Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 32 (1986)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: L'UNICITÉ POUR LES PROBLÈMES DE CAUCHY LINÉAIRES DU

PREMIER ORDRE

Autor: Raymond, Xavier Saint

Kapitel: 3.2. Un lemme technique

DOI: https://doi.org/10.5169/seals-55077

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

un point $x_1 \in B(x_0, \delta/2)$ tel que $x_1 \notin F$. Soit alors $\varepsilon = \sup \{r \mid B(x_1, r) \cap F = \emptyset\}$; on a $0 < \varepsilon \le \delta/2$ puisque F est fermé et que $x_0 \in F$, donc $B(x_1, \varepsilon) \subset B(x_0, \delta) \subset \Omega$. De plus, par compacité il existe $x_2 \in F \cap \overline{B(x_1, \varepsilon)}$. Soit $\varphi(x) = |x - x_1|^2$; alors u est nulle dans $\{x \in \Omega \mid \varphi(x) \le \varepsilon^2\}$ $= \overline{B(x_1, \varepsilon)}$ puisque $B(x_1, \varepsilon) \cap F = \emptyset$ par définition de ε ; or le problème est elliptique en x_2 et $d\varphi(x_2) = 2(x_2 - x_1) \neq 0$, donc par le théorème 3.1, u = 0 au voisinage de x_2 , ce qui contredit le fait que $x_2 \in F = \sup u$.

Cette contradiction prouve que le support de u est à la fois ouvert et fermé. Mais supp $u \neq \Omega$ puisque $\omega \neq \emptyset$ est contenu dans le complémentaire de ce support. Comme Ω est connexe, c'est que supp $u = \emptyset$.

3.2. Un lemme technique

Pour préparer la démonstration du théorème 1.2, nous donnons maintenant un résultat d'unicité dans \mathbb{R}^2 copié sur le résultat précédent, mais sous des hypothèses plus faibles.

Lemme 3.3. Soient $\theta: \mathbf{R} \to \mathbf{R}$ et $b: \mathbf{R}^2 \to \mathbf{R}$ deux fonctions C^{∞} . Supposons qu'il existe un voisinage convexe ω de $(y_0, \theta(y_0))$ tel que b soit positive sur $\omega_+ = \{(y, t) \in \omega \mid t \geqslant \theta(y)\}$ et $b(y_0, t_0) > 0$ pour un t_0 tel que $(y_0, t_0) \in \omega_+$. Alors pour toute $u \in C^1(\omega)$ solution du système

(3.3)
$$\begin{cases} \partial_t u + ib \, \partial_y u + cu = 0 \quad dans \quad \omega, \quad et \\ u = 0 \quad dans \quad \omega_- = \{(y, t) \in \omega \mid t \leq \theta(y)\} \end{cases}$$

la fonction u s'annule au voisinage de $(y_0, \theta(y_0))$.

Démonstration. Elle sera très semblable à celle du théorème 3.1. Pour commencer, nous allons choisir un poids ψ fabriqué de telle manière que l'opérateur n=N/b soit encore bien défini.

Si $b(y_0, \theta(y_0)) > 0$, nous sommes dans le cas elliptique, et le résultat découle du théorème 3.1; nous supposerons donc tout au long de cette démonstration que $b(y_0, \theta(y_0)) = 0$. Le t_0 de l'hypothèse vérifie donc $t_0 > \theta(y_0)$, et il existe un voisinage de (y_0, t_0) contenu dans ω_+ tel que $b \ge \delta > 0$ dans ce voisinage (et nous supposerons $\delta \le 1$ dans la suite); nous pouvons même choisir ce voisinage de la forme

$$]y_0 - \alpha, y_0 + \alpha[\times]t_0 - \alpha, t_0 + \alpha[.$$

Nous posons alors

(3.4)
$$\psi(y, t) = (y - y_0)^2 + \int_{\theta(y)}^t b(y, s) (t_0 + \alpha - s) ds.$$

Alors, pour tout $0 < \varepsilon \le \alpha^2 \delta$, $K_{\varepsilon} = \{x \in \omega_+ \mid \psi(x) \le \varepsilon\}$ est un compact tel que x_0 soit un point intérieur de $K_{\varepsilon} \cup \omega_-$, ce qui nous permettra de déduire l'unicité de l'inégalité de Carleman (3.5) comme dans la démonstration du théorème 3.1.

Soit $0 < \varepsilon_0 \le \alpha^2 \delta$ que nous fixerons plus loin. En vue d'écrire $w = v \exp\left(-\tau \psi + \int_{t_0}^t c(y, s) ds\right)$, posons

$$L_{\tau} = \left[\exp(-\tau \psi + \int_{t_0}^t c(y, s) ds) \right] \left[\partial_t + ib \partial_y + c \right] \left[\exp(\tau \psi - \int_{t_0}^t c(y, s) ds) \right].$$

Grâce à (3.4), et en posant $\int_{t_0}^t \partial_y c(y, s) ds = c_1(y, t) + ic_2(y, t)$ où c_1 et c_2 sont à valeurs réelles, on calcule que:

$$L_{\tau} = \left[\partial_t + \tau b(t_0 + \alpha - t) - c \right] + ib \left[\partial_y + \tau \partial_y \psi - (c_1 + ic_2) \right] + c$$
$$= M + iN = M + ibn$$

où nous avons séparé la partie autoadjointe de la partie anti-autoadjointe:

$$\begin{cases} M = \frac{\partial}{\partial t} + i\tau b \frac{\partial \psi}{\partial y} - ibc_1 \\ n = \frac{\partial}{\partial y} - i\tau (t_0 + \alpha - t) - ic_2 . \end{cases}$$

Alors, pour $w \in C^1(\mathbb{R}^2)$ avec supp $w \subset K_{\varepsilon_0}$,

$$\operatorname{Re} \int \frac{1}{i} L_{\tau} w \overline{n w} = \operatorname{Re} \int \frac{1}{i} M w \overline{n w} + \int b |nw|^{2} \geqslant \operatorname{Re} \int \frac{1}{i} M w \overline{n w}$$

puisque $b \geqslant 0$ dans K_{ϵ_0} ; puis,

$$2 \operatorname{Re} \int Mw(\overline{nw}/i) = -\int |w|^2 \partial_t (\tau(t_0 + \alpha - t) + c_2) - \int |w|^2 \partial_y (\tau b \partial_y \psi - bc_1)$$

par intégrations par parties. On obtient donc

$$\int |w|^2 \left[\tau \left(1 - \partial_y (b\partial_y \psi)\right) + \left(\partial_y (bc_1) - \partial_t (c_2)\right)\right]$$

$$\leq 2 \operatorname{Re} \int \frac{1}{i} L_\tau w \overline{nw} \leq 2 \int |L_\tau w| |nw|.$$

Il nous faut maintenant distinguer deux cas. Pour cela, posons $\theta_0 = \sup\{t > \theta(y_0) \mid \forall s \in [\theta(y_0), t], b(y_0, s) = 0\}$; alors $\theta(y_0) \leqslant \theta_0 < t_0$. Si $\theta_0 = \theta(y_0)$, alors pour tout voisinage de $(y_0, \theta(y_0))$ on peut trouver un $\varepsilon > 0$ tel que K_{ε} soit contenu dans ce voisinage; en revanche, si $\theta_0 > \theta(y_0)$, alors ψ est nulle sur $K_0 = \{y_0\} \times [\theta(y_0), \theta_0]$, et c'est seulement pour tout voisinage de K_0 qu'on peut trouver un $\varepsilon > 0$ tel que K_{ε} soit contenu dans ce voisinage. Cette distinction de cas nous permet d'écrire:

1. Si $\theta_0 = \theta(y_0)$, calculons $\partial_y \psi$ par la formule (3.4):

$$\partial_{y} \Psi = 2(y - y_{0}) + \int_{\theta(y)}^{t} \partial_{y} b(y, s) \left(t_{0} + \alpha - s\right) ds + \theta'(y) b(y, \theta(y)) \left(t_{0} + \alpha - \theta(y)\right)$$

et donc $b(y_0, \theta(y_0)) = \partial_y \psi(y_0, \theta(y_0)) = 0$; d'où $\partial_y (b \partial_y \psi)(y_0, \theta(y_0)) = 0$, ce qui fait qu'on peut trouver ε_0 assez petit pour que $|\partial_y (b \partial_y \psi)| \le 1/2$ dans K_{ε_0} .

2. Si $\theta_0 > \theta(y_0)$, alors b est nulle sur K_0 , et comme b est positive dans ω_+ , $\partial_y b$ est également nulle dans $\{y_0\} \times]\theta(y_0)$, $\theta_0]$, donc dans K_0 ; d'où $\partial_y (b\partial_y \psi) = 0$ dans K_0 , ce qui fait qu'on peut trouver ε_0 assez petit pour que $|\partial_y (b\partial_y \psi)| \leq 1/2$ dans K_{ε_0} .

Le nombre $\varepsilon_0 > 0$ étant choisi, oublions maintenant cette distinction des deux cas, et choisissons τ_0 suffisamment grand pour que $|\partial_y(bc_1) - \partial_t c_2| \le \tau_0/4$ dans K_{ε_0} ; alors, pour $\tau \ge \tau_0$

$$\frac{\tau}{4}\int |w|^2 \leqslant 2\int |L_{\tau}w| |nw|.$$

Enfin, pour $v \in C^1(\mathbf{R}^2)$ avec supp $v \subset K_{\varepsilon_0}$, posons

$$w = v \exp(-\tau \psi + \int_{t_0}^t c(y, s) ds)$$

et reportons cette expression dans l'inégalité précédente; on obtient:

$$\int e^{-2\tau\psi} e^{2\operatorname{Re}\int c} |v|^2 \leq \frac{8}{\tau} \int e^{-2\tau\psi} e^{2\operatorname{Re}\int c} |\partial_t v + ib\partial_y v + cv| |\partial_y v + c_1 v|$$

$$+ 8 \int e^{-2\tau\psi} e^{2\operatorname{Re}\int c} |\partial_t v + ib\partial_y v + cv| |(\partial_y \psi + i(t_0 + \alpha - t))v|.$$

Il existe donc une constante C telle que pour toute $v \in C^1(\mathbb{R}^2)$ avec supp $v \subset K_{\varepsilon_0}$ et tout $\tau \geqslant \tau_0$,

(3.5)
$$\int e^{-2\tau\psi} |v|^2 \leq C \int e^{-2\tau\psi} |\partial_t v + ib\partial_y v + cv| (|\partial_y v + c_1 v| + |v|).$$

3.3. Unicité en dimension deux sous la condition (R)

Nous continuons en donnant une version faible du théorème 1.2 sous la condition (R) lorsque l'espace est \mathbb{R}^2 .

Théorème 3.4. Supposons que $\operatorname{rg} \mathscr{L}(x_0) = 2$ en un point $x_0 \in \mathbf{R}^2$. Si le problème est non caractéristique (en x_0), alors pour tout voisinage ω de x_0 et toute $u \in C^1(\omega)$ solution du système

(3.6)
$$\begin{cases} (L+c_0)u(x) = 0 & dans & \omega & et \\ u(x) = 0 & dans & \omega_- = \{x \in \omega \mid \varphi(x) \leqslant \varphi(x_0)\}, \end{cases}$$

la fonction u s'annule au voisinage de x_0 .

Démonstration. D'après le lemme 1.3, nous pouvons prendre sur \mathbb{R}^2 des coordonnées (y, t) telles que:

- 1. $x_0 = (0, 0),$
- $2. \quad \varphi(x) \varphi(x_0) = t,$
- 3. $L + c_0 = \partial_t + ib(y, t) \partial_y + c(y, t)$ à un facteur non nul près.

Si $b(0,0) \neq 0$, nous sommes dans le cas elliptique et le résultat découle du théorème 3.1. Sinon, par l'hypothèse rg $\mathcal{L}(x_0) = 2$, il existe k > 0 tel que $\partial_t^k b(0,0) \neq 0$ tandis que $\partial_t^j b(0,0) = 0$ pour j < k. Alors, par le théorème de préparation de Malgrange (cf. Hörmander [11, th. 7.5.5]), il existe, pour $(y,t) \in]-Y$, $Y[\times]-T$, T[avec Y>0 et T>0, une factorisation

$$b(y, t) = a(y, t) (t^{k} + a_{k-1}(y)t^{k-1} + ... + a_{0}(y))$$