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34 X. SAINT RAYMOND

3.4. DEMONSTRATION DU THEOREME 1.2 SOUS LA CONDITION (R)

Dans ce paragraphe, I'espace est R, n entier quelconque.

Commengons par expliciter les hypothéses du théoréme 1.2 sous la
condition (R); le probléme étant non caractéristique, nous pouvons choisir
(lemme 1.3) des coordonnées locales (y, t) telles que:

1' Xo = (07 O)a

2. 0(x) — 9(xo) = ¢,
3. L+c¢o =0, +ib(y,1)-9, + c(y, t) & un facteur non nul prés.

L’intersection de I'ouvert » avec le domaine dans lequel la propriété (R)
est vérifiée contient un voisinage de (0,0) de la forme v x ]—T, T[ ou
T > 0 et v est un voisinage de 0 dans R"™! suffisamment petit pour que
gL <2sur§S = {(y0eR"|yev}. Onarg.¥ > 1 sur S puisque 9, € Z,
ce qui entralne encore que:

1. Pour un point (y,,0)e S tel que rg L(yy,0) = 1, la variété intégrale
passant par (y,, 0) est {y,} x 1—T, TT[. |

2. Pour un point (y,,0)€ S tel que rg L(y,,0) = 2, si la courbe y = §
est la trace sur S de la variété intégrale passant par (y,, 0), cette derniére
esty x 1T, TI.

Comme la réunion des traces sur § des variétés intégrales de & est égale
a § par la propriété (R), la réunion des variétés intégrales de .# coupant S
est égale au voisinage v x ]— T, T[ tout entier.

Soit u € C'(®) une solution du probléme (1.2), et supposons qu’il existe un
point (yo, o) €v x 0, T[ tel que u(y,, ty) # 0. Ce point (y,, t,) est donc
situ¢ sur une variété intégrale de ¥ coupant S. Si (y,,?,) est sur une
varieté integrale de dimension 1, c’est que b(y,, t) = O pour tout t € ]— T, TJ,
et u vérifie donc I'équation \

atu(yO: t) + C(.VO) t) u(yOa t) = 0 pour tE]-—T, T[

ou y, n’est plus qu'un paramétre; la théorie des équations différentielles
ordinaires nous permet de conclure que u(yy,t) = 0 pour t € ]0, T[, ce qui
contredit le fait que u(y,, ty) # 0.

Il s’ensuit donc que (yo,t,) est sur une variété intégrale de ¥ de
dimension 2 que nous noterons ¥". Utilisons (z, t) comme coordonnées sur ¥~
ou z est I'abscisse curviligne sur ¥" N S, et désignons par z, I'abscisse du
point (yo,t,) dans les coordonnées (z,t). Alors il existe € > 0 tel que
[zo—¢, zo+€] x ]—T, T[ soit contenu dans ¥". Comme dans la démons-
tration du théoréme 3.4, nous posons (z,t) = ¢ + to(z—z,)*> €2 et intro-
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~ duisons les paraboles P, d’équations V(z, t) = t. Nous obtenons ainsi un
d point (z;,t;) du support de la trace de u sur ¥ tel que u =0 dans

{z,t) eV |z, 1) < U(z, , t;)}. Or le probléme (pour \/) est non caractéristique
en (z,,1;) et 18 L2y, 1) = 2 puisque nous sommes sur une variété inte-
grale de ¥ de dimension 2. Nous pouvons donc appliquer le théoréme 3.4
pour conclure que u est nulle au voisinage de (z;,t;) sur ¥, ce qui
contredit le fait que (z;,t;) est un point du support de la trace de u
sur 7.

Nous avons donc obtenu que u = Odansv x ]—=T, T L.

35, DEMONSTRATION DU THEOREME 1.2 SOUS LA CONDITION (P)

Comme le probléme est non caractéristique, nous pouvons faire usage du
lemme 1.3 pour trouver des coordonnées locales (y, ) e R"™! x R, un voisi-
nage v de 0 dans R*~ ' et un nombre T' > 0 tels que

1. xo = (0,0),

2. o(x) — olxo) = 1,

3. L+ ¢y =0, + ib(y, 1)+ 0, + c(y, t) dans v x ]—T, T[ a un facteur non
nul pres,

4. v x 1-T, TL € o n Q.

Soit u € CY(w) une solution du probléme (1.2) et supposons quil existe
Vo, to) €0 x 10, T[ tel que u(yo, o) # 0. Si on avait b(y,,t) = 0 pour tout
t €10, to[, équation se réduirait a une équation différentielle ordinaire, ce
qui conduirait & une contradiction.

Tl existe donc t, €10, to[ tel que b(yo,t;) # 0. Il existe aussi tout un
voisinage de y, tel que b(y, t;) # 0 pour y dans ce voisinage, par continuiteé,
et le vecteur '

d(y) = by, 1) /1 b(y, t1) |

est bien défini et régulier au voisinage de y,; par conséquent, le champ reel
d(y) - 0, admet en y, une courbe intégrale que nous noterons .

Comme la condition (P) est vérifice dans v x ]O, T[, nous avons
b(y,t) = | b(y, t) | d(y) pour tout (y,t) ey x ]0, T[, et donc le champ L est
tangent & vy x JO, T[; nous pouvons désormais nous restreindre a

§ VX 1—T, T[ qui contient le point (yo,t,) ou u ne s’annule pas et sur
§ lequel nous prenons comme coordonnées le couple (z,t) ou z est 'abscisse

curviligne sur y associée au champ d(y):0,; z, désignera l'abscisse du
point (yo, o).
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