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124 X. SAINT RAYMOND

Pour démontrer le théorème 1.2, nous suivrons le schéma proposé par
Strauss et Trêves [24] sauf au paragraphe 3.2 où nous nous inspirons de

Zuily [28]. Il faut dans la démonstration distinguer les étapes suivantes:
tout d'abord une étape purement locale où nous établissons un lemme
technique copié sur le cas elliptique (3.2); puis nous effectuons par deux
fois un passage du local au global afin d'obtenir le théorème 1.2 sous la
condition (R) d'abord dans R2 (3.3), puis dans Rn (3.4); enfin, c'est de nouveau
en « globalisant » le résultat donné par le lemme du paragraphe 3.2 que
nous obtenons le théorème 1.2 sous la condition (P) (3.5).

3.1. Le problème elliptique

Un champ L de R2 est dit elliptique en x0 si les champs réels

X Re L et Y Im L sont linéairement indépendants en x0. Pour toute
fonction (p telle que d(p(x0) ^ 0, le problème associé à un champ elliptique
est non caractéristique. Le champ L sera dit elliptique dans un ouvert Q

de R2 s'il est elliptique en chacun de ses points.

Théorème 3.1. Soit L un champ elliptique en un point x0 e R2. Alors,

pour tout voisinage œ de x0 et toute u e C^œ) solution du système

(3.1)
(L + c0)u(x) 0 dans œ et

u(x) 0 dans cû_ {x e œ | cp(x) < (p(x0)}

la fonction u s'annule au voisinage de x0.

Démonstration. Posons

v|/(x) cp(x) - cp(x0) + | X - x012 et *P(x) - (\|/(x)-e0)2

pour un e0 > 0 que nous choisirons ultérieurement. Remarquons que pour
tout 0 < s ^ 80, Kz {x e co+ | \|f(x) ^ e} est un compact tel que x0 soit

un point intérieur de Ke u œ_

Le point clé de la démonstration, que nous établirons plus loin, est

l'obtention de l'inégalité suivante (dite inégalité de Carleman): il existe des

constantes x0 < oo et C < oo, et un opérateur R (du premier ordre) tels

que Mv e CX(R2) avec supp v a KEo, Vt ^ x0,

(3.2) e~2TWlvl2 ^ C !e~2\(L+c0)v\(\Rv\ + \v\).
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Montrons pour le moment comment obtenir l'unicité à partir d'une telle

inégalité. Des valeurs s, et e2 étant fixées de telle manière que 0 < s2

< s, < e0, nous choisissons une fonction de troncature % e (R telle que

1 1 sur XEl et supp x n ©+ c Kso:

1 o

Figure 3.1.

Le support de % et les compacts KE0, KEl et KE.

{(p(x) Cp(x0)}

Soit u une solution du système (3.1); formons le produit de

par %'veC^R2) et supp v czKeo,donc on peut appliquer l'inégalité (3.2)

à v. Mais d'une part

„2T(£2-£O): f l"|2<
J KE2 %

,-2TT 1 v\2 <

e-^lul2

et d'autre part, L + c0)v%(L+c0)u + [L, x]M — (Uc)u — 0 sur ^

| (L + c0)v | (|Ru| + |u|) ,-2T>P ] (L+c0)f | (|jRu| + |t;|)

«so\k„

< g2T(EI_E0)2 | | (L+c0)u | (|jRu| + |u|).
*en
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L'inégalité (3.2) donne donc pour x ^ x0,

I 2 ^ ^^2t(82—El) (2eq—El — 82) \(L+c0)v\(\Rv\ + \v\),

et comme (e2 — £i) (2s0 — £i~ £2) < 0? ü suffit de laisser x tendre vers l'infini
pour savoir que u 0 dans Ke2 donc au voisinage de x0.

Démonstration de l'inégalité (3.2). Comme d\|/(x0) dcp(x0) ^ OetqueL
est elliptique en x0, le problème (avec \|/) est non caractéristique et nous

pouvons d'après le lemme 1.3 trouver des coordonnées (y, t) e R x R
telles que

1. x0 (0, 0),

2. \|/(x) t,

3. L + c0 dt + ib(y, t) ôy -b c(y, t) à un facteur non nul près.

Comme L est elliptique en x0, nous supposerons que b(0, 0) > 0 (sinon,
changer y en — y), et prendrons s0 suffisamment petit pour que b ^ 8 > 0

dans KS0.

En vue d'écrire vv, posons L% e xX¥(L + c0)exV¥, et c c± + zc2

où cx et c2 sont à valeurs réelles; d'après les points 2 et 3 ci-dessus,

on calcule que :

dt — 2t(£—b0) + ib dy + c1 + ic2 M + iN où

M dt + ic2

N bdy + i(2x(t—e0) — c1).

Dans le découpage ci-dessus, nous avons séparé la partie autoadjointe
de la partie anti-autoadjointe pour pouvoir effectuer des intégrations par
parties. En effet, pour w g C1(R2) avec supp w a Keo,

Re LtwNW
ib -ReIs MwNw +

£0 '

Nw I2
: f~
)ib^ Re | — MwNw

ib

puisque b > 0 dans Keo ; puis

2 Re Mw(Nw/ib) w 2dtl{2x(t-So)-cM - J I w 12ôyc2

par intégrations par parties. On obtient donc :
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w :(2x\_(b-(t-s0)dtb)/b2'] - [ôyc2 + ci,(c1/fe)])

Ltw | | |.2Re
11
— LzwNwsS 2
ib

Choisissons donc s0 assez petit pour que | (t-s0)dtb | < 5/2 dans Xeo,

puis t0 suffisamment grand pour que | dyc2 + dt(cjb) | «S ôr0/(2 sup b dans

K alors, pour r > x0 et C04 sup h2/8,

r
~C~o

w I Ltw | | Nw/b \.

F.nfirij pour v s C^R2) avec supp V <= XEo, posons w - e T>py, et reportons

cette expression dans l'inégalité précédente; on obtient:

e'2^ Irl2 -2tT | (L + c0)v | | (|

+ C( J- | (L + c0)ü | |

d'où l'inégalité (3.2) si nous posons

R dy - icjb et Cmax {Co/r0, C0 sup | 2 |}

Remarques. Il existe pour les champs elliptiques des inégalités de

Carleman meilleures que l'inégalité (3.2); nous avons fait ce choix parce que

ce résultat s'étend à des champs non elliptiques comme nous le verrons

plus loin. L'introduction du facteur 1/b dans les intégrales a pour but de

remplacer j" bdtwôyw qui nécessite des calculs pour être estimée, par 1 dtwdyw

dont la partie imaginaire est nulle; c'est là que nous utilisons l'ellipticité de L.

Dans le prochain paragraphe, nous allons montrer qu'un tel calcul est encore

possible sous des hypothèses plus faibles sur L. Avant cela, donnons un

corollaire du théorème 3.1.

Corollaire 3.2. Soit Q un ouvert connexe de R2 dans lequel

le champ L est elliptique. Si w e C1(Qi) vérifie (L + c0)u(x) 0 dans Q

et s'annule dans un ouvert non vide a> c: Q, alors u est nulle dans Q.

o
Démonstration. Notons F supp u et supposons que F # F.

o
Alors il existe x0 e F\F. Comme x0 e Q, il existe une boule ouverte

centrée en x0, B(x0, 5), qui soit contenue dans Q. Comme x0 / F, il existe
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un point x1eB(x0,hß) tel que x1$F. Soit alors s sup {r \ B(x1, r)

n F 0}; on a 0 < e < 5/2 puisque F est fermé et que x0 e F, donc

B(x1, s) c= B(xo, 5) c= De plus, par compacité il existe x2 e F n s).

Soit cp(x) | x — x± |
2

; alors u est nulle dans {x e fi | cp(x) ^ s2}

B(xl9e) puisque B(xl9e) n F 0 par définition de s; or le problème
est elliptique en x2 et d(p(x2) 2(x2 — x1) ^ 0, donc par le théorème 3.1,

u 0 au voisinage de x2, ce qui contredit le fait que x2e F supp u.

Cette contradiction prouve que le support de u est à la fois ouvert et

fermé. Mais supp u ^ Q puisque œ # 0 est contenu dans le complémentaire
de ce support. Comme Q. est connexe, c'est que supp u 0.

3.2. Un lemme technique

Pour préparer la démonstration du théorème 1.2, nous donnons
maintenant un résultat d'unicité dans R2 copié sur le résultat précédent, mais

sous des hypothèses plus faibles.

Lemme 3.3. Soient 0:R-»R et b: R2 - R deux fonctions C00.

Supposons qu'il existe un voisinage convexe cû de (y0 9(y0 Que ^

soit positive sur co+ {(y, t) e œ | t > 0(y)} et b(y0, t0) > 0 pour un

t0 tel que (y0, t0) e co+ Alors pour toute u e C^œ) solution du système

f ôtu + ib dvu -h eu 0 dans œ, et
(3 3) <

[ u 0 dans œ_ {(y, t) e (o \ t ^ 0(y)}

la fonction u s'annule au voisinage de (y0>Q(y0))'

Démonstration. Elle sera très semblable à celle du théorème 3.1. Pour

commencer, nous allons choisir un poids v|/ fabriqué de telle manière que

l'opérateur n N/b soit encore bien défini.

Si b(y0,Q(y0)) > 0, nous sommes dans le cas elliptique, et le résultat

découle du théorème 3.1; nous supposerons donc tout au long de cette

démonstration que b(y0,0(yo 0: Le t0 de l'hypothèse vérifie donc

t0 > 0(yo)> et il existe un voisinage de (y0,t0) contenu dans œ+ tel que
b ^ 5 > 0 dans ce voisinage (et nous supposerons 5 < 1 dans la suite);

nous pouvons même choisir ce voisinage de la forme
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