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36 ‘ X. SAINT RAYMOND

- Par continuitg, il existe un &€ > 0 suffisamment petit pour que le probléme
restreint 4 y x ]— T, T[ se présente de la fagon suivante:

Lo ¥ = Jzo—¢,2o+e[x]—T, T[cyx]-T, T[;

2. u(z, ty) # O pour z€Jzo—¢, zo+¢[;

3. L4co=20,+ibz,8)9, + c(z,t) dans ¥, = Jzo—¢, zo+€[ [0, T[;
4. b(z,t) > 0 dans 7", (par la condition (P)).

Comme dans la démonstration du théoréme 3.4, introduisons la fonction
V(z, 1) = t + to(z—20)* €% et les paraboles P, d’équations (z, ) = 1. Nous
obtenons ainsi un point (z,,t,) du support de la trace de u sur ¥ "
tel que t, < toetu = Odans {(z,t)e ¥ | Y(z, ) < U(z,, t,)}.

Comme tout a T'heure, si on avait b(z,,t) = 0 pour tout telt,, T,
on prouverait que u(z,,t,) = 0 ce qui contredit le point 2 ci-dessus. Il
existe donc t; € Jt,, T[ tel que b(z,, t;) > 0. Nous distinguons alors deux cas
de figure:

) ' Zy—2Zg \ 2 z—1zq )\ 2
1. Sit, > 0, posons 0(z) = t, + ¢, . — to . (en sorte que

t 2 8(z) < Y(z, ) = Y (22, t,)). Nous pouvons alors trouver un voisinage
convexe w de (z,,t,) contenant (z,,t;) (ou b>0) tel que b soit positive
dans w, = {(z,)ew|t > 0(z)} et u = 0 dans w_ = {(z,)ew|t < 0(z)}.
Par le lemme 3.3 nous en déduisons que u = 0 au voisinage de (z,,t,)
ce qui contredit le fait que (z,,t,) est un point du support de la trace
de u sur ¥, .

2. Sit, = 0, posons 6(z) = 0. Nous pouvons alors trouver un voisinage
2 > P

convexe w de (z,,t,) possédant les mémes propriétés que dans le cas

précédent, d’ou la méme conclusion.

CHAPITRE 4: ETUDE D’UN MODELE DANS R2

Lorsque nous supprimons les hypothéses « techniques », le théoréme 1.2
devient faux; c’est ce que montre I'un des premiers contre-exemples a
I'unicité de Cauchy historiquement construits: le contre-exemple de Cohen [8].
Plut6t que d’en répéter la construction, que le lecteur trouvera par exemple
dans Hormander [9, th. 8.9.2], nous avons préféré étudier de facon assez
précise un modéle dans R? (ce qui assure que rg ¥ < 2) qui fournit des
contre-exemples ou le champ L est complétement explicite; c’est 'objet de ce
chapitre.
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; Pour traiter le probléme non caractéristique général dans R?, nous savons
: daprés le lemme 1.3 quil suffit d’étudier le champ L = 8, + ib(y, ) 0,
b ou b est a valeurs réelles. Nous allons examiner ici le cas ou la fonction b
est indépendante de y, c’est-a-dire que L prend la forme

L =0, + ib) 0, .

Pour un tel modéle, la condition (R) dans un voisinage de lorigine
entraine la condition (P) dans un ouvert (., Q étant un autre voisinage
de lorigine, si bien que le théoréme 1.2 sénonce plus simplement de la
facon suivante: s’il existe un nombre T > 0 tel que b(f) ne change pas
de signe dans Iintervalle J0, T[, alors il y a unicité (au sens de la conclusion

du théoréme 1.2, et pour tout terme ¢ d’ordre zero).
Dans le lemme ci-dessous (que nous ne démontrons pas car nous ne

P'utiliserons pas), nous analysons la condition précédente.

t
LEMME 4.1. Soient b:R — R une fonction C* et B(t) =J b(s)ds.
0

Alors il est équivalent de dire:
(i) VT > 0,b change de signe dans Pintervalle 10, TT.
(ii) Il existe une suite de réels O, décroissante et tendant vers 0 telle

que pour tout k = 1,

{ Ve € [8es 15 8k—11s (—1)FB(E) = (— 1BQ), et
(—D¥BE) — B(6k+1)) > 0.

Dans cette situation, nous allons montrer que I'on peut modifier le terme
d’ordre zéro c en sorte que l'opérateur L + ¢ ne posséde pas la propriété
d’unicité, & condition toutefois de faire ’hypothése supplémentaire que la suite
(—1)¥(B(8;)— B(8;+1)) ne tend pas trop vite vers zéro.

THEOREME 4.2. Soient b:R - R et c¢:R?* - C deux fonctions C%;

t
posons B(t) = j b(s)ds, et supposons qu’il existe une suite de réels o,
0

décroissante et tendant vers 0, et un réel e, > 0 tels que si I'on pose
&+, = exp[—ex '] pour tout k=1 on ait

{ Vt e [8kr1, 8k—11, (—1B@) = (—1'B(1), et
(—1)k(B(5k)"B(5k+1)) = €.
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Alors il existe un voisinage ® de (0,0) dans R% ueC®w) et ae C®w)
tels que

[0, +ib(t) 0,+c(y, ) +a(y, )] u(y,t) = 0 dans o,
(4.1) suppu = o, = {(),t)ew|t =0}, et
suppa C o, .

Exemple. Le lecteur vérifiera facilement que la fonction

b(t) = e Y sin(1/t) pour t >0,
b(t) = 0 pour <0

satisfait les hypothéses du théoréme (on prendra 8, = 1/km).

La démonstration du théoréme 4.2 s’effectue en deux étapes: d’abord nous
construisons cing suites de paramétres A, m;, px, qi, Y: possédant de
bonnes propriétés asymptotiques; la deuxiéme étape, plus standard, utilise
ces parametres pour construire les fonctions u et a par une technique de
recollement analogue & la méthode de Cohen [8] (cf. aussi les calculs du
paragraphe 2.4).

PROPOSITION 4.3.  Sous les hypothéses du théoréme 4.2, il existe cing suites
de réels positifs N, my, pr, Q. et 7y, telles que

Op+1 < Pr < My, < q < Oy,

1
Vie [Okr1, il (— 1)k(B(t) _'B(mk)) < - 5 = 1)k(B(mk) —B(y+1 ))

(4.2) 7 )
et (—1)Bt)—B(E,)) < — g(_l)k(B(Bk)—B(8k+l)) "
1
et Vte[qy, 8], (—1)(B(t)—B(m)) > 3 (—D)¥B(my)—B(8+1)) -
[ — e+ (— 1*A(B(m, ) — B(Sy))]
(4.3)
= [—Yir1+(— 1)k+17‘vk+1(B(mk)—B(5k+1))] .
(44) m Logh, lim Log (P —8x+1) : lim Log (8, —qx) _0.

k>0 Yk _k—>oo )‘k(B(ak)—"B(5k+1)) k= Ye+1
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[ Log (A +Ax+1) . Log (P —Ok+1)
lim = lim
k~a (Mt 7"k+1)(B(mk)—B(5k+1)) k— oo (?‘k+)“k+1)(B(mk)—B(6k+1))

(45) |
Log (8x—4gx)

= h =0
T T s 1) (Blm)— BGer 1))

Démonstration : en quatre parties.

1. Construction de la suite A,. Nous choisissons X, = & 3. on peut alors
écrire
Log Ay 4 < —3 Log g+

S — =—382L0g8 =38, d,Ol‘l
M | B(i) — B(Bx+1) | Er > & k ket 1 k

. LOg }\‘k+ 1
46 lim =0
(4.6) ko 0 Xk(B(Sk)—B(5k+ 1 ))

En outre, comme €2, > e, 3 (car ¥ > ex = (¢9)® = €°%°),

4.7) Mer1 = 2 0.

2. Construction des suites m;, p, et q,. En utilisant (4.7), nous pouvons

gcrire

1 A

0<=-—=
2 k+1

(— 1)k(B(8k) —B(0;+1 )) < (= l)k(B(Sk) —B(0 4+ 1 ))

et donc, par le théoréme de la valeur intermédiaire, nous obtenons Iexis-
tence d’un point m, € 10, 1, Ox[ tel que
1 A

(4.8) (= 1f(B(my) ~ B@er1)) = 55
k+1

(~ D(B®)—~ BlBs1)
Nous posons ensuite:
Pr = Sup {p > &4y |Vt €84 ,. Pl
(= DB~ BG- ) < 5 (— D{Blm) — B®y:1)}
q, = inf {q < &, |Vt e [q, 6,1,
(= DB~ Be. 1) > 5 (— D{Bom)— BG,.1)} -

La propriété (4.2) se déduit facilement de cette définition et de (4.8). Nous
aurons en outre besoin d’estimations sur p, — 0,4, et &, — q;. Or B(p;)

— B(®;4,) = E(B(mk)—B(Skﬂ)); par le théoréme des accroissements finis,

il existe donc 0, € 16, , 1, pi[ tel que
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(D — — O+ 1) (6, —'(B(mk) B(8k+1))

et comme b est bornée au voisinage de 0, on obtient pour un C > 0

(Px—0+1) = C(— l)k(B(mk)_B(8k+1)) .

En multipliant cette inégalité par A, et en utilisant (4.8) il vient

C
7»k+1(Pk—5k+1)/5( 1 M(B(8¢) — B3y + 1)) -

On procéde de la méme fagon pour estimer §, — g,; A ayant été choisi
de telle sorte que (— 1)“Ay(B(8;) — B(3, + 1)) tende vers I'infini avec k, on a donc

49) { pour k suffisamment grand
‘ | Log (px—8k+1) | < Log Xy, et | Log (8c—qx) | < Log Ay .

3. Construction de la suite y,. Pour construire Yr nous prenons la pro-
priété (4.3) comme définition, c’est-a-dire que nous posons ‘

Y1 = 0, puis pour k > 1
Yev1 = Ve — (_l)k}\‘k(B(mk)_B(ak)) + (=D, I(B(mk)_B(8k+1))'
De (4.7) et (4.8) nous tirons

1
(= DYB(my)— B(8;.+1)) < 1 (= DYB(@)—B(8;+,)), dou
3
(— l)k(B(6k) — B(m, )) = 4 (— l)k(B(Sk) — B(0 + 4 )) ,  puis

3
— (= 1)AyBlm; )~ B(Sy)) = 5(_1)k7‘k+ 1(Bm) — B(3y+.1)) .

En reportant cette estimation dans la définition de v,, on obtient
1
(4.10) Ye+1 2= Vi + 5 (— 1A+ 1(B(my) — B(8y 4 1)) .
4. Calcul des limites (4.4) et (4.5). De (4.8) et (4.10) nous tirons que

1 1
Ye+1 = 5 (— 1)kkk+ 1(B(mk)'_B(6k+1)) = 4 [ — l)k}\‘k(B(Bk)_B(ak+1)) 5

d’ou
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Log M+ s < 4 Log M+ 1
Yi+1 h (— 1)k7‘k(B(8k) — B(8y+1 ))

Gréce a (4.6), nous en déduisons que

. Log A
lim

k»o Yk

= 0.

De plus, en utilisant (4.9) nous pouvons écrire

Log (px—0k+1) Log M+ 1
MdBG)— B0+ 1)) | | MBG)—BGi+1)) |
Log (8, —qx) < Log M+ s
Ye+1 Yk+1

d’ou (4.4) en utilisant (4.6) et le résultat précedent.
Gréce a (4.7) et (4.9) on a

Log (Ae+Ax+1) Log A+ 1(1 +0(1))
e+ 2g1) (B(mk)—B(8k+ 1)) T M l(B(mk)_B(8k+ 1)) ’
l Log (px—8x+1) Log Ay
(At 1) (B(mk)—B(6k+1)) h M+ I(B(mk)—B(6k+1)) ’

Log (8, —4dx) Log A+
(At 1) (B(mk)—B(8k+1)) h M+ 1(B(mk)_B(8k+1)) ’

puis d’apres (4.8),
Log Ay 1 2Log gy

M+ 1(B(mk) —B(64+1 )) xk(B(Sk) —B(0 + 1 )) ’

ce qui implique (4.5) en utilisant (4.6).

Démonstration du théoréme 4.2. Etant donnée une fonction ¥ e C*(R)
vérifiant: 0 <y < 1, = O sur ]—o0,0] et x = 1 sur [1, + o[, nous défi-
nissons dans ® = R x ]— o0, §;[ les fonctions suivantes:

u(y, ) = exp [ —vi+(—1)*A(B()— B(3) + i)’)] .

‘ t—6k+1 t_B
Pilt) = x(————) et f) = ( <,
¢ Pr—Ok+1 Vit x Q5 — Oy ,

3 uo(y, t) = @Oy, 1) + ViOuge 4 1(y, 1) pour te€ 041, 0],
uo(y,t) = 0 pour t<0,
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3 ao(y, 1) = (Ouuo(y, ) +1b(t) Oyuo(y, D)/uo(y, 1)  si  uo(y,2) # 0,

aO(y> t) = 0 Si uO(y9 t) = 09
t

a.(y, t) = b(t) J d,¢(y, s)ds pour t >0,
0

a(y,t) =0 pour t<0.

Puis enfin nous posons

a(y,t) = —ag(y, ) + ia,(y, t), et

u(y, t) = ug(y, t) exp [— f c(y, S)ds} .

t

0

t
Comme exp |:— J‘ c(y, s)ds} est C” et non nulle, il suffit, pour montrer que a
0

et u sont solutions du probléme (4.1), d’établir les quatre points suivants:
1. La fonction u, est C* dans ®. La fonction u, est clairement C® pour
t > 0 ainsi que pour t < 0. Pour conclure au voisinage de t = 0, il faut
estimer les dérivées de u, pour les petites valeurs de ¢.

Comme (—1)B()—B()) < 0 et (—1*"Y(B(t)—B(8;+1)) < 0 pour
t € [x+1, 0kl €t que @i(t) = 1 pour t € [py, 8], on peut écrire les estimations
suivantes:

| 0%(@u) | < ), CoMfle™  pour telp,,8], et

B<a

| " (Watges1) | < Z CBy(Sk—Qk)_M Mﬁh e TRt

B+y<a

pour  te 841, 0]

ou les constantes Cy et Cp, ne dépendent que de a, de X et de b, mais
pas de k. Or le logarithme de chacun de ces termes vaut

LogCBJrIBILong_l] of

k Yr

LogCs + | B|Logh, — v = vk[

Log Cg, — |y Log (Bx—qx) + | Bl Log Aisy1 — Yist
Log Cgy Log (3 k—Qk) Log Ay
= Tk+1 — —1

| v | + Bl ————

k+1 Ye+1 Ye+1

et tend vers —oo lorsque k tend vers Iinfini grice a (4.4); donc les
quantités de départ tendent vers O.
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Reste 4 estimer le terme [ @ (u(y, t)] pour t €[Sy, pil; dans ce

domaine, (—1)%(B()—B(8;)) < — —;—(— 1)(B(8;) —B(8;+1)) d’aprés (4.2), d'ou

I’estimation
I aa((pkuk) |
7
< ; Y Coypr—8k+1) " JP exp [— Yi — g(_l)k)"k(B(8k)_B(6k+1)):|a
+y<a

ou les constantes Cg, ne dépendent que de o, de y et de b, mais pas de k;
comme ci-dessus, on calcule le logarithme des termes de cette somme

Log Cy, — | v | Log (py—0x+1) + | Bl Log Ay

[+ § e 56 | < e g 0)~ B

X |:
et cette expression tend a son tour vers —oo lorsque k tend vers l'infini
grace a (4.4). Nous avons donc démontré:

Log CB.,

Yk

8 Log (pr— 0k +1) Log A, }
—1
| "m(B(ak)—B(sm)) ' 1P

Y

lim ( sup | 0®uy(y, t) |> =0.

k= \RX[dk+1,0x]

2. Le support de a est contenu dans suppu, = {(y,t)e®|t = 0}. Pour
t€[0,41, 0], posons v, = u/u,, . En utilisant (4.3), on peut écrire:

(4.11) 0y, 1) = exp[(— 1 Me+Ner 1) (B(O)— Blmy) +iy)] .

Pourt e [8:4,pi], onagriced (4.2) | v | < 1, et comme ug = uy (14 Qu0p),
on a u, # 0. De méme pour t e [q;, 6,1, | v, | > 1 et uy = w1+ /v,) # O.

Enfin, pour t € [p;, ¢,], o = w, + w11, et doncu, = 0 équivauta v, = —1,
ce qui entraine d’aprés (4.11) que
exp [(— D he+2Mer)iv] = — 1,

. { n+1)n
soitye<d—
xk'+ 7\'k+1

={nHenlt >0}
Par définition de a,, supp a, = supp u,, et par définition de a,, supp a,
<{(,t)ew|t = 0}, dou finalement supp a = supp u,.

ne Z} ; cet ensemble étant discret, on obtient que supp u,
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3. La fonction a, est C* dans . Pour tout k, on a du, + ib d,u, = 0,
et donc pour t € [py, qil, g = e + W4y = ag = g + ib d,uy = 0; pour
t € [qi+15Pils o # 0 donc ay = (0ug+ibd,uy)/u, est une fonction C®. Il
en résulte que la fonction a, est C* dans les domaines d’équations ¢t > 0
ett < 0.

Pour conclure au voisinage de ¢ = 0, il faut estimer les dérivées de a,
pour t €[4, Pi] €t t € [qy, 8] (ao est nulle en dehors de ces intervalles).

Pour t € [8; 41, Pils | v | < 1, et on peut écrire

_ (0 +1b0,) (P + 1) Wy .
ap = . = ,  ou
Qi + U4 L+ x;
_ 1 o E= 041
Wiy, 1) = (D=0 +1) " X | ——=—— | vy, 1) et
Pr—Or+1

X¥: 1) = Qut)vu(y, 1) -

Pour montrer que les dérivées de cette expression tendent vers 0 lorsque k
tend vers I'infini, il suffit de montrer qu’il en est ainsi pour les fonctions
w; et x;,. En utilisant (4.2) et (4.11), on obtient les majorations

| w | < D) CBy(pk_6k+l)_1_|Y|(}"k+7\‘k+1)m|

B+y<a

1
cXp |: ) (—l)ko\'k+7\'k+1) (B(mk)_B(6k+1))j| )

| %%, | < Z CBy(pk_8k+1)-|Y|0“k+7\’k+1)lm

Bty<a
1
exp [— 5(—1)k()\‘k+7\'k+1) (B(mk)—B(5k+1))J,

ou les constantes Cy, ne dépendent que de a, de x et de b, mais pas de k.
Comme tout a I’heure, on montre que ces expressions tendent vers 0 en
calculant leurs logarithmes et en utilisant (4.5). Nous obtenons donc

lim< sup |6°‘a0|) = 0.

k=00 \RX[8k+1,pKl]

On montre de méme a laide de (4.2), (4.11) et (4.5) que
lim < sup | 0%a, [) =0.
k= oo \RX[gx, 8]

4. La fonction a; est C® dans ®. Pour obtenir cette derniére propriété,
il suffit de remarquer que toutes les dérivées de la fonction b tendent vers O
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| fglorsque t> 0 tend vers 0. En effet, comme b(5;) = 0 pour tout k, nous
_obtenons par application répétée du théoreme de Rolle que pour tous j
ot k entiers positifs, il existe un point 04 € 18,4 ;, il tel que 0{b(64) = 0;
la limite annoncée en résulte.

CHAPITRE 5: LE PROBLEME CARACTERISTIQUE

Dans ce chapitre, nous donnons deux résultats: un d’unicité, I'autre de
non-unicite.
Au paragraphe 5.1, nous regardons ce qui subsiste du théoreme 1.2
lorsque nous supprimons I'hypothése que le probléme est non caractéristique.
Le résultat d’unicité (théoréme 5.2) découlera d’un theoreme sur la géométrie
] du support d’une solution (théoréme 5.1) qui est di a Bony (cf. Sjostrand
. [22, th. 8.7] qui en donne une extension aux équations d’ordres supérieurs).
| Puis au paragraphe suivant (5.2) nous construisons un contre-exemple a
Punicité sous la condition que le rang de % est constant. Ce dernier
résultat est di a Saint Raymond [21, th. 2.9].

5.1. RESULTAT D’UNICITE LORSQUE 1g % < 2

Plagons-nous dans les hypothéses du théoréme 1.2, mais sans nous donner
de fonction ¢ ni supposer que le probléme est non caractéristique. Cela
signifie que nous sommes dans I'un des deux cas suivants:

1. L vérifie la condition (R) dans un ouvert Q ou rg. % <2 (cf. 1.2).
2. L vérifie 1a condition (P) dans un ouvert Q (cf. 1.2).

- Donnons-nous de plus une solution u € CY(Q) de I'équation (L+cq)u(x)
; . = 0 dans Q. Alors, pour paraphraser le théoréme 1.2, chaque fois que I’'on
- trouvera X, € Q et ¢ € C*(Q) a valeurs réelles tels qu’il existe un voisinage
g © o de x, avec

xo € (Supp un®) < o, = {xe® | o(x) > 9(x0)} ,

‘?; on pourra affirmer que le probléme en x, est caractéristique, c’est-a-dire que
Lo(xo) = 0 ou encore que X@(xy) = Yo(xo) = 0.(si X=Re L et Y=Im L). 3
"; Cette remarque nous donne une relation entre les champs réels X et Y !

ot le fermé F = supp u dont nous allons analyser les consequences dans le i
prochain théoréme.
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