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28 X. SAINT RAYMOND

un point x1eB(x0,hß) tel que x1$F. Soit alors s sup {r \ B(x1, r)

n F 0}; on a 0 < e < 5/2 puisque F est fermé et que x0 e F, donc

B(x1, s) c= B(xo, 5) c= De plus, par compacité il existe x2 e F n s).

Soit cp(x) | x — x± |
2

; alors u est nulle dans {x e fi | cp(x) ^ s2}

B(xl9e) puisque B(xl9e) n F 0 par définition de s; or le problème
est elliptique en x2 et d(p(x2) 2(x2 — x1) ^ 0, donc par le théorème 3.1,

u 0 au voisinage de x2, ce qui contredit le fait que x2e F supp u.

Cette contradiction prouve que le support de u est à la fois ouvert et

fermé. Mais supp u ^ Q puisque œ # 0 est contenu dans le complémentaire
de ce support. Comme Q. est connexe, c'est que supp u 0.

3.2. Un lemme technique

Pour préparer la démonstration du théorème 1.2, nous donnons
maintenant un résultat d'unicité dans R2 copié sur le résultat précédent, mais

sous des hypothèses plus faibles.

Lemme 3.3. Soient 0:R-»R et b: R2 - R deux fonctions C00.

Supposons qu'il existe un voisinage convexe cû de (y0 9(y0 Que ^

soit positive sur co+ {(y, t) e œ | t > 0(y)} et b(y0, t0) > 0 pour un

t0 tel que (y0, t0) e co+ Alors pour toute u e C^œ) solution du système

f ôtu + ib dvu -h eu 0 dans œ, et
(3 3) <

[ u 0 dans œ_ {(y, t) e (o \ t ^ 0(y)}

la fonction u s'annule au voisinage de (y0>Q(y0))'

Démonstration. Elle sera très semblable à celle du théorème 3.1. Pour

commencer, nous allons choisir un poids v|/ fabriqué de telle manière que

l'opérateur n N/b soit encore bien défini.

Si b(y0,Q(y0)) > 0, nous sommes dans le cas elliptique, et le résultat

découle du théorème 3.1; nous supposerons donc tout au long de cette

démonstration que b(y0,0(yo 0: Le t0 de l'hypothèse vérifie donc

t0 > 0(yo)> et il existe un voisinage de (y0,t0) contenu dans œ+ tel que
b ^ 5 > 0 dans ce voisinage (et nous supposerons 5 < 1 dans la suite);

nous pouvons même choisir ce voisinage de la forme
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Nous posons alors

(3.4) Mu) (y-yo)2 +

]yo — a, )>o + aC x ]*o ~ °Uo + aC •

s) (to + u-s)ds.
eoo

Alors, pour tout 0 < s ^ a25, Xe {x e co+ | \|/(x) ^ s} est un compact

tel que x0 soit un point intérieur de K£ u co_, ce qui nous permettra de

déduire l'unicité de l'inégalité de Carleman (3.5) comme dans la démonstration

du théorème 3.1.

Soit 0 < s0 ^ oc28 que nous fixerons plus loin. En vue décrire

w v exp — T\j/ + c(y, s)ds posons

U exr:p(-T\|/+ c(y,s)ds) [dt + ibdy + c]
i

exp(T\|/— c(y,s)ds)
%, to

Grâce à (3.4), et en posant dyc(y, s)ds cx(y, t) + ic2(y, t) où cx et c2
J to

sont à valeurs réelles, on calcule que :

Lt [_dt + Tb(t0 + OL—t)—c] + ib[_dy + xdyy\f—(c1 + ic2j] + c

M + iN M -h ibn

où nous avons séparé la partie autoadjointe de la partie anti-autoadjointe:

d ,3\1/
M — + ixb ibc1

dt ôy

n ix(t0 + aL—t) — ic2
dy

Alors, pour w e CX(R2) avec supp w c i(£o,

Re — Lxwnw Re Jt Mwnw + J b 1 nw |2 ^ Re - Mwnw
i

puisque b ^ 0 dans Keo ; puis,

2 Re Mw(nw/i) — w 2dt(x(t0 + CL — t) + c2) — | w\2dy{xbdyy\f-bc1)
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par intégrations par parties. On obtient donc

| w |2 [x(l - djbdjd r))+ (dy(bCl - dt(c2 ))]

^ 2 Re — Lxwnw < 2 | Lxw | | nw |.

Il nous faut maintenant distinguer deux cas. Pour cela, posons
0O sup {t > 0(j>o) | Vs g [0(jo), f], b(y0, s) 0}; alors Q(y0) ^ 0O < t0. Si
% alors pour tout voisinage de (y0,Q(y0)) on peut trouver un
8 > 0 tel que Ke soit contenu dans ce voisinage; en revanche, si 0O > 0(yo),
alors \|/ est nulle sur K0 {y0} x [0(yo)> 0o]> c'est seulement pour tout
voisinage de K0 qu'on peut trouver un 8 > 0 tel que Ke soit contenu
dans ce voisinage. Cette distinction de cas nous permet d'écrire :

1. Si 0O 0(yo), calculons dy\\f par la formule (3.4):

et donc b(y0,Q(y0)) dy^(y0, Q(y0)) 0; d'où dy(bÔyy\f)(y0, Q(y0j) 0, ce

qui fait qu'on peut trouver e0 assez petit pour que | dy(bdyy\f) | ^ 1/2 dans KZo.

2. Si 0O > Q(y0), alors b est nulle sur K0, et comme b est positive dans
(Ö+, dyb est également nulle dans {y0} x ]0Q>o), 0O], donc dans K0 ; d'où
dy(bdyy\f) 0 dans K0, ce qui fait qu'on peut trouver e0 assez petit pour
que | dy(bôy\|/) | < 1/2 dans Keo.

Le nombre 80 > 0 étant choisi, oublions maintenant cette distinction des
deux cas, et choisissons x0 suffisamment grand pour que | d'y{bc1 — dtc2 |

^ x0/4 dans Keo ; alors, pour x ^ x0

dyb(y, s) (it0 + cc-s)ds + &(y)b(y9 0(y)) (t0 + a-Q{y))

Enfin, pour v e C1(R2) avec supp v c= Keo, posons

w v exp(—x\(/ + c(y, s)ds)

et reportons cette expression dans l'inégalité précédente; on obtient:
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e 2x^ e2 Re i"c
I v |2 ^ -

+

g
— 2t\|/ g2 Re Je

| g^ + fog v + CV \ \ ÔyV + CtV \

e 2xxl/ g2ReJc | g^v _|_ fo^yV _]_ cv | | (5y\|/ + l'(^0 + a ~~ t))V I '

Il existe donc une constante C telle que pour toute v e C1(R2) avec supp v a KS(

et tout t ^ x0,

(3.5) I e~2x* | v |
2 ^ C e~2x* | ôtv + ibdyv + cv \ (IdyV + c^ + M).

3.3. Unicité en dimension deux sous la condition (R)

Nous continuons en donnant une version faible du théorème 1.2 sous la

condition (R) lorsque l'espace est R2.

Théorème 3.4. Supposons que rgj£?(x0) 2 en un point x0e R2.

Si le problème est non caractéristique (en x0), alors pour tout voisinage co

de x0 et toute u e C^co) solution du système

(3.6)
(.L + c0)u(x) 0 dans œ et

u(x) 0 dans œ_ {x e œ | cp(x) ^ cp(x0)}

la fonction u s'annule au voisinage de x0.

Démonstration. D'après le lemme 1.3, nous pouvons prendre sur R2

des coordonnées (y, t) telles que :

1. x0 (°> °)>

2. <p(x) - cp(x0) t,

3. L + c0 dt + ib(y, t) dy + c(y, t) à un facteur non nul près.

Si b(0, 0) / 0, nous sommes dans le cas elliptique et le résultat découle
du théorème 3.1. Sinon, par l'hypothèse rg &(x0) 2, il existe k > 0 tel que
ô* b(0, 0) 7^ 0 tandis que ô{ b(0, 0) 0 pour j < k. Alors, par le théorème
de préparation de Malgrange (cf. Hörmander [11, th. 7.5.5]), il existe,

pour (y, t) e ] — Y, Y[ x ] — T, T[ avec Y > 0 et T > 0, une factorisation

b(y,t) a(y, t) {tk + ak. ^y)?'1 +... + a0(y))
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