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PROBLEMES DE CAUCHY 35

~ duisons les paraboles P, d’équations V(z, t) = t. Nous obtenons ainsi un
d point (z;,t;) du support de la trace de u sur ¥ tel que u =0 dans

{z,t) eV |z, 1) < U(z, , t;)}. Or le probléme (pour \/) est non caractéristique
en (z,,1;) et 18 L2y, 1) = 2 puisque nous sommes sur une variété inte-
grale de ¥ de dimension 2. Nous pouvons donc appliquer le théoréme 3.4
pour conclure que u est nulle au voisinage de (z;,t;) sur ¥, ce qui
contredit le fait que (z;,t;) est un point du support de la trace de u
sur 7.

Nous avons donc obtenu que u = Odansv x ]—=T, T L.

35, DEMONSTRATION DU THEOREME 1.2 SOUS LA CONDITION (P)

Comme le probléme est non caractéristique, nous pouvons faire usage du
lemme 1.3 pour trouver des coordonnées locales (y, ) e R"™! x R, un voisi-
nage v de 0 dans R*~ ' et un nombre T' > 0 tels que

1. xo = (0,0),

2. o(x) — olxo) = 1,

3. L+ ¢y =0, + ib(y, 1)+ 0, + c(y, t) dans v x ]—T, T[ a un facteur non
nul pres,

4. v x 1-T, TL € o n Q.

Soit u € CY(w) une solution du probléme (1.2) et supposons quil existe
Vo, to) €0 x 10, T[ tel que u(yo, o) # 0. Si on avait b(y,,t) = 0 pour tout
t €10, to[, équation se réduirait a une équation différentielle ordinaire, ce
qui conduirait & une contradiction.

Tl existe donc t, €10, to[ tel que b(yo,t;) # 0. Il existe aussi tout un
voisinage de y, tel que b(y, t;) # 0 pour y dans ce voisinage, par continuiteé,
et le vecteur '

d(y) = by, 1) /1 b(y, t1) |

est bien défini et régulier au voisinage de y,; par conséquent, le champ reel
d(y) - 0, admet en y, une courbe intégrale que nous noterons .

Comme la condition (P) est vérifice dans v x ]O, T[, nous avons
b(y,t) = | b(y, t) | d(y) pour tout (y,t) ey x ]0, T[, et donc le champ L est
tangent & vy x JO, T[; nous pouvons désormais nous restreindre a

§ VX 1—T, T[ qui contient le point (yo,t,) ou u ne s’annule pas et sur
§ lequel nous prenons comme coordonnées le couple (z,t) ou z est 'abscisse

curviligne sur y associée au champ d(y):0,; z, désignera l'abscisse du
point (yo, o).
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36 ‘ X. SAINT RAYMOND

- Par continuitg, il existe un &€ > 0 suffisamment petit pour que le probléme
restreint 4 y x ]— T, T[ se présente de la fagon suivante:

Lo ¥ = Jzo—¢,2o+e[x]—T, T[cyx]-T, T[;

2. u(z, ty) # O pour z€Jzo—¢, zo+¢[;

3. L4co=20,+ibz,8)9, + c(z,t) dans ¥, = Jzo—¢, zo+€[ [0, T[;
4. b(z,t) > 0 dans 7", (par la condition (P)).

Comme dans la démonstration du théoréme 3.4, introduisons la fonction
V(z, 1) = t + to(z—20)* €% et les paraboles P, d’équations (z, ) = 1. Nous
obtenons ainsi un point (z,,t,) du support de la trace de u sur ¥ "
tel que t, < toetu = Odans {(z,t)e ¥ | Y(z, ) < U(z,, t,)}.

Comme tout a T'heure, si on avait b(z,,t) = 0 pour tout telt,, T,
on prouverait que u(z,,t,) = 0 ce qui contredit le point 2 ci-dessus. Il
existe donc t; € Jt,, T[ tel que b(z,, t;) > 0. Nous distinguons alors deux cas
de figure:

) ' Zy—2Zg \ 2 z—1zq )\ 2
1. Sit, > 0, posons 0(z) = t, + ¢, . — to . (en sorte que

t 2 8(z) < Y(z, ) = Y (22, t,)). Nous pouvons alors trouver un voisinage
convexe w de (z,,t,) contenant (z,,t;) (ou b>0) tel que b soit positive
dans w, = {(z,)ew|t > 0(z)} et u = 0 dans w_ = {(z,)ew|t < 0(z)}.
Par le lemme 3.3 nous en déduisons que u = 0 au voisinage de (z,,t,)
ce qui contredit le fait que (z,,t,) est un point du support de la trace
de u sur ¥, .

2. Sit, = 0, posons 6(z) = 0. Nous pouvons alors trouver un voisinage
2 > P

convexe w de (z,,t,) possédant les mémes propriétés que dans le cas

précédent, d’ou la méme conclusion.

CHAPITRE 4: ETUDE D’UN MODELE DANS R2

Lorsque nous supprimons les hypothéses « techniques », le théoréme 1.2
devient faux; c’est ce que montre I'un des premiers contre-exemples a
I'unicité de Cauchy historiquement construits: le contre-exemple de Cohen [8].
Plut6t que d’en répéter la construction, que le lecteur trouvera par exemple
dans Hormander [9, th. 8.9.2], nous avons préféré étudier de facon assez
précise un modéle dans R? (ce qui assure que rg ¥ < 2) qui fournit des
contre-exemples ou le champ L est complétement explicite; c’est 'objet de ce
chapitre.
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