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.24 X. SAINT RAYMOND

Pour démontrer le théoréme 1.2, nous suivrons le schéma proposé par
Strauss et Tréves [24] sauf au paragraphe 3.2 ou nous nous inspirons de
Zuily [28]. Il faut dans la démonstration distinguer les étapes suivantes:
tout d’abord une étape purement locale ou nous établissons un lemme
technique copié sur le cas elliptique (3.2); puis nous effectuons par deux
fois un passage du local au global afin d’obtenir le théoréme 1.2 sous la
condition (R) d’abord dans R? (3.3), puis dans R" (3.4); enfin, c’est de nouveau
en « globalisant » le résultat donné par le lemme du paragraphe 3.2 que
nous obtenons le théoréme 1.2 sous la condition (P) (3.5).

3.1. LE PROBLEME ELLIPTIQUE

Un champ L de R? est dit elliptique en x, si les champs réels
X = ReL et Y = Im L sont linéairement indépendants en x,. Pour toute
fonction ¢ telle que do(x,) # 0, le probléme associé 4 un champ elliptique
est non caractéristique. Le champ L sera dit elliptique dans un ouvert Q
de R? §’il est elliptique en chacun de ses points.

THEOREME 3.1. Soit L un champ elliptique en un point x, € R?. Alors,
pour tout voisinage ® de Xx, et toute uc CYw) solution du systéme

(3.1) { (L+cou(x) = 0 dans o et

ux) =0 dans o_ = {xeo]|o(x) < o(xy)},
la fonction u sannule au voisinage de x,.

Démonstration. Posons

12 et P(x) = — (V(x)—g)?

pour un g, > 0 que nous choisirons ultérieurement. Remarquons que pour
tout 0 < € < gy, K, = {xe o, | V(x) < €} est un compact tel que x, soit
un point intérieur de K, U o_ .

Le point clé de la démonstration, que nous établirons plus loin, est
I'obtention de I'inégalité suivante (dite inégalite de Carleman): il existe des
constantes T, < o0 et C < oo, et un opérateur R (du premier ordre) tels
que Vv € C}(R?) avec supp v < K, , VT > 1o,

U(x) = o(x) = 0xo) + | x — Xo

(3.2) je"z“l’ lv|2<C Je‘z“l' | (L+co)v | (|Rv|+v]) .
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Montrons pour le moment comment obtenir l'unicité & partir d’'une telle

et ¢, étant fixées de telle maniére que 0 < &,

inégalité. Des valeurs &;
©(R?) telle que

< g, < gy, NOUS choisissons une fonction de troncature y € C
y = 1sur K, etsuppy N0+ < K,,:

{o(x) = @lxo)}

. | LS ’\ ‘
\\&xéfea?z%\g\\\\

v =0

FIGURE 3.1.
Le support de y et les compacts K, K, et K.,.

Soit u une solution du systéme (3.1); formons v = yu le produit de u
par y:ve C}(R? et suppv = K,,, donc on peut appliquer I'inégalité (3.2)
a v. Mais d’une part

eZt(sz—ao)2 j‘ l u I 2 < J' e—ZT‘P I u I 2
Kaz Kaz

ZJ e_Zt\PIvIZSJ‘ e—?.r‘l’|v|29
KSZ Kso

et dautre part, (L+co)v = x(L+co)u + [L, x]u = (Ly)u = 0 sur K,,, dou

JK e” 2 [ (L+co)v | (Ro|+|vl) = j e > | (L+co)v | (Rl +|vl)

Kgo\Ke,

< 821(81—80)2 J‘ | (L+ CO)U | (|RU| + |Ul) s
K¢,
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L’inégalité (3.2) donne donc pour © > 1,

j | u |2 < Ce?re2—e1) 2e0—s1—22) f | (L+co)v | (IRv|+]v]),
Kez KE

(1]

et comme (e,—¢,) (2e0—e; —¢€,) < 0, il suffit de laisser t tendre vers I'infini
pour savoir que u = 0 dans K, donc au voisinage de x,.

Démonstration de l'inégalité (3.2). Comme d\i(xy) = do(x,) # Oet que L
est elliptique en x,, le probléme (avec ) est non caractéristique et nous
pouvons d’aprés le lemme 1.3 trouver des coordonnées (y,f)eR x R
telles que

L. Xo = (Oa O)a

2. ¥(x) =t
3. L+ ¢y =0, + ib(y, )0, + c(y, t) & un facteur non nul pres.

Comme L est elliptique en x,, nous supposerons que b(0,0) > O (sinon,
changer y en —y), et prendrons g, suffisamment petit pour que b > 6 > 0
dans K, .

En vue d’écrire w = e **v, posons L, = e "¥(L4cy)e™, et ¢ = ¢, + ic,
ou c¢; et c, sont a valeurs réelles; d’aprés les points 2 et 3 ci-dessus,
on calcule que:

IJ,t - at i 21:(1"""80) + lb ay + cl + iCZ = M + lN 01‘1

M = at + iCZ
N — b ay + 1(2T(t—80)—cl) .

Dans le découpage ci-dessus, nous avons seéparé la partie autoadjointe
de la partie anti-autoadjointe pour pouvoir effectuer des intégrations par
parties. En effet, pour w € C}(R?) avec supp w = K

€0

1 — 1 — | Nw |2 1 —
Re | — LwWwNw = Re | — MwNw + > Re | — MwNw
ib ib b ib

puisque b > 0 dans K, ; puis
2 Re f Mw(Nw/ib) = J | w]28,[(2t(t—eo)—cy)/b] — f | w2d,c,

par intégrations par parties. On obtient donc:
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j w122 (b—(t— )b}/ — [o,03-+ dey/B)])

1 _
< 2ReJ‘€LTwNw i 2J|Ltw| | Nw/b | .
i

Choisissons donc g, assez petit pour que | (t—€0)0b | < 8/2 dans K,
puis 7, suffisamment grand pour que | ,c, + Ofcy/b) | < 0To/(2 sup b?) dans

K.,; alors, pour T > 1o €t Co = 4 sup b?/3,

CTOJIWIZ JlLtWIINW/b'I-

Enfin, pour v € C}(R?) avec supp v = K,,, posons w = e~ "Yp, et reportons
cette expression dans I'inégalité précédente; on obtient:

C .
je—w 0|2 < —nge—m' [Ltcol| | @y—icy/b|

+ C, Je‘”" | (L+co)v| | 2(t—eo)v/b|

d’ou I'inégalité (3.2) si nous posons
R =0, —icy/b et C = max {Co/To, Cosup | 2t—go)/b |} -

Remarques. 11 existe pour les champs elliptiques des inégalités de
Carleman meilleures que Iinégalité (3.2); nous avons fait ce choix parce que
ce résultat sétend a des champs non elliptiques comme nous le verrons
plus loin. L’introduction du facteur 1/b dans les intégrales a pour but de

remplacer Jb&,wayw qui nécessite des calculs pour étre estimée, par Ja,wayw

dont la partie imaginaire est nulle; c’est 1a que nous utilisons Pellipticité de L.
Dans le prochain paragraphe, nous allons montrer qu'un tel calcul est encore
possible sous des hypothéses plus faibles sur L. Avant cela, donnons un
corollaire du théoréme 3.1.

COROLLAIRE 3.2. Soit Q un ouvert connexe de R? dans lequel
le champ L est elliptique. Si ue C{Q) vérifie (L+cou(x) = 0 dans Q
et sSannule dans un ouvert non vide ® < Q, alors u est nulle dans Q.

Démonstration. Notons F = supp u et supposons que F # F.

Alors il existe x, eF\F Comme x, €, il existe une boule ouverte
centrée en Xx,, B(xg, 8), qui soit contenue dans Q. Comme Xx, ¢ F il existe
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un point x; € B(xq, 8/2) tel que x,¢ F. Soit alors & = sup {r|B(x;, )
NF = (@}; on a 0<¢g< 82 puisque F est fermé et que x,€ F, donc

B(x;,€) = B(xq,0) = Q. De plus, par compacité il existe x, € F n B(x, €).
Soit @(x) = | x — x; |%; alors u est nulle dans {xeQ|o(x) < &’}

= B(x,,€) puisque B(x,,&) n F = () par définition de €; or le probléme
est elliptique en x, et do(x,) = 2(x,—x;) # 0, donc par le théoreme 3.1,
u = 0 au voisinage de x,, ce qui contredit le fait que x,€ F = supp u.

Cette contradiction prouve que le support de u est a la fois ouvert et
fermé. Mais supp u # Q puisque ® # () est contenu dans le complémentaire
de ce support. Comme Q est connexe, c’est que supp u = Q.

3.2. UN LEMME TECHNIQUE

Pour préparer la démonstration du théoréme 1.2, nous donnons main-
tenant un résultat d’unicité dans R? copié sur le résultat précédent, mais
sous des hypotheses plus faibles.

LemMMeE 3.3. Soient 0:R >R et b:R?>—> R deux fonctions C*.
Supposons quil existe un voisinage convexe ® de (yo,0(yo)) tel que b
soit positive sur ®, = {(),)ew|t = 0()} et byy,ty) >0 pour un
to tel que (yo,to)€w,. Alors pour toute ue C'(®) solution du systéme

ou +ibou+ cu =0 dans o, et
(33)
u=20 dans o_ = {(y,)eo|t < 0(y)}
la fonction u sannule au voisinage de (o, 8(yo)). .

Démonstration. Elle sera trés semblable a celle du théoréme 3.1. Pour
commencer, nous allons choisir un poids | fabriqué de telle maniére que
I'opérateur n = N/b soit encore bien défini.

Si b(yo,0(yo)) > 0, nous sommes dans le cas elliptique, et le résultat
découle du théoréme 3.1; nous supposerons donc tout au long de cette
démonstration que b(y,, 0(yo)) = 0. Le t, de I'hypothése vérifie donc
to > 0(yo), et il existe un voisinage de (yo,to) contenu dans o, tel que
b > 6 > 0 dans ce voisinage (et nous supposerons & < 1 dans la suite);
nous pouvons méme choisir ce voisinage de la forme
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