avec $F=\sup u$ et chacun des deux champs réels $X=\partial_t$ et $Y=b(y,t)\cdot\partial_y$. Nous devons alors distinguer deux cas:

- 1. Si dim $\mathscr{V} = 1$, il suffit d'appliquer le théorème 5.1 avec X et $K = \{x_0\}$ pour obtenir un voisinage de x_0 sur \mathscr{V} entièrement contenu dans supp u.
- 2. Si dim $\mathscr{V}=2$, nous pouvons trouver un voisinage de x_0 inclus dans ω qui soit de la forme $\{(y,t)\in \mathbf{R}^n\,|\, |y|<\delta \text{ et } |t|\leqslant T\}$ pour un $\delta>0$

et un T>0 avec $b(y,T)\neq 0$ pour tout y tel que $|y|<\delta$ (sinon, changer t en -t). Prenons alors sur $\mathscr V$ les coordonnées (z,t) où z est l'abscisse curviligne associée au champ $b(y,T)\cdot\partial_y$; on notera z_0 l'abscisse de x_0 . Il existe alors un $\alpha>0$ tel que $K=[z_0-\alpha,z_0+\alpha]\times[-T,T]$ soit un voisinage compact de x_0 dans $\mathscr V$ contenu dans le voisinage précédent.

Dans ces conditions, tout point de K est dans le support de u; en effet, $(z_0, 0) = x_0 \in \text{supp } u$ par hypothèse, puis étant donné $(z, t) \in K$, on obtient par l'utilisation répétée du théorème 5.1 avec tantôt X, tantôt Y, que

$$(z, t) = e^{(t-T)X}e^{(z-z_0)Y}e^{TX}(z_0, 0) \in \text{supp } u \cap K.$$

Remarque. Le théorème de Bony (théorème 5.1 ci-dessus) permet aussi de démontrer des théorèmes d'unicité globale. A titre d'exemple, énonçons le résultat pour un problème mi-local, mi-global: dans

$$\Omega = \{(y, t) \in \mathbf{R}^2 \mid y^2 + t^2 < 2\},\,$$

considérons le champ

$$\left\{ \begin{array}{ll} L = \partial_y + ie^{\frac{1}{y+1}} \, \partial_t & \mathrm{si} \quad y < -1 \, , \\ L = \partial_y & \mathrm{si} \quad y \geqslant -1 \, . \end{array} \right.$$

Alors, pour tout voisinage ω de (0, 0) et toute $u \in C^1(\Omega)$ solution du système

$$\left\{ \begin{array}{ll} (L+c_0)u(x) = 0 & \mathrm{dans} & \Omega & \mathrm{et} \\[0.2cm] u(x) = 0 & \mathrm{dans} & \omega_- = \{(y,t) \in \omega \mid t \leqslant 0\} \,, \end{array} \right.$$

la fonction u s'annule au voisinage de (0, 0).

(On remarquera que ce problème ne possède pas la propriété d'unicité locale; en effet, dans $\omega = \{(y, t) \in \mathbf{R}^2 \mid y^2 + t^2 < 1\}$, la fonction

$$\begin{cases} u(y,t) = \exp\left(-\int_0^y c_0(z,t)dz - \frac{1}{t}\right) & \text{si} \quad t > 0, \\ u(y,t) = 0 & \text{si} \quad t \le 0, \end{cases}$$

est C^{∞} , solution de $(L+c_0)u(x)=0$ dans ω , et vérifie supp $u=\omega_+=\{(y,t)\in\omega\mid t\geqslant 0\}$).

5.2. Contre-exemple à l'unicité lorsque le rang de $\mathscr L$ est constant

Lorsque le rang de \mathscr{L} est constant, le champ L vérifie la condition (R) d'après le théorème de Frobenius (cf. 1.2). Dans l'énoncé suivant, \mathscr{V} désigne la variété intégrale de \mathscr{L} passant par x_0 .

Théorème 5.3. Supposons qu'il existe un voisinage Ω de x_0 tel que le rang de $\mathscr L$ soit constant dans Ω et que

$$\mathscr{V} \cap \Omega \subset \Omega_+ = \{x \in \Omega \mid \varphi(x) \geqslant \varphi(x_0)\}.$$

Alors il existe un voisinage ω de x_0 , $u \in C^{\infty}(\omega)$ et $a \in C^{\infty}(\omega)$ tels que

(5.4)
$$\begin{cases} (L+c_0+a)u(x) = 0 & dans & \omega, \\ \mathscr{V} \cap \omega \subset \text{supp } u \subset \omega_+ = \{x \in \omega \mid \varphi(x) \geqslant \varphi(x_0)\}, & et \\ \forall \alpha \in \mathbf{N}^n, \, \partial_x^\alpha \, a(x_0) = 0 & (a \quad est \ll plate \gg en \quad x_0). \end{cases}$$

De plus, si $c_0 = 0$, on peut choisir a = 0.

Démonstration. Le rang de \mathscr{L} étant constant, on peut trouver des coordonnées locales dans un voisinage ω de x_0 qui redressent les variétés intégrales de \mathscr{L} , ou plus précisément, des coordonnées $x = (x', x'', x_n)$ avec $x' = (x_1, ..., x_r)$ et $x'' = (x_{r+1}, ..., x_{n-1})$, telles que:

- 1. $x_0 = (0, 0, 0)$.
- 2. $d\varphi(x_0) = (0, 0, 1)$.
- 3. Les variétés intégrales de \mathscr{L} ont pour équations x'' = Cte, $x_n = Cte$ (en particulier, \mathscr{V} a pour équation x'' = 0, $x_n = 0$).

Dans ce qui va suivre, nous aurons éventuellement besoin de réduire le voisinage ω . Le nombre d'étapes étant fini, et les propriétés obtenues restant vraies si on réduit le voisinage, nous utiliserons toujours la même lettre ω sans préciser les modifications de ce dernier.

Comme L reste tangent aux variétés intégrales de \mathcal{L} , nous avons $L\psi(x)=0$ dans ω si $\psi(x)=x_n^3-|x''|^2$. Posons

(5.5)
$$\begin{cases} u_0(x) = \exp\left(-1/\psi(x)\right) & \text{si } x \in \omega \quad \text{et} \quad \psi(x) > 0, \quad \text{et} \\ u_0(x) = 0 & \text{si } x \in \omega \quad \text{et} \quad \psi(x) \leqslant 0. \end{cases}$$

Alors $u_0 \in C^{\infty}(\omega)$, $Lu_0(x) = 0$ dans ω et $\mathscr{V} \cap \omega \subset \text{supp } u_0$ puisque $u_0(x', 0, \varepsilon) > 0$ pour tout x' et tout $\varepsilon > 0$ tels que $(x', 0, \varepsilon) \in \omega$. Pour voir que supp $u_0 \subset \omega_+$, il faut exprimer φ dans les coordonnées (x', x'', x_n) .

Par le théorème des fonctions implicites (cf. le point 2 ci-dessus), il existe une fonction $\varphi_0 \in C^\infty(\mathbb{R}^{n-1})$ telle que $\varphi(x) \geqslant \varphi(x_0)$ équivaut dans ω à $x_n + \varphi_0(x', x'') \geqslant 0$. L'hypothèse sur $\mathscr V$ du théorème nous indique que $\varphi_0(x', 0) \geqslant 0$ dans ω (cf. le point 3 ci-dessus), donc par développement de Taylor en x'' à l'ordre zéro, $\varphi_0(x', x'') \geqslant -C |x''|$ dans ω pour une constante $C < \infty(C > 0)$. Si donc on a choisi ω assez petit pour que $|x''| < C^{-3}$ dans ω ,

$$u_0(x) \neq 0 \Rightarrow \psi(x) > 0 \Rightarrow x_n > |x''|^{2/3} \Rightarrow x_n + \varphi_0(x', x'') > 0 \Rightarrow \varphi(x) \geqslant 0$$

d'où supp $u_0 \subset \omega_+$.

Nous avons donc donné une solution du problème (5.4) lorsque $c_0=0$. Sinon, le champ L étant non dégénéré, choisissons (lemme 1.3) des coordonnées (y,t) telles que

1.
$$x_0 = (0, 0)$$
.

2.
$$L + c_0 = \partial_t + ib(y, t) \cdot \partial_y + c(y, t)$$
 à un facteur non nul près.

Pour tout $j \in \mathbb{N}$, posons alors

$$b_i(y) = \partial_t^j b(y, 0)$$
 et $c_j(y) = \partial_t^j c(y, 0)$,

puis par récurrence,

(5.6)
$$\begin{cases} v_0(y) = 0, \\ v_{j+1}(y) = -\sum_{k=0}^{j} C_j^k b_k(y) \cdot \partial_y v_{j-k}(y) - c_j(y) & \text{pour } j \ge 0. \end{cases}$$

Par le théorème de Borel (cf. Hörmander [11, th. 1.2.6]), il existe une fonction $v \in C^{\infty}(\omega)$ telle que $\partial_t^j v(y, 0) = v_j(y)$. Par (5.6), nous obtenons que la fonction

$$a(y, t) = - (\partial_t v(y, t) + ib(y, t) \cdot \partial_y v(y, t) + c(y, t))$$

est plate en (0, 0).

La fonction $u(x) = e^{v(x)}u_0(x)$, où u_0 est donnée par (5.5) et v par ce qui précède est alors solution du problème (5.4).

Remarques. 1) Pour une discussion du rôle du terme d'ordre zéro, on se reportera au chapitre suivant.

- 2) On notera que par les théorèmes 5.2 et 5.3 nous avons complètement élucidé la question de l'unicité pour les problèmes caractéristiques de rang constant. En effet, distinguons les deux situations suivantes:
- α Le rang de \mathscr{L} est inférieur ou égal à 2. La condition nécessaire et suffisante pour qu'il y ait unicité (pour toute perturbation a plate en x_0) est alors que la variété intégrale de \mathscr{L} passant par x_0 ne reste pas localement dans $\{\phi(x) \ge \phi(x_0)\}$ (c'est nécessaire par le théorème 5.3, et suffisant par le théorème 5.2).
- β Le rang de \mathscr{L} est supérieur ou égal à 3. Alors il n'y a jamais unicité « stable ». En effet, deux cas peuvent se produire: s'il existe des

points arbitrairement proches de x_0 dans $S = \{x \in \mathbb{R}^n \mid \varphi(x) = \varphi(x_0)\}$ où le problème n'est pas caractéristique, nous pouvons appliquer le théorème 1.1; si le problème est caractéristique en tous les points de S, c'est que la variété intégrale de $\mathscr L$ passant par x_0 reste localement dans S, et nous pouvons appliquer le théorème 5.3.

Chapitre 6: Rôle du terme d'ordre zéro

Aux théorèmes 1.1, 2.2, 4.2 et 5.3, nous avons dû modifier le terme d'ordre zéro pour montrer qu'il n'y avait pas unicité de Cauchy. Il est alors naturel de se demander si de tels problèmes possèdent tout de même la propriété d'unicité pour certains termes d'ordre zéro. La réponse à cette question est positive comme nous le verrons ci-dessous.

Cependant, le rôle du terme d'ordre zéro est encore mal connu. Nous nous bornerons ici à énoncer deux remarques qui suggèrent la nature des conditions à imposer. La première d'entre elles (théorème 6.1) est dûe à Lewy [15].

Avant d'énoncer le premier théorème, rappelons que la résolubilité locale d'un champ complexe non dégénéré a été étudiée par Nirenberg et Trèves [17], et que sous les hypothèses du théorème 2.2, ainsi que sous les hypothèses du théorème 5.3 si rg $\mathscr{L} \geqslant 3$, le champ L n'est localement résoluble en aucun point d'un voisinage de x_0 ; de même, les hypothèses des théorèmes 1.1 et 4.2 entraînent qu'il existe de nombreux points voisins de x_0 où L n'est pas localement résoluble. Il en résulte qu'il existe des fonctions C^{∞} c telles que l'équation Lv-c=0 ne possède pas de solution v au voisinage de ces points.

Théorème 6.1. Soit $\mathcal{N}_j(c_0)$ l'ensemble des points de \mathbf{R}^n au voisinage desquels l'équation $Lv(x)+c_0(x)=0$ ne possède pas de solution $v\in C^j$. S'il existe un voisinage Ω de x_0 tel que

$$\overline{\mathcal{N}_{j}(c_0)} \supset \Omega_+ = \{ x \in \Omega \mid \varphi(x) \geqslant \varphi(x_0) \},\,$$

alors pour tout voisinage ω de x_0 et toute $u \in C^j(\omega)$ solution du système

(6.1)
$$\begin{cases} (L+c_0)u(x) = 0 & dans & \omega & et \\ u(x) = 0 & dans & \omega_- = \{x \in \omega \mid \varphi(x) \leqslant \varphi(x_0)\}, \end{cases}$$

la fonction u s'annule au voisinage de x_0 .