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28 X. SAINT RAYMOND

un point x; € B(xq, 8/2) tel que x,¢ F. Soit alors & = sup {r|B(x;, )
NF = (@}; on a 0<¢g< 82 puisque F est fermé et que x,€ F, donc

B(x;,€) = B(xq,0) = Q. De plus, par compacité il existe x, € F n B(x, €).
Soit @(x) = | x — x; |%; alors u est nulle dans {xeQ|o(x) < &’}

= B(x,,€) puisque B(x,,&) n F = () par définition de €; or le probléme
est elliptique en x, et do(x,) = 2(x,—x;) # 0, donc par le théoreme 3.1,
u = 0 au voisinage de x,, ce qui contredit le fait que x,€ F = supp u.

Cette contradiction prouve que le support de u est a la fois ouvert et
fermé. Mais supp u # Q puisque ® # () est contenu dans le complémentaire
de ce support. Comme Q est connexe, c’est que supp u = Q.

3.2. UN LEMME TECHNIQUE

Pour préparer la démonstration du théoréme 1.2, nous donnons main-
tenant un résultat d’unicité dans R? copié sur le résultat précédent, mais
sous des hypotheses plus faibles.

LemMMeE 3.3. Soient 0:R >R et b:R?>—> R deux fonctions C*.
Supposons quil existe un voisinage convexe ® de (yo,0(yo)) tel que b
soit positive sur ®, = {(),)ew|t = 0()} et byy,ty) >0 pour un
to tel que (yo,to)€w,. Alors pour toute ue C'(®) solution du systéme

ou +ibou+ cu =0 dans o, et
(33)
u=20 dans o_ = {(y,)eo|t < 0(y)}
la fonction u sannule au voisinage de (o, 8(yo)). .

Démonstration. Elle sera trés semblable a celle du théoréme 3.1. Pour
commencer, nous allons choisir un poids | fabriqué de telle maniére que
I'opérateur n = N/b soit encore bien défini.

Si b(yo,0(yo)) > 0, nous sommes dans le cas elliptique, et le résultat
découle du théoréme 3.1; nous supposerons donc tout au long de cette
démonstration que b(y,, 0(yo)) = 0. Le t, de I'hypothése vérifie donc
to > 0(yo), et il existe un voisinage de (yo,to) contenu dans o, tel que
b > 6 > 0 dans ce voisinage (et nous supposerons & < 1 dans la suite);
nous pouvons méme choisir ce voisinage de la forme
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Iyo—o, yo+al X Jto—0a, to+of .

Nous posons alors

t

(34) V(. 1) = 0—o)* + J b(y, s) (to + o —s)ds .

6(»)

Alors, pour tout 0 < ¢ < o3, K, = {xen, | Y(x) < g} est un compact
tel que x, soit un point intérieur de K, L ®_, ce qui nous permettra de
déduire Tunicité de linégalité de Carleman (3.5) comme dans la démons-

tration du théoréme 3.1.

Soit 0 < g, < a?8 que nous fixerons plus loin. En vue d’écrire

t
w = vexp (—t\l/ + J c(y, s)ds), posons

to

L = [exp(—rxl;+ Jt oy, s)ds):| [6,+»ib6y+c] I:exp('cql— Jt c(y, s)d )]

to

t

Grace a (3.4), et en posant J 0,c(y, s)ds = c1(y, 1) + icy(y, 8) ou ¢y et ¢,

to

sont a valeurs réelles, on calcule que:

L, = [0,+tb(to+o—t)—c] + ib[0,+1d,W—(cs +ic;)] + ¢
=M+ iN =M + ibn

ol nous avons séparé la partie autoadjointe de la partie anti-autoadjointe:

0 o
M=—+ith— —i
o + ith oy ibc,
{
| n = 5}—;‘— it(to+a—t) — ic, .

Alors, pour w € C}(R?) avec suppw < K,
1 — 1. — (1 —
Re ?Ltwnw = Re ?Mwnw + |b|nw|? = Re | - Mwnw
i
puisque b > 0 dans K, ; puis,

2 Re JMW(W/i) = — JI w20 (t(to+a—18)+c,) — JI w | 20,(thd y —bc; )
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par intégrations par parties. On obtient donc

J | w12 [o(1—0,(ba, ) +(3,(be; ) —3/(c,))]

1
<2Rej—,L1wnw<2f|L1w| | nw | .
i

I nous faut maintenant distinguer deux cas. Pour cela, posons
Bo = sup {t > 6(yo) | Vs € [6(3), t], b(yo, ) = 0}; alors 8(y,) < 0, < to. Si
O = 6(yo), alors pour tout voisinage de (y,, 6(y,)) on peut trouver un
€ > 0 tel que K, soit contenu dans ce voisinage; en revanche, si 0, > 0(y,),
alors Y est nulle sur Ky = {yo} x [0(yo), 0o, €t C’est seulement pour tout
voisinage de K, qu’on peut trouver un & > 0 tel que K, soit contenu
dans ce voisinage. Cette distinction de cas nous permet d’écrire :

1. Si 8y = 6(ye), calculons 0, par la formule (3.4):

t

oV = 2(y—y,) + j 0,b(y, 8) (to +a—3s)ds + O'(¥)b(y, 6()) (to + —6(»))

8(»)

et donc b()’o: 9()’0)) = 6y‘l’()’o, 9()’0)) = 0; dou ay(bay‘*ll)(yo’ 9()’0)) =0, ce
qui fait qu’on peut trouver g, assez petit pour que | 0,(bo, V) | < 1/2 dans K, .

2. Si 8y > 6(yo), alors b est nulle sur K,, et comme b est positive dans
®,, O,b est également nulle dans {y,} x ]0(y,), 8,], donc dans K,; dou
0y(bd,y) = 0 dans K,, ce qui fait qu'on peut trouver g, assez petit pour
que | 9,(bd,¥) | < 1/2 dans K, .

Le nombre g, > 0 étant choisi, oublions maintenant cette distinction des
deux cas, et choisissons 1, suffisamment grand pour que | d,(bc;) — d,c, |
< To/4 dans K, _; alors, pour T > 1, ‘

§J|w|2<2f|LTwl|nw|.

Enfin, pour v € C*(R?) avec supp v = K,,, posons

t

w = vexp(—ty + f c(y, s)ds)

t

et reportons cette expression dans I'inégalité précédente; on obtient :
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Je—zw e2Refe) 412 < %Je—m e2Refe | 9.0 + ibd,v + cv| | 0,0 + ¢qv]|

+ 8 Je‘z““ e2Refe | a0 + b0, + cv | | (@, +i(to+a—1) | .

Tl existe donc une constante C telle que pour toute v € C'(R?) avecsupp v = K,
et tout T = T,

(3.5) Je‘z“" lv|2<C Je""‘" | 8 + b0, + cv | (10,04 c1|+v]) -

3.3. UNICITE EN DIMENSION DEUX SOUS LA CONDITION (R)

Nous continuons en donnant une version faible du théoréme 1.2 sous la
condition (R) lorsque I’espace est R2.

THEOREME 3.4. Supposons que 18 L(x,) = 2 en un point Xx€ R%
Si le probléme est non caractéristique (en x, ), alors pour tout voisinage ®
de x, ettoute ue CY(w) solution du systéme

{ (L+co)u(x) = 0 dans o et

(3.6) ux) =0 dans o_ = {xeo|ox) < 0(xy)},

la fonction u sannule au voisinage de x.

Démonstration. D’aprés le lemme 1.3, nous pouvons prendre sur R?
des coordonnées (y, t) telles que:

1. xO — (0, O),
2. 9(x) — @(xo) =,
3. L+ ¢y = 0, + ib(y,t) 0, + c(y, t) & un facteur non nul preés.

St b(0, 0) # 0, nous sommes dans le cas elliptique et le résultat découle
du théoréme 3.1. Sinon, par ’hypothése rg #(x,) = 2, il existe k > 0 tel que }
0% b(0, 0) # 0 tandis que 87 b(0,0) = O pour j < k. Alors, par le théoréme |
de préparation de Malgrange (cf. Hoérmander [11, th. 7.5.5]), il existe, |
pour (y,£)e]1—Y,Y[x]—T,T[ avec Y >0 et T > 0, une factorisation |

b(y, t) = a(y, 1) (t*+ a1 (N1 + ... + ag())
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