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PROBLÈMES DE CAUCHY 23

2. Sur Dl {(y, t) \ bk -^lk«S t< +ek(y)}, on a Fk(y, 0 d'après

(2.10) d'où | uj < 1. Comme u uk+l +# 0, on peut alors écrire

a, — (L+c0)u/u {i"k+ iFk+1 "b / (^k+i~bwk)

— (7fc+i +rA) / (1 + %) 9

et toutes les dérivées d'une telle expression peuvent être estimées par des

sommes de puissances de k avec des coefficients de la forme (darfe(+i)) / (1 + vk).

Mais grâce à (2.10)

| 1 + vkIs* 1 - | vk\ÏSmin

1 F
car eF ^ — pour Fe] —oo, — 1] et eF ^ 1 H- — pour Fe [ — 2,0], et le

théorème des accroissements finis donne pour (y, t)e Dk

I (dVfc(+1}(y, t)) / (mk + efe(y)- é)v |

^ sup {| da+%+i)(y, t) | | (y, t) e Dj? et | ß | < v}

puisque rfc(+1) est plate sur t mk + ek(y) (cf. (2.8)). On obtient donc en

utilisant (2.9) que pour tout a e N",

lim sup I ôaa | ] 0
k~~* oo V 2 /X Dk '

3
3. Sur Dl {(y, t) \ mk + ek(y) < t ^ bk+1 + -lk+1} on procède comme

sur Dl en échangeant les rôles de uk et uk+1, et donc en utilisant vkx à la

place de vk.
3

4. Sur Dk {(y, t) | 8k+1 + - lk+1 ^ t ^ 5k} on procède comme sur Dk

en échangeant les rôles de uk et uk+1.

Chapitre 3: Techniques d'unicité

Dans ce chapitre, nous allons montrer comment prouver certaines
inégalités de Carleman, et comment les utiliser pour obtenir l'unicité de Cauchy.
En guise d'exemple, nous donnons une démonstration complète pour le cas

elliptique (3.1).
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Pour démontrer le théorème 1.2, nous suivrons le schéma proposé par
Strauss et Trêves [24] sauf au paragraphe 3.2 où nous nous inspirons de

Zuily [28]. Il faut dans la démonstration distinguer les étapes suivantes:
tout d'abord une étape purement locale où nous établissons un lemme
technique copié sur le cas elliptique (3.2); puis nous effectuons par deux
fois un passage du local au global afin d'obtenir le théorème 1.2 sous la
condition (R) d'abord dans R2 (3.3), puis dans Rn (3.4); enfin, c'est de nouveau
en « globalisant » le résultat donné par le lemme du paragraphe 3.2 que
nous obtenons le théorème 1.2 sous la condition (P) (3.5).

3.1. Le problème elliptique

Un champ L de R2 est dit elliptique en x0 si les champs réels

X Re L et Y Im L sont linéairement indépendants en x0. Pour toute
fonction (p telle que d(p(x0) ^ 0, le problème associé à un champ elliptique
est non caractéristique. Le champ L sera dit elliptique dans un ouvert Q

de R2 s'il est elliptique en chacun de ses points.

Théorème 3.1. Soit L un champ elliptique en un point x0 e R2. Alors,

pour tout voisinage œ de x0 et toute u e C^œ) solution du système

(3.1)
(L + c0)u(x) 0 dans œ et

u(x) 0 dans cû_ {x e œ | cp(x) < (p(x0)}

la fonction u s'annule au voisinage de x0.

Démonstration. Posons

v|/(x) cp(x) - cp(x0) + | X - x012 et *P(x) - (\|/(x)-e0)2

pour un e0 > 0 que nous choisirons ultérieurement. Remarquons que pour
tout 0 < s ^ 80, Kz {x e co+ | \|f(x) ^ e} est un compact tel que x0 soit

un point intérieur de Ke u œ_

Le point clé de la démonstration, que nous établirons plus loin, est

l'obtention de l'inégalité suivante (dite inégalité de Carleman): il existe des

constantes x0 < oo et C < oo, et un opérateur R (du premier ordre) tels

que Mv e CX(R2) avec supp v a KEo, Vt ^ x0,

(3.2) e~2TWlvl2 ^ C !e~2\(L+c0)v\(\Rv\ + \v\).
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Montrons pour le moment comment obtenir l'unicité à partir d'une telle

inégalité. Des valeurs s, et e2 étant fixées de telle manière que 0 < s2

< s, < e0, nous choisissons une fonction de troncature % e (R telle que

1 1 sur XEl et supp x n ©+ c Kso:

1 o

Figure 3.1.

Le support de % et les compacts KE0, KEl et KE.

{(p(x) Cp(x0)}

Soit u une solution du système (3.1); formons le produit de

par %'veC^R2) et supp v czKeo,donc on peut appliquer l'inégalité (3.2)

à v. Mais d'une part

„2T(£2-£O): f l"|2<
J KE2 %

,-2TT 1 v\2 <

e-^lul2

et d'autre part, L + c0)v%(L+c0)u + [L, x]M — (Uc)u — 0 sur ^

| (L + c0)v | (|Ru| + |u|) ,-2T>P ] (L+c0)f | (|jRu| + |t;|)

«so\k„

< g2T(EI_E0)2 | | (L+c0)u | (|jRu| + |u|).
*en
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L'inégalité (3.2) donne donc pour x ^ x0,

I 2 ^ ^^2t(82—El) (2eq—El — 82) \(L+c0)v\(\Rv\ + \v\),

et comme (e2 — £i) (2s0 — £i~ £2) < 0? ü suffit de laisser x tendre vers l'infini
pour savoir que u 0 dans Ke2 donc au voisinage de x0.

Démonstration de l'inégalité (3.2). Comme d\|/(x0) dcp(x0) ^ OetqueL
est elliptique en x0, le problème (avec \|/) est non caractéristique et nous

pouvons d'après le lemme 1.3 trouver des coordonnées (y, t) e R x R
telles que

1. x0 (0, 0),

2. \|/(x) t,

3. L + c0 dt + ib(y, t) ôy -b c(y, t) à un facteur non nul près.

Comme L est elliptique en x0, nous supposerons que b(0, 0) > 0 (sinon,
changer y en — y), et prendrons s0 suffisamment petit pour que b ^ 8 > 0

dans KS0.

En vue d'écrire vv, posons L% e xX¥(L + c0)exV¥, et c c± + zc2

où cx et c2 sont à valeurs réelles; d'après les points 2 et 3 ci-dessus,

on calcule que :

dt — 2t(£—b0) + ib dy + c1 + ic2 M + iN où

M dt + ic2

N bdy + i(2x(t—e0) — c1).

Dans le découpage ci-dessus, nous avons séparé la partie autoadjointe
de la partie anti-autoadjointe pour pouvoir effectuer des intégrations par
parties. En effet, pour w g C1(R2) avec supp w a Keo,

Re LtwNW
ib -ReIs MwNw +

£0 '

Nw I2
: f~
)ib^ Re | — MwNw

ib

puisque b > 0 dans Keo ; puis

2 Re Mw(Nw/ib) w 2dtl{2x(t-So)-cM - J I w 12ôyc2

par intégrations par parties. On obtient donc :



PROBLÈMES DE CAUCHY 27

w :(2x\_(b-(t-s0)dtb)/b2'] - [ôyc2 + ci,(c1/fe)])

Ltw | | |.2Re
11
— LzwNwsS 2
ib

Choisissons donc s0 assez petit pour que | (t-s0)dtb | < 5/2 dans Xeo,

puis t0 suffisamment grand pour que | dyc2 + dt(cjb) | «S ôr0/(2 sup b dans

K alors, pour r > x0 et C04 sup h2/8,

r
~C~o

w I Ltw | | Nw/b \.

F.nfirij pour v s C^R2) avec supp V <= XEo, posons w - e T>py, et reportons

cette expression dans l'inégalité précédente; on obtient:

e'2^ Irl2 -2tT | (L + c0)v | | (|

+ C( J- | (L + c0)ü | |

d'où l'inégalité (3.2) si nous posons

R dy - icjb et Cmax {Co/r0, C0 sup | 2 |}

Remarques. Il existe pour les champs elliptiques des inégalités de

Carleman meilleures que l'inégalité (3.2); nous avons fait ce choix parce que

ce résultat s'étend à des champs non elliptiques comme nous le verrons

plus loin. L'introduction du facteur 1/b dans les intégrales a pour but de

remplacer j" bdtwôyw qui nécessite des calculs pour être estimée, par 1 dtwdyw

dont la partie imaginaire est nulle; c'est là que nous utilisons l'ellipticité de L.

Dans le prochain paragraphe, nous allons montrer qu'un tel calcul est encore

possible sous des hypothèses plus faibles sur L. Avant cela, donnons un

corollaire du théorème 3.1.

Corollaire 3.2. Soit Q un ouvert connexe de R2 dans lequel

le champ L est elliptique. Si w e C1(Qi) vérifie (L + c0)u(x) 0 dans Q

et s'annule dans un ouvert non vide a> c: Q, alors u est nulle dans Q.

o
Démonstration. Notons F supp u et supposons que F # F.

o
Alors il existe x0 e F\F. Comme x0 e Q, il existe une boule ouverte

centrée en x0, B(x0, 5), qui soit contenue dans Q. Comme x0 / F, il existe
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un point x1eB(x0,hß) tel que x1$F. Soit alors s sup {r \ B(x1, r)

n F 0}; on a 0 < e < 5/2 puisque F est fermé et que x0 e F, donc

B(x1, s) c= B(xo, 5) c= De plus, par compacité il existe x2 e F n s).

Soit cp(x) | x — x± |
2

; alors u est nulle dans {x e fi | cp(x) ^ s2}

B(xl9e) puisque B(xl9e) n F 0 par définition de s; or le problème
est elliptique en x2 et d(p(x2) 2(x2 — x1) ^ 0, donc par le théorème 3.1,

u 0 au voisinage de x2, ce qui contredit le fait que x2e F supp u.

Cette contradiction prouve que le support de u est à la fois ouvert et

fermé. Mais supp u ^ Q puisque œ # 0 est contenu dans le complémentaire
de ce support. Comme Q. est connexe, c'est que supp u 0.

3.2. Un lemme technique

Pour préparer la démonstration du théorème 1.2, nous donnons
maintenant un résultat d'unicité dans R2 copié sur le résultat précédent, mais

sous des hypothèses plus faibles.

Lemme 3.3. Soient 0:R-»R et b: R2 - R deux fonctions C00.

Supposons qu'il existe un voisinage convexe cû de (y0 9(y0 Que ^

soit positive sur co+ {(y, t) e œ | t > 0(y)} et b(y0, t0) > 0 pour un

t0 tel que (y0, t0) e co+ Alors pour toute u e C^œ) solution du système

f ôtu + ib dvu -h eu 0 dans œ, et
(3 3) <

[ u 0 dans œ_ {(y, t) e (o \ t ^ 0(y)}

la fonction u s'annule au voisinage de (y0>Q(y0))'

Démonstration. Elle sera très semblable à celle du théorème 3.1. Pour

commencer, nous allons choisir un poids v|/ fabriqué de telle manière que

l'opérateur n N/b soit encore bien défini.

Si b(y0,Q(y0)) > 0, nous sommes dans le cas elliptique, et le résultat

découle du théorème 3.1; nous supposerons donc tout au long de cette

démonstration que b(y0,0(yo 0: Le t0 de l'hypothèse vérifie donc

t0 > 0(yo)> et il existe un voisinage de (y0,t0) contenu dans œ+ tel que
b ^ 5 > 0 dans ce voisinage (et nous supposerons 5 < 1 dans la suite);

nous pouvons même choisir ce voisinage de la forme
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Nous posons alors

(3.4) Mu) (y-yo)2 +

]yo — a, )>o + aC x ]*o ~ °Uo + aC •

s) (to + u-s)ds.
eoo

Alors, pour tout 0 < s ^ a25, Xe {x e co+ | \|/(x) ^ s} est un compact

tel que x0 soit un point intérieur de K£ u co_, ce qui nous permettra de

déduire l'unicité de l'inégalité de Carleman (3.5) comme dans la démonstration

du théorème 3.1.

Soit 0 < s0 ^ oc28 que nous fixerons plus loin. En vue décrire

w v exp — T\j/ + c(y, s)ds posons

U exr:p(-T\|/+ c(y,s)ds) [dt + ibdy + c]
i

exp(T\|/— c(y,s)ds)
%, to

Grâce à (3.4), et en posant dyc(y, s)ds cx(y, t) + ic2(y, t) où cx et c2
J to

sont à valeurs réelles, on calcule que :

Lt [_dt + Tb(t0 + OL—t)—c] + ib[_dy + xdyy\f—(c1 + ic2j] + c

M + iN M -h ibn

où nous avons séparé la partie autoadjointe de la partie anti-autoadjointe:

d ,3\1/
M — + ixb ibc1

dt ôy

n ix(t0 + aL—t) — ic2
dy

Alors, pour w e CX(R2) avec supp w c i(£o,

Re — Lxwnw Re Jt Mwnw + J b 1 nw |2 ^ Re - Mwnw
i

puisque b ^ 0 dans Keo ; puis,

2 Re Mw(nw/i) — w 2dt(x(t0 + CL — t) + c2) — | w\2dy{xbdyy\f-bc1)
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par intégrations par parties. On obtient donc

| w |2 [x(l - djbdjd r))+ (dy(bCl - dt(c2 ))]

^ 2 Re — Lxwnw < 2 | Lxw | | nw |.

Il nous faut maintenant distinguer deux cas. Pour cela, posons
0O sup {t > 0(j>o) | Vs g [0(jo), f], b(y0, s) 0}; alors Q(y0) ^ 0O < t0. Si
% alors pour tout voisinage de (y0,Q(y0)) on peut trouver un
8 > 0 tel que Ke soit contenu dans ce voisinage; en revanche, si 0O > 0(yo),
alors \|/ est nulle sur K0 {y0} x [0(yo)> 0o]> c'est seulement pour tout
voisinage de K0 qu'on peut trouver un 8 > 0 tel que Ke soit contenu
dans ce voisinage. Cette distinction de cas nous permet d'écrire :

1. Si 0O 0(yo), calculons dy\\f par la formule (3.4):

et donc b(y0,Q(y0)) dy^(y0, Q(y0)) 0; d'où dy(bÔyy\f)(y0, Q(y0j) 0, ce

qui fait qu'on peut trouver e0 assez petit pour que | dy(bdyy\f) | ^ 1/2 dans KZo.

2. Si 0O > Q(y0), alors b est nulle sur K0, et comme b est positive dans
(Ö+, dyb est également nulle dans {y0} x ]0Q>o), 0O], donc dans K0 ; d'où
dy(bdyy\f) 0 dans K0, ce qui fait qu'on peut trouver e0 assez petit pour
que | dy(bôy\|/) | < 1/2 dans Keo.

Le nombre 80 > 0 étant choisi, oublions maintenant cette distinction des
deux cas, et choisissons x0 suffisamment grand pour que | d'y{bc1 — dtc2 |

^ x0/4 dans Keo ; alors, pour x ^ x0

dyb(y, s) (it0 + cc-s)ds + &(y)b(y9 0(y)) (t0 + a-Q{y))

Enfin, pour v e C1(R2) avec supp v c= Keo, posons

w v exp(—x\(/ + c(y, s)ds)

et reportons cette expression dans l'inégalité précédente; on obtient:
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e 2x^ e2 Re i"c
I v |2 ^ -

+

g
— 2t\|/ g2 Re Je

| g^ + fog v + CV \ \ ÔyV + CtV \

e 2xxl/ g2ReJc | g^v _|_ fo^yV _]_ cv | | (5y\|/ + l'(^0 + a ~~ t))V I '

Il existe donc une constante C telle que pour toute v e C1(R2) avec supp v a KS(

et tout t ^ x0,

(3.5) I e~2x* | v |
2 ^ C e~2x* | ôtv + ibdyv + cv \ (IdyV + c^ + M).

3.3. Unicité en dimension deux sous la condition (R)

Nous continuons en donnant une version faible du théorème 1.2 sous la

condition (R) lorsque l'espace est R2.

Théorème 3.4. Supposons que rgj£?(x0) 2 en un point x0e R2.

Si le problème est non caractéristique (en x0), alors pour tout voisinage co

de x0 et toute u e C^co) solution du système

(3.6)
(.L + c0)u(x) 0 dans œ et

u(x) 0 dans œ_ {x e œ | cp(x) ^ cp(x0)}

la fonction u s'annule au voisinage de x0.

Démonstration. D'après le lemme 1.3, nous pouvons prendre sur R2

des coordonnées (y, t) telles que :

1. x0 (°> °)>

2. <p(x) - cp(x0) t,

3. L + c0 dt + ib(y, t) dy + c(y, t) à un facteur non nul près.

Si b(0, 0) / 0, nous sommes dans le cas elliptique et le résultat découle
du théorème 3.1. Sinon, par l'hypothèse rg &(x0) 2, il existe k > 0 tel que
ô* b(0, 0) 7^ 0 tandis que ô{ b(0, 0) 0 pour j < k. Alors, par le théorème
de préparation de Malgrange (cf. Hörmander [11, th. 7.5.5]), il existe,

pour (y, t) e ] — Y, Y[ x ] — T, T[ avec Y > 0 et T > 0, une factorisation

b(y,t) a(y, t) {tk + ak. ^y)?'1 +... + a0(y))
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avec a, a0,..., ak_1 des fonctions C00 à valeurs réelles telles que a(y, t) ^ 0
dans ] — 7, 7[x] — T, T[, et 0,(0) 0 pour j 0,...,/c — 1. Nous allons
maintenant découper le domaine ] — 7, 7[ x ] — T, T[ en petits morceaux
pour pouvoir appliquer le lemme 3.3; ce découpage nous est donné par le
lemme suivant :

Lemme 3.5. Dans la situation décrite ci-dessus, il existe une suite
d'intervalles ouverts disjoints (Ii)ieN dont la réunion est dense dans ] — 7, 7[,
et pour chaque ie N, un nombre fini de fonctions C00 Jf-> R tels

que pour tout y e It :

1- h < h => Qi.jSy) < 0;,^),
2. b{y,t) Ood \jtelque t Quj(y).

Démonstration du lemme. Avec les notations précédentes, posons

P(y, t) tk + ak^1(y)tk~+ + a0(y)

qui est un polynôme en t à coefficients réels et réguliers en y.
Soit (9k l'ouvert de ] — Y, 7[ tel que P(y, t) possède k racines complexes

distinctes en t pour y e (9k ; notons (9k l'intérieur du complémentaire de (9k

dans ] — Y, 7[. Si (9k est vide, c'est que (9k est dense dans ] — Y, Y\_ et
nous arrêtons là notre construction ; sinon P(y, t) possède au plus k — 1

racines complexes distinctes en t pour ye(9'k. Nous définissons alors 0k_1
comme l'ouvert de (9'k tel que P(y, t) possède exactement k — 1 racines
complexes distinctes en t pour ye(9k_1, puis Q'k_ 1 comme l'intérieur du

k

complémentaire de (9k_x dans (9'k. Et ainsi de suite; l'ouvert u (9j est
j= i

alors dense dans ] — Y, Y[. Nous appelons (/f)i6N les composantes connexes
des ouverts Oj.

Dans chaque intervalle It, les racines en t de P(y, t) sont de multiplicité
constante, et par le théorème des fonctions implicites, elles sont donc fonctions

C00 de y; de plus, P étant à coefficients réels, 0 est racine si et
seulement si 0 est racine, et donc, toujours à cause de la multiplicité
constante, les racines réelles et distinctes restent réelles et distinctes quand y
décrit It. Ces racines réelles sont donc représentées par des fonctions
C00 QUj: It -> R vérifiant 1. et 2.

Démonstration du théorème 3.4 (fin). Soit u e C^(œ) une solution du
problème (3.6). Supposons qu'elle soit non nulle en un point de ] — Y, 7[ x ]0, T[ ;

alors elle est non nulle dans tout un voisinage de ce point, et donc il
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existe un point (y0, t0)esupp uavecy0 e It pour un ie N. L'intervalle

étant ouvert, il existe aussi s>0 tel que [fo- £> J'o + e]

Posons \)/(y, t) t+ t0(y-y0)2£~2 et considérons les paraboles Pr d'équations

\Ky, t) t. La fonction uest nulle en dessous de la parabole P0

puisque P0 <= {t<0}, mais Pt0 coupe le support de u et Pt0 n {t> 0}

cj; x [0, T[. Par compacité, il existe donc un point (}q, tx) e supp

n (7j x [0, T[) tel que u0 dans {(y,t) e œ | \|/(y, t) < iKjq > (i)}- Nous distm"

guerons alors deux cas :

1. Si &CKi, *i) # 0, le problème est elliptique en (yx, t±) et tt) ¥=- 0;

donc par le théorème 3.1, u 0 au voisinage de (j>i5£i) ce qui contredit

le fait que (yx, t±) e supp u.

2. Si b{yl9t1) 0, par le lemme 3.5 il existe j tel que t1 Ö^-Oh)-

En outre, le lemme 3.5 permet d'affirmer que

a. £2 {(.y, t) g Ii x R I Öij-iGO < t < Ö*.;()>)} est un ouvert connexe;

ß. b ne s'annule pas dans £2, donc L est elliptique dans £2.

Comme u s'annule dans {(y, t) e œ | \|/(y, t) < \|/CV!, ti)}, elle s'annule dans

l'intersection de ce domaine avec £2, qui est une partie ouverte non vide

de £1 Par le corollaire 3.2, u est nulle dans £2.

De même, la fonction b ne s'annule pas dans {(y, t) e It x R | Gî.jCp)

< t < 0ifJ-+iöO}, et on Peut donc supposer, quitte à changer y en —y,

que b est strictement positive dans ce domaine. Il existe donc un voisinage

convexe w de (y±, t±) tel que b soit positive sur w+ {(y, t)ew\t ^ 0;, j()0}5

strictement positive en un point (yl912) £ w+, et tel que u 0 dans

w_ {(y, t) e w | t ^ Qijiy)}- Tout cela nous permet alors d'utiliser le

lemme 3.3 au point (yl9 ): nous obtenons u 0 au voisinage de (yl9 tx),

ce qui contredit le fait que (j^, t±) e supp u.

Figure 3.2.

Les paraboles Px.
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3.4. Démonstration du théorème 1.2 sous la condition (R)

Dans ce paragraphe, l'espace est R", n entier quelconque.
Commençons par expliciter les hypothèses du théorème 1.2 sous la

condition (R); le problème étant non caractéristique, nous pouvons choisir
(lemme 1.3) des coordonnées locales (y, t) telles que:
1. oc0 (0, 0),

2. cp(x) - <p(x0) t,

3. L + cQ dt + ib(y, t)* dy + c(y, t) à un facteur non nul près.

L'intersection de l'ouvert co avec le domaine dans lequel la propriété (R)
est vérifiée contient un voisinage de (0, 0) de la forme v x ] - T, T[ où
T > 0 et v est un voisinage de 0 dans R"-1 suffisamment petit pour que
rg ££ ^ 2 sur S {(y, 0) g R" | y g v}. On a rg j£? ^ 1 sur S puisque ôt g j£f,
ce qui entraîne encore que :

1. Pour un point (yo,0)eS tel que rgj£?(yo,0) 1, la variété intégrale
passant par (y0, 0) est {y0} x ] - T, T[.
2. Pour un point (y0, 0) g S tel que rg £>(y0, 0) 2, si la courbe y c- S

est la trace sur S de la variété intégrale passant par (y0,0), cette dernière
est y x ] - T, T[.
Comme la réunion des traces sur S des variétés intégrales de & est égale
à S par la propriété (R), la réunion des variétés intégrales de coupant S

est égale au voisinage v x ] — T, T[ tout entier.
Soit u g C1(co) une solution du problème (1.2), et supposons qu'il existe un

point (y0,t0)ev x ]0, T[ tel que u(y0, t0) ^ 0. Ce point (j/0, t0) est donc
situé sur une variété intégrale de & coupant S. Si (y0>*o) est sur une
variété intégrale de dimension 1, c'est que b(y0, t) 0 pour tout t g ] - T, T[,
et u vérifie donc l'équation

dtu(yo, 0 + c(y0, t) u(y0,0 0 pour t e ] — T, T[
où y0 n'est plus qu'un paramètre; la théorie des équations différentielles
ordinaires nous permet de conclure que u(y0, t) 0 pour t g]0, T[, ce qui
contredit le fait que u(y0, t0) / 0.

Il s'ensuit donc que (y0^o) est sur une variété intégrale de <£ de
dimension 2 que nous noterons V. Utilisons (z, t) comme coordonnées sur y
où z est l'abscisse curviligne sur y n S, et désignons par z0 l'abscisse du
point (y0,t0) dans les coordonnées (z, t). Alors il existe e>0 tel que
[z0-s, z0 + e] x ] — T, T[ soit contenu dans y. Comme dans la démonstration

du théorème 3.4, nous posons \|/(z, t) t -h t0(z — z0)2 e~2 et intro-
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duisons les paraboles J\ d'équations i|/(z, x. Nous obtenons ainsi un

point {z1,t1)dusupport de la trace de sur V tel que u - 0 dans

{(z, t)eir\ \|/(z, t) «S i|/(zi, ti )} Or le problème (pour \j/) est non caractéristique

en (z^ti) et rgi?^^) 2 puisque nous sommes sur une variété

integrale de j? de dimension 2. Nous pouvons donc appliquer le théorème 3.4

pour conclure que u est nulle au voisinage de (z^tj sur V, ce qui

contredit le fait que {zutt) est un point du support de la trace de u

sur ir.
Nous avons donc obtenu que u 0 dans x ]- T,T[.

3.5. Démonstration du théorème 1.2 sous la condition (P)

Comme le problème est non caractéristique, nous pouvons faire usage du

lemme 1.3 pour trouver des coordonnées locales t) e R"~1 x R, un voisinage

vde 0 dans R"-1 et un nombre T>0 tels que

1. x0(0, 0),

2. <p(x) - cp(x0) t,

3. L + c0 dt + ib(y, t)-Ôy +c(y,t)dans x ]-T, T[ à un facteur non

nul près,

4. vx ] - T,T[c cd n ß.

Soit u e CHrn) une solution du problème (1.2) et supposons qu'il existe

(y0,t0)ev x ]0, T[ tel que u(y0, t0) # 0. Si on avait b(y0, t) 0 pour tout

t s ]0, t0[, l'équation se réduirait à une équation différentielle ordinaire, ce

qui conduirait à une contradiction.

Il existe donc C e ]0, t0[ tel que b(y0 # 0. Il existe aussi tout un

voisinage de y0 tel que b(y, tj) # 0 pour y dans ce voisinage, par continuité,

et le vecteur

d(y) b(y,t1)/\b(y,t1)

est bien défini et régulier au voisinage de y0\ par conséquent, le champ réel

d(y) • ôy admet en y0 une courbe intégrale que nous noterons y.

Comme la condition (P) est vérifiée dans v x ]0, T[, nous avons

b(y, t) | b(y, t) | d(y) pour tout (y, £) e yx ]0, T[, et donc le champ L est

tangent à yx ]0, T[; nous pouvons désormais nous restreindre à

Y x ] — T, T[ qui contient le point (y0,t0) où u ne s'annule pas et sur

lequel nous prenons comme coordonnées le couple (z, t) où z est l'abscisse

curviligne sur y associée au champ d(y) ; z0 désignera l'abscisse du

point (To, t0).
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Par continuité, il existe un £ > 0 suffisamment petit pour que le problème
restreint à y x ] — T,T[ se présente de la façon suivante :

1. r ]z0 — e,z0 + e[x] — T, T[^yx]-T, T[;
2. w(z, t0)=£0pour z e ]z0- s, z0 + e[ ;

3. L+ c0 ô,+ ih(z, t) <3Z + c(z, t) dans iC+ ]z0-£, z0 + s[ x [0, T[ ;

4. b(z, t) > 0 dans if + (par la condition (P)).

Comme dans la démonstration du théorème 3.4, introduisons la fonction
\|/(z, t) t + t0(z — z0)2 s-2 et les paraboles d'équations \|/(z, t) x. Nous
obtenons ainsi un point (z2,t2) du support de la trace de sur
tel que t2 <t0etw 0 dans {(z, t) e Y|v|/(z, t) < \|/(z2, t2)}.

Comme tout à l'heure, si on avait b(z2,t) 0 pour tout f e]r2, T[,
on prouverait que u(z2,t0) 0 ce qui contredit le point 2 ci-dessus. Il
existe donc f3 e ]f2, T[ tel que b(z2, t3) > 0. Nous distinguons alors deux cas
de figure :

1. Si t2 > 0, posons 0(z) t2 + t0 — -] — t0 [ (en sorte que
8

t > 9(z)\|/(z, t)>\|r(z2,t2)). Nous pouvons alors trouver un voisinage
convexe w de z2,t2)contenant (z2,t3) (où 0) tel que b soit positive
dans w+ {(z, t) ew|t^0(z)} et u0 dans w_ {(z, t)ew\t^ 0(z)}.
Par le lemme 3.3 nous en déduisons que 0 au voisinage de (z2,t2)
ce qui contredit le fait que (z2,t2) est un point du support de la trace
de u sur Y+.
2. Si t2 0, posons 0(z) 0. Nous pouvons alors trouver un voisinage
convexe w de (z2, r2) possédant les mêmes propriétés que dans le cas
précédent, d'où la même conclusion.

Chapitre 4: Etude d'un modèle dans R2

Lorsque nous supprimons les hypothèses « techniques », le théorème 1.2
devient faux; c'est ce que montre l'un des premiers contre-exemples à
l'unicité de Cauchy historiquement construits : le contre-exemple de Cohen [8],
Plutôt que d'en répéter la construction, que le lecteur trouvera par exemple
dans Hörmander [9, th. 8.9.2], nous avons préféré étudier de façon assez
précise un modèle dans R2 (ce qui assure que rg üf < 2) qui fournit des

contre-exemples où le champ L est complètement explicite; c'est l'objet de ce
chapitre.
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