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PROBLÈMES DE CAUCHY 35

duisons les paraboles J\ d'équations i|/(z, x. Nous obtenons ainsi un

point {z1,t1)dusupport de la trace de sur V tel que u - 0 dans

{(z, t)eir\ \|/(z, t) «S i|/(zi, ti )} Or le problème (pour \j/) est non caractéristique

en (z^ti) et rgi?^^) 2 puisque nous sommes sur une variété

integrale de j? de dimension 2. Nous pouvons donc appliquer le théorème 3.4

pour conclure que u est nulle au voisinage de (z^tj sur V, ce qui

contredit le fait que {zutt) est un point du support de la trace de u

sur ir.
Nous avons donc obtenu que u 0 dans x ]- T,T[.

3.5. Démonstration du théorème 1.2 sous la condition (P)

Comme le problème est non caractéristique, nous pouvons faire usage du

lemme 1.3 pour trouver des coordonnées locales t) e R"~1 x R, un voisinage

vde 0 dans R"-1 et un nombre T>0 tels que

1. x0(0, 0),

2. <p(x) - cp(x0) t,

3. L + c0 dt + ib(y, t)-Ôy +c(y,t)dans x ]-T, T[ à un facteur non

nul près,

4. vx ] - T,T[c cd n ß.

Soit u e CHrn) une solution du problème (1.2) et supposons qu'il existe

(y0,t0)ev x ]0, T[ tel que u(y0, t0) # 0. Si on avait b(y0, t) 0 pour tout

t s ]0, t0[, l'équation se réduirait à une équation différentielle ordinaire, ce

qui conduirait à une contradiction.

Il existe donc C e ]0, t0[ tel que b(y0 # 0. Il existe aussi tout un

voisinage de y0 tel que b(y, tj) # 0 pour y dans ce voisinage, par continuité,

et le vecteur

d(y) b(y,t1)/\b(y,t1)

est bien défini et régulier au voisinage de y0\ par conséquent, le champ réel

d(y) • ôy admet en y0 une courbe intégrale que nous noterons y.

Comme la condition (P) est vérifiée dans v x ]0, T[, nous avons

b(y, t) | b(y, t) | d(y) pour tout (y, £) e yx ]0, T[, et donc le champ L est

tangent à yx ]0, T[; nous pouvons désormais nous restreindre à

Y x ] — T, T[ qui contient le point (y0,t0) où u ne s'annule pas et sur

lequel nous prenons comme coordonnées le couple (z, t) où z est l'abscisse

curviligne sur y associée au champ d(y) ; z0 désignera l'abscisse du

point (To, t0).
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Par continuité, il existe un £ > 0 suffisamment petit pour que le problème
restreint à y x ] — T,T[ se présente de la façon suivante :

1. r ]z0 — e,z0 + e[x] — T, T[^yx]-T, T[;
2. w(z, t0)=£0pour z e ]z0- s, z0 + e[ ;

3. L+ c0 ô,+ ih(z, t) <3Z + c(z, t) dans iC+ ]z0-£, z0 + s[ x [0, T[ ;

4. b(z, t) > 0 dans if + (par la condition (P)).

Comme dans la démonstration du théorème 3.4, introduisons la fonction
\|/(z, t) t + t0(z — z0)2 s-2 et les paraboles d'équations \|/(z, t) x. Nous
obtenons ainsi un point (z2,t2) du support de la trace de sur
tel que t2 <t0etw 0 dans {(z, t) e Y|v|/(z, t) < \|/(z2, t2)}.

Comme tout à l'heure, si on avait b(z2,t) 0 pour tout f e]r2, T[,
on prouverait que u(z2,t0) 0 ce qui contredit le point 2 ci-dessus. Il
existe donc f3 e ]f2, T[ tel que b(z2, t3) > 0. Nous distinguons alors deux cas
de figure :

1. Si t2 > 0, posons 0(z) t2 + t0 — -] — t0 [ (en sorte que
8

t > 9(z)\|/(z, t)>\|r(z2,t2)). Nous pouvons alors trouver un voisinage
convexe w de z2,t2)contenant (z2,t3) (où 0) tel que b soit positive
dans w+ {(z, t) ew|t^0(z)} et u0 dans w_ {(z, t)ew\t^ 0(z)}.
Par le lemme 3.3 nous en déduisons que 0 au voisinage de (z2,t2)
ce qui contredit le fait que (z2,t2) est un point du support de la trace
de u sur Y+.
2. Si t2 0, posons 0(z) 0. Nous pouvons alors trouver un voisinage
convexe w de (z2, r2) possédant les mêmes propriétés que dans le cas
précédent, d'où la même conclusion.

Chapitre 4: Etude d'un modèle dans R2

Lorsque nous supprimons les hypothèses « techniques », le théorème 1.2
devient faux; c'est ce que montre l'un des premiers contre-exemples à
l'unicité de Cauchy historiquement construits : le contre-exemple de Cohen [8],
Plutôt que d'en répéter la construction, que le lecteur trouvera par exemple
dans Hörmander [9, th. 8.9.2], nous avons préféré étudier de façon assez
précise un modèle dans R2 (ce qui assure que rg üf < 2) qui fournit des

contre-exemples où le champ L est complètement explicite; c'est l'objet de ce
chapitre.
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