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36 X. SAINT RAYMOND

Par continuité, il existe un £ > 0 suffisamment petit pour que le problème
restreint à y x ] — T,T[ se présente de la façon suivante :

1. r ]z0 — e,z0 + e[x] — T, T[^yx]-T, T[;
2. w(z, t0)=£0pour z e ]z0- s, z0 + e[ ;

3. L+ c0 ô,+ ih(z, t) <3Z + c(z, t) dans iC+ ]z0-£, z0 + s[ x [0, T[ ;

4. b(z, t) > 0 dans if + (par la condition (P)).

Comme dans la démonstration du théorème 3.4, introduisons la fonction
\|/(z, t) t + t0(z — z0)2 s-2 et les paraboles d'équations \|/(z, t) x. Nous
obtenons ainsi un point (z2,t2) du support de la trace de sur
tel que t2 <t0etw 0 dans {(z, t) e Y|v|/(z, t) < \|/(z2, t2)}.

Comme tout à l'heure, si on avait b(z2,t) 0 pour tout f e]r2, T[,
on prouverait que u(z2,t0) 0 ce qui contredit le point 2 ci-dessus. Il
existe donc f3 e ]f2, T[ tel que b(z2, t3) > 0. Nous distinguons alors deux cas
de figure :

1. Si t2 > 0, posons 0(z) t2 + t0 — -] — t0 [ (en sorte que
8

t > 9(z)\|/(z, t)>\|r(z2,t2)). Nous pouvons alors trouver un voisinage
convexe w de z2,t2)contenant (z2,t3) (où 0) tel que b soit positive
dans w+ {(z, t) ew|t^0(z)} et u0 dans w_ {(z, t)ew\t^ 0(z)}.
Par le lemme 3.3 nous en déduisons que 0 au voisinage de (z2,t2)
ce qui contredit le fait que (z2,t2) est un point du support de la trace
de u sur Y+.
2. Si t2 0, posons 0(z) 0. Nous pouvons alors trouver un voisinage
convexe w de (z2, r2) possédant les mêmes propriétés que dans le cas
précédent, d'où la même conclusion.

Chapitre 4: Etude d'un modèle dans R2

Lorsque nous supprimons les hypothèses « techniques », le théorème 1.2
devient faux; c'est ce que montre l'un des premiers contre-exemples à
l'unicité de Cauchy historiquement construits : le contre-exemple de Cohen [8],
Plutôt que d'en répéter la construction, que le lecteur trouvera par exemple
dans Hörmander [9, th. 8.9.2], nous avons préféré étudier de façon assez
précise un modèle dans R2 (ce qui assure que rg üf < 2) qui fournit des

contre-exemples où le champ L est complètement explicite; c'est l'objet de ce
chapitre.
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Pour traiter le problème non caractéristique général dans R2, nous savons

d'après le lemme 1.3 qu'il suffit d'étudier le champ L d, dy

où best à valeurs réelles. Nous allons examiner ici le cas où la fonction b

est indépendante de y, c'est-à-dire que L prend la forme

L dt -h ib(t) dy

Pour un tel modèle, la condition (R) dans un voisinage de 1 origine

entraîne la condition (P) dans un ouvert Ù+, Q étant un autre voisinage

de l'origine, si bien que le théorème 1.2 s'énonce plus simplement de la

façon suivante: s'il existe un nombre T > 0 tel que b(t) ne change pas

de signe dans l'intervalle ]0, T[, alors il y a unicité (au sens de la conclusion

du théorème 1.2, et pour tout terme c d'ordre zéro).

Dans le lemme ci-dessous (que nous ne démontrons pas car nous ne

l'utiliserons pas), nous analysons la condition précédente.

b(s)ds.
o

Lemme 4.1. Soient b : R- R une fonction C°° et B(t) -
Alors il est équivalent de dire :

(i) VT > 0, b change de signe dans l'intervalle ]0, T[.

(M) Il existe une suite de réels ôfe décroissante et tendant vers 0 telle

que pour tout k ^ 1,

Vt e [ôk+1, Ôk_ J, (-1)*B(8t) > -1ym et

(~lf{B(bk) - B(8k+1)) > 0.

Dans cette situation, nous allons montrer que l'on peut modifier le terme

d'ordre zéro c en sorte que l'opérateur + ne possède pas la propriété

d'unicité, à condition toutefois de faire l'hypothèse supplémentaire que la suite

- l)*(jB(8t - B{St+ ne tend pas trop vite vers zéro.

Théorème 4.2. Soient b : R — R et c : R2 —> C deux fonctions C00 ;

posons B(t) b(s)ds, et supposons qu'il existe une suite de réels 8fe

o

décroissante et tendant vers 0, et un réel > 0 tels que si l'on pose

8fc+1 exp[ — SfcT1] pour tout k ^ 1 on ait

L vt e [sk+ls Sk.j, (-îym) > {-iym et

(-1)^(5,)-^^)) > sfc.
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Alors il existe un voisinage œ de (0, 0) dans R2, u e C°°(co) et a e C°°(œ)
tels que

(4.1)
\_dt + ib(t) dy + c(y, t) + a(y, t)] u(y, t) 0 dans œ

supp w a>+ {(y, t) e CO I t ^ 0}, et

supp a c= (ù+

Exemple. Le lecteur vérifiera facilement que la fonction

j b(t) e~1!t sin(l/t) pour t > 0,
b(t) 0 pour t < 0

satisfait les hypothèses du théorème (on prendra 8k=l/kn).

La démonstration du théorème 4.2 s'effectue en deux étapes : d'abord nous
construisons cinq suites de paramètres Xk, mk, pk, qh, yh possédant de
bonnes propriétés asymptotiques ; la deuxième étape, plus standard, utilise
ces paramètres pour construire les fonctions m et a par une technique de

recollement analogue à la méthode de Cohen [8] (cf. aussi les calculs du
paragraphe 2.4).

Proposition 4.3. Sous les hypothèses du théorème 4.2, il existe cinq suites
de réels positifs Xk, mk, pk, qk et yk telles que

ô/c + i < pk < mk < qk < 8k,

Vte [5»+1>R],(-l)k(B(t)-B(mk))< -
(4.2)

(4.3)

(4.4)

et (-lf(B(i)-B(ô,)) ^ - - (-1

et Vtelqk,bkl(-lt(B(t)-B(mk))>-(-1

L-Ju + i-l)%(B(mk)-B(bk)j]

l-Yt+iH-ïf+%+1 {B(mk)-B(8k+1).

lim
Log Xk

lim
Log (ft —ök+i)

_ lim Log (8t-gt)
k->as yk k->co Xk(B(8k) — B(5k+fc->oo Yfc+1
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(4.5)

Log (A,fc+Xfc+i) 1-
Log (pt 8t+1)

(Xk + Xk + 1){B(mk)-B(5k + 1))k~* oo

Log (5k-qk) =0lm
(lk + \k+,)(B(mk)-BCök+1))k~+ 00

Démonstration : en quatre parties.

1. Construction de la suite Xk. Nous choisissons Xk £k3', on peut alors

écrire

Log Xk+1 — 3 Log Sj

^ -ouus»k+1 _3 g2 Log 8fc+i 3 Sfc5 d'où
Xk\B(bk)~ B(bk+1)\ zkäek

1« Log ^fc+1 ~
} ~

En outre, comme > e3s^3 (car ex Ss ex => (ex)3 > e3x3),

(4.7) Xk+1>2Xk.

2. Construction des suites mk, pk et qk. En utilisant (4.7), nous pouvons
écrire

0 <\-^(-l)k(B{8k)-B(bk+1)) < (-1
^ ^k+ 1

et donc, par le théorème de la valeur intermédiaire, nous obtenons l'existence

d'un point mk e ]8fc+1, 5fc[ tel que

(4.8) (-l)tB(mt)-.B(5t+1)) l-^{-lf(B{bk)-B(Sk+1)).
Z ^fc+l

Nous posons ensuite :

pk sup {p > 5t+11 Vf e [5t+ p],

(-1 )k(B(t)-B(bk+i))l-(^lf(B(
qk inf {q <Ôk|Vf e [q,8J,

(- l)\B(t)-B(dk+1))>l(-l?{B(mk)-B(8k+1))}

La propriété (4.2) se déduit facilement de cette définition et de (4.8). Nous
aurons en outre besoin d'estimations sur pk — 5k+1 et 8k — qk. Or B(pk)

— Bfôk+1) ^{B(mk) — B(dk+1)); par le théorème des accroissements finis,

il existe donc 0fc e ]5fc+x, pk\_ tel que
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(pk-8k+1)b(Qk)

et comme b est bornée au voisinage de 0, on obtient pour un >0
(ft-5»+1) ^ C(-l)k(B(

En multipliant cette inégalité par Xk + 1et en utilisant (4.8) il vient

Vi(ft-ö*+i) >^(-l)%{

On procède de la même façon pour estimer Xk ayant été choisi
de telle sorte que (—1)^(5(0^) — jB(ôt+1)) tende vers l'infini avec on a donc

(4 9) | pour ^ si|ffisamment grand
1 I Log (pk—ôfc + 1) | ^ Log ^k+ieti Log (8k-~qk)\ ^ Log Xk+1.

3. Construction de la suite yk.Pour construire yk nous prenons la
propriété (4.3) comme définition, c'est-à-dire que nous posons

Yi 0, puis pour k^1,

Jk+i Yk - (~l)X(B{mk+

De (4.7) et (4.8) nous tirons

(-1 )k(B(mk)-B(8k+1))<^-(-1)'(%)-B(5H1)), d'où

(-l)k{B(8k)-B(mk)) >^(-l)k(B(8k)-B(8k+1j), puis

- (-1)^%)-5(5S)) > ^ (- l)%+ )- + x)).
^

En reportant cette estimation dans la définition de yk, on obtient

(4-10) Yfc+i >Jk + ^(-1 )%+x{B(mk

4. Calcul des limites (4.4) et (4.5). De (4.8) et (4.10) nous tirons que

Y*+i >\(-i)% + l(B(mk)~B(8k+1)) ~(-l)%(B(8k)-B(8k^)),

d'où



PROBLEMES DE CAUCHY 41

Log Xk^

Jk+1

4 Log Xk+1

(-l)kXk(B(ök)-B((>k+1))'

Grâce à (4.6), nous en déduisons que

fe-»co yk

De plus, en utilisant (4.9) nous pouvons écrire

Log (Pfc —Sfc+1) Log \
Xk{B(bk)-B(5t+1))

Log (5

\k{B(8k)-B{8k+1j)

Log "hk+1

et

Yk+1 Yk+1

d'où (4.4) en utilisant (4.6) et le résultat précédent.

Grâce à (4.7) et (4.9) on a

Log Xfc+1(l + o(l))Log (Xk + Xk+1)

(Xk + Xk+1 (B(mk) — B(bk + 1

Log (pfe-ôk+1)

(^k + ^k+i) {B{mk) — B(bk+1))

Log (àk — qk)
<

Log Xk+1

K+i{B(mk)-B(bk+l))

Log Xk+1

h + i{B{mk)-B(bk+1))

2 Log Xk+1

(Xk + Xk + 1) (B(mk) — B(bk + 1))

puis d'après (4.8),

Log Xk+1

\+i{B(mk)-B(bk+1)) h{B(bk)-B(bk + 1j) '

ce qui implique (4.5) en utilisant (4.6).

Démonstration du théorème 4.2. Etant donnée une fonction % e C°°(R)

vérifiant: 0 < % ^ 1, % 0 sur ]-°o, 0] et x 1 sur [1, +oo[, nous
définissons dans co R x ] — oo, les fonctions suivantes:

uh(y, t) exp [ —yk + — 1)%{B(t)- B(6k + iyj]

<PkW X
t~$k + i

\pk — àk+1

u0{y, t) yk(t)uk{y, t) + y\fk{t)uk+1(y, t)

"o(3>, 0 0

et \|/fe(t) X
t fit

!ik- fifc/'

pour te[ôk+i,ôfc]:

pour t < 0
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a0{y, t) (dMy, t) + ib(t)dyu0(y,t))/u0(y, t) si u0(y, 0,
a0(y, t)0

«i (y,t) b{t)

ai(y, t)0

dyc(y,s)ds

si u0(y, t) 0,

pour t > 0,

pour t < 0

Puis enfin nous posons

a(y,t)-a0(y, + t), et

u(y, t) u0(y, t) exp

Comme exp c(y, s)ds

c(y, s)ds

est C00 et non nulle, il suffit, pour montrer que a

et u sont solutions du problème (4.1), d'établir les quatre points suivants:
1. La fonction u0 est C°° dans co. La fonction u0 est clairement C00 pour
t > 0 ainsi que pour t < 0. Pour conclure au voisinage de t 0, il faut
estimer les dérivées de u0 pour les petites valeurs de t.

Comme (-l)k(B(t)-B{8kj) ^ 0 et (~l)k+1(B(t)-B(dk+1j) < 0 pour
te IÄ+1 > 8J, et que (p k(t)1 pour te[pk, ôj, on peut écrire les estimations
suivantes :

<?>*%) I < I Cß4Pi e" pour te[pk, SJ et

ß + y^a

pour t e [Sk+1, SJ

où les constantes Cp et CPy ne dépendent que de a, de % et de b, mais

pas de k.Or le logarithme de chacun de ces termes vaut

Log Cp + | ß | Log - yk yk
L°ë CP

+ | ß |
L°g **

_ /
y yk

Log CPy - I y I Log (S k-qk)+ | ß | Log Xk+1 - yk + 1

et

Tfe+i
"Log CPï

_ ^^
Log (bk-qk)

+
Log X*

Yfc+1 Yfc+1 YkH fH
et tend vers — oo lorsque k tend vers l'infini grâce à (4.4); donc les

quantités de départ tendent vers 0.
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Reste à estimer le terme d*[(pk{t)uk(y, tj] pour t e[bk+l9pk]; dans ce

domaine, (-l)\B{t)-B(?>kj)<- \ {-l)k(d'après(4.2), d'où
0

l'estimation

1 ^((PfcUfc) |

< I cßv(pt-5i+1) exp
ß + Y^a

où les constantes CßY ne dépendent que de a, de x et de b, mais pas de k ;

comme ci-dessus, on calcule le logarithme des termes de cette somme

Log Cay - I Y I Log (A —öfc+1) + | ß I Log Xk

yk + -(-l)%(B{8k)-B(8k+1)) < yk+^-l)%(B(8k)-B{8k+1))

Log CPY
+ 1 YI

_ yk

8 Log (pfc — ôfc+!

7\k(B(8k)-B(5k + 1j)
+ Iß

Log K
yk

et cette expression tend à son tour vers — oo lorsque k tend vers l'infini
grâce à (4.4). Nous avons donc démontré :

lim sup I dauQ(y, t) | 0
fc->oo \R x [5k + i, 5k] J

2. Le support de a est contenu dans supp u0 {(y, t) e œ | t ^ 0}. Pour
te[bk+1, 5fe], posons vk uh/uk+1. En utilisant (4.3), on peut écrire :

(4.11) vk(.M) expl(-l)k(Xk + Xk+1)(B(t)-B(mk) + iy)]

Pour te [ôfc+!, pj, on a grâce à (4.2) | vk1, et comme u0 1 + <pkvk),

on a u0 ^ 0. De même pour te[qk, 8J, | 1 et uk(l+^ik/vk) # 0.

Enfin, pour t e[pk,qk~],u0 uk + uk+l, et donc u0 0 équivaut à — 1,

ce qui entraîne d'après (4.11) que

exp[(-l )k(h+h+i)iy'] - 1,

soit y g
f (2n+l)7i

ne Z > ; cet ensemble étant discret, on obtient que supp u0[Xk + Lk+1

{(y, t) g Q) 11 ^ 0}.
Par définition de a0, supp a0 a supp u0, et par définition de ax, supp a±
{(y, t) g co 11 ^ 0}, d'où finalement supp a a supp u0.
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3. La fonction a0 est C00 dans œ. Pour tout k, on a dtuk + ib dyuk 0,

et donc pour t e [pk, qf\, u0 uk + uk+1 => a0 ôtu0 + ib dyu0 0; pour
u0 ^ 0 donc a0 (dtu0 + ibôyu0 )/u0 est une fonction C00. Il

en résulte que la fonction a0 est C°° dans les domaines d'équations t > 0

et t < 0.

Pour conclure au voisinage de t 0, il faut estimer les dérivées de a0

pour t g [5fc + 1, pk2 et te \_qh, ôfe] (a0 est nulle en dehors de ces intervalles).
Pour t e [5fc+1, pfe], | vk \ < 1, et on peut écrire

(dt + ibdy)(yhuk + uk+1) wh

<Pkuk + uu+1

wk(y, t) (Pk-àk+1)"1 x'

X/cty, 0 Vk(t)vk(y, t).

1 + xk

t~&k+1

ou

Pk~$k+1
*>k0>, 0 et

Pour montrer que les dérivées de cette expression tendent vers 0 lorsque k
tend vers l'infini, il suffit de montrer qu'il en est ainsi pour les fonctions
wk et xk. En utilisant (4.2) et (4.11), on obtient les majorations

\d*wk\< I Cpy(pk-bk+1)-1-M(Xk + Xk+1)W
ß + y^a
1

exp -(-l)*(Xfc + Xfc+1 ){B(mk)-B{bk+1))J,

l^l< E cPïfe-s,+1)-M(^+^+1fi
ß + y^a

exp - - - l)\Xk + Xfe+, {B(mk - B(bk+1

où les constantes Cßy ne dépendent que de a, de % et de b, mais pas de k.

Comme tout à l'heure, on montre que ces expressions tendent vers 0 en
calculant leurs logarithmes et en utilisant (4.5). Nous obtenons donc

lim I sup I daa0 | 0
k~* oo \Rx[5k+i,Pk]

On montre de même à l'aide de (4.2), (4.11) et (4.5) que

lim I sup I ôaa0 | 0
oo \R x [qk) 8k]

4. La fonction ax est C00 dans œ. Pour obtenir cette dernière propriété,
il suffit de remarquer que toutes les dérivées de la fonction b tendent vers 0
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lorsque t>0 tend vers 0. En effet, comme b{bk) 0 pour tout nous

obtenons par application répétée du théorème de Rolle que pour tous j
et k entiers positifs, il existe un point 0{ e ]5t+;, 8k[ tel que d{b(Q{) 0,

la limite annoncée en résulte.

Chapitre 5 : Le problème caractéristique

Dans ce chapitre, nous donnons deux résultats: l'un d'unicité, l'autre de

non-unicité.

Au paragraphe 5.1, nous regardons ce qui subsiste du théorème 1.2

lorsque nous supprimons l'hypothèse que le problème est non caractéristique.

Le résultat d'unicité (théorème 5.2) découlera d'un théorème sur la géométrie

du support d'une solution (théorème 5.1) qui est dû à Bony (cf. Sjöstrand

[22, th. 8.7] qui en donne une extension aux équations d'ordres supérieurs).

Puis au paragraphe suivant (5.2) nous construisons un contre-exemple à

l'unicité sous la condition que le rang de est constant. Ce dernier

résultat est dû à Saint Raymond [21, th. 2.9].

5.1. Résultat d'unicité lorsque rg Sß < 2

Plaçons-nous dans les hypothèses du théorème 1.2, mais sans nous donner

de fonction cp ni supposer que le problème est non caractéristique. Cela

signifie que nous sommes dans l'un des deux cas suivants :

1. L vérifie la condition (R) dans un ouvert Q où rg £ ^ 2 (cf. 1.2).

2. L vérifie la condition (P) dans un ouvert Q (cf. 1.2).

Donnons-nous de plus une solution u e CX(D) de l'équation (L+c0)w(x)
0 dans D. Alors, pour paraphraser le théorème 1.2, chaque fois que l'on

trouvera x0 e Q et cp g C°°(Q) à valeurs réelles tels qu'il existe un voisinage
co de x0 avec

x0 e (supp wnco) c= {x e co | cp(x) ^ cp(x0)}

on pourra affirmer que le problème en x0 est caractéristique, c'est-à-dire que
Lcp(x0) 0 ou encore que Xcp(x0) Lcp(x0) 0 (si X Rq L et Y Im L).
Cette remarque nous donne une relation entre les champs réels X et Y
et le fermé F supp u dont nous allons analyser les conséquences dans le

prochain théorème.
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