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34 X. SAINT RAYMOND

3.4. Démonstration du théorème 1.2 sous la condition (R)

Dans ce paragraphe, l'espace est R", n entier quelconque.
Commençons par expliciter les hypothèses du théorème 1.2 sous la

condition (R); le problème étant non caractéristique, nous pouvons choisir
(lemme 1.3) des coordonnées locales (y, t) telles que:
1. oc0 (0, 0),

2. cp(x) - <p(x0) t,

3. L + cQ dt + ib(y, t)* dy + c(y, t) à un facteur non nul près.

L'intersection de l'ouvert co avec le domaine dans lequel la propriété (R)
est vérifiée contient un voisinage de (0, 0) de la forme v x ] - T, T[ où
T > 0 et v est un voisinage de 0 dans R"-1 suffisamment petit pour que
rg ££ ^ 2 sur S {(y, 0) g R" | y g v}. On a rg j£? ^ 1 sur S puisque ôt g j£f,
ce qui entraîne encore que :

1. Pour un point (yo,0)eS tel que rgj£?(yo,0) 1, la variété intégrale
passant par (y0, 0) est {y0} x ] - T, T[.
2. Pour un point (y0, 0) g S tel que rg £>(y0, 0) 2, si la courbe y c- S

est la trace sur S de la variété intégrale passant par (y0,0), cette dernière
est y x ] - T, T[.
Comme la réunion des traces sur S des variétés intégrales de & est égale
à S par la propriété (R), la réunion des variétés intégrales de coupant S

est égale au voisinage v x ] — T, T[ tout entier.
Soit u g C1(co) une solution du problème (1.2), et supposons qu'il existe un

point (y0,t0)ev x ]0, T[ tel que u(y0, t0) ^ 0. Ce point (j/0, t0) est donc
situé sur une variété intégrale de & coupant S. Si (y0>*o) est sur une
variété intégrale de dimension 1, c'est que b(y0, t) 0 pour tout t g ] - T, T[,
et u vérifie donc l'équation

dtu(yo, 0 + c(y0, t) u(y0,0 0 pour t e ] — T, T[
où y0 n'est plus qu'un paramètre; la théorie des équations différentielles
ordinaires nous permet de conclure que u(y0, t) 0 pour t g]0, T[, ce qui
contredit le fait que u(y0, t0) / 0.

Il s'ensuit donc que (y0^o) est sur une variété intégrale de <£ de
dimension 2 que nous noterons V. Utilisons (z, t) comme coordonnées sur y
où z est l'abscisse curviligne sur y n S, et désignons par z0 l'abscisse du
point (y0,t0) dans les coordonnées (z, t). Alors il existe e>0 tel que
[z0-s, z0 + e] x ] — T, T[ soit contenu dans y. Comme dans la démonstration

du théorème 3.4, nous posons \|/(z, t) t -h t0(z — z0)2 e~2 et intro-
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duisons les paraboles J\ d'équations i|/(z, x. Nous obtenons ainsi un

point {z1,t1)dusupport de la trace de sur V tel que u - 0 dans

{(z, t)eir\ \|/(z, t) «S i|/(zi, ti )} Or le problème (pour \j/) est non caractéristique

en (z^ti) et rgi?^^) 2 puisque nous sommes sur une variété

integrale de j? de dimension 2. Nous pouvons donc appliquer le théorème 3.4

pour conclure que u est nulle au voisinage de (z^tj sur V, ce qui

contredit le fait que {zutt) est un point du support de la trace de u

sur ir.
Nous avons donc obtenu que u 0 dans x ]- T,T[.

3.5. Démonstration du théorème 1.2 sous la condition (P)

Comme le problème est non caractéristique, nous pouvons faire usage du

lemme 1.3 pour trouver des coordonnées locales t) e R"~1 x R, un voisinage

vde 0 dans R"-1 et un nombre T>0 tels que

1. x0(0, 0),

2. <p(x) - cp(x0) t,

3. L + c0 dt + ib(y, t)-Ôy +c(y,t)dans x ]-T, T[ à un facteur non

nul près,

4. vx ] - T,T[c cd n ß.

Soit u e CHrn) une solution du problème (1.2) et supposons qu'il existe

(y0,t0)ev x ]0, T[ tel que u(y0, t0) # 0. Si on avait b(y0, t) 0 pour tout

t s ]0, t0[, l'équation se réduirait à une équation différentielle ordinaire, ce

qui conduirait à une contradiction.

Il existe donc C e ]0, t0[ tel que b(y0 # 0. Il existe aussi tout un

voisinage de y0 tel que b(y, tj) # 0 pour y dans ce voisinage, par continuité,

et le vecteur

d(y) b(y,t1)/\b(y,t1)

est bien défini et régulier au voisinage de y0\ par conséquent, le champ réel

d(y) • ôy admet en y0 une courbe intégrale que nous noterons y.

Comme la condition (P) est vérifiée dans v x ]0, T[, nous avons

b(y, t) | b(y, t) | d(y) pour tout (y, £) e yx ]0, T[, et donc le champ L est

tangent à yx ]0, T[; nous pouvons désormais nous restreindre à

Y x ] — T, T[ qui contient le point (y0,t0) où u ne s'annule pas et sur

lequel nous prenons comme coordonnées le couple (z, t) où z est l'abscisse

curviligne sur y associée au champ d(y) ; z0 désignera l'abscisse du

point (To, t0).
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