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PROBLEMES DE CAUCHY 23

2. Sur D2 = {3, 1) & — %lk <t <m+ ey)), on a Fi(y,t) <0 d’apres
(2.10) dou |v, | < 1. Comme u = W4y + U 7 0, on peut alors écrire
a = — (Lt+coufu = — (Trrrthor 1 +7) [ (e 1 + %)

= — (rpe1+r0n) /(1 +v),

et toutes les dérivées d’une telle expression peuvent étre estimées par des
sommes de puissances de k avec des coefficients de la forme (0%ry+ y) /A +v).
Mais grace a (2.10)

2

o1 Bok
11+l =21—|vnl= mln{E,BTOZ—(mk+ek(y)— )}

F
car ef <% pour Fe]—oo, —1] et e <1 + 4 pour Fe[—2,0], et le
théoréme des accroissements finis donne pour (y, t) € D}
| (aark(+ 1)(ya t)) / (mk+ek(y)_t)v |
< sup {| amHirk(+1)(y: nl1(t)eDy et |B]<vV}

puisque 74 est plate sur t = my + e(y) (cf. (2.8)). On obtient donc en
utilisant (2.9) que pour tout o € N”,

k 2

lim (suplé“al) = 0.

3
3. Sur D ={nt)|m + ely) <t <84y + i le+1} on procéde comme

sur D? en échangeant les roles de u, et u,,,, et donc en utilisant v, * 4 la
place de v,.

3 B
4. Sur Df = {(n, 1) | 8ks1 + Zlk“ <t < 8} on procéde comme sur Dj

en échangeant les roles de u; et u;. 4.

CHAPITRE 3: TECHNIQUES D’UNICITE

Dans ce chapitre, nous allons montrer comment prouver certaines iné-
galités de Carleman, et comment les utiliser pour obtenir I'unicité de Cauchy.

En guise d’exemple, nous donnons une démonstration compléte pour le cas
elliptique (3.1).

%
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Pour démontrer le théoréme 1.2, nous suivrons le schéma proposé par
Strauss et Tréves [24] sauf au paragraphe 3.2 ou nous nous inspirons de
Zuily [28]. Il faut dans la démonstration distinguer les étapes suivantes:
tout d’abord une étape purement locale ou nous établissons un lemme
technique copié sur le cas elliptique (3.2); puis nous effectuons par deux
fois un passage du local au global afin d’obtenir le théoréme 1.2 sous la
condition (R) d’abord dans R? (3.3), puis dans R" (3.4); enfin, c’est de nouveau
en « globalisant » le résultat donné par le lemme du paragraphe 3.2 que
nous obtenons le théoréme 1.2 sous la condition (P) (3.5).

3.1. LE PROBLEME ELLIPTIQUE

Un champ L de R? est dit elliptique en x, si les champs réels
X = ReL et Y = Im L sont linéairement indépendants en x,. Pour toute
fonction ¢ telle que do(x,) # 0, le probléme associé 4 un champ elliptique
est non caractéristique. Le champ L sera dit elliptique dans un ouvert Q
de R? §’il est elliptique en chacun de ses points.

THEOREME 3.1. Soit L un champ elliptique en un point x, € R?. Alors,
pour tout voisinage ® de Xx, et toute uc CYw) solution du systéme

(3.1) { (L+cou(x) = 0 dans o et

ux) =0 dans o_ = {xeo]|o(x) < o(xy)},
la fonction u sannule au voisinage de x,.

Démonstration. Posons

12 et P(x) = — (V(x)—g)?

pour un g, > 0 que nous choisirons ultérieurement. Remarquons que pour
tout 0 < € < gy, K, = {xe o, | V(x) < €} est un compact tel que x, soit
un point intérieur de K, U o_ .

Le point clé de la démonstration, que nous établirons plus loin, est
I'obtention de I'inégalité suivante (dite inégalite de Carleman): il existe des
constantes T, < o0 et C < oo, et un opérateur R (du premier ordre) tels
que Vv € C}(R?) avec supp v < K, , VT > 1o,

U(x) = o(x) = 0xo) + | x — Xo

(3.2) je"z“l’ lv|2<C Je‘z“l' | (L+co)v | (|Rv|+v]) .




PROBLEMES DE CAUCHY 25

Montrons pour le moment comment obtenir l'unicité & partir d’'une telle

et ¢, étant fixées de telle maniére que 0 < &,

inégalité. Des valeurs &;
©(R?) telle que

< g, < gy, NOUS choisissons une fonction de troncature y € C
y = 1sur K, etsuppy N0+ < K,,:

{o(x) = @lxo)}

. | LS ’\ ‘
\\&xéfea?z%\g\\\\

v =0

FIGURE 3.1.
Le support de y et les compacts K, K, et K.,.

Soit u une solution du systéme (3.1); formons v = yu le produit de u
par y:ve C}(R? et suppv = K,,, donc on peut appliquer I'inégalité (3.2)
a v. Mais d’une part

eZt(sz—ao)2 j‘ l u I 2 < J' e—ZT‘P I u I 2
Kaz Kaz

ZJ e_Zt\PIvIZSJ‘ e—?.r‘l’|v|29
KSZ Kso

et dautre part, (L+co)v = x(L+co)u + [L, x]u = (Ly)u = 0 sur K,,, dou

JK e” 2 [ (L+co)v | (Ro|+|vl) = j e > | (L+co)v | (Rl +|vl)

Kgo\Ke,

< 821(81—80)2 J‘ | (L+ CO)U | (|RU| + |Ul) s
K¢,

A R AT G T OENE ) b i s 715 70 e
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L’inégalité (3.2) donne donc pour © > 1,

j | u |2 < Ce?re2—e1) 2e0—s1—22) f | (L+co)v | (IRv|+]v]),
Kez KE

(1]

et comme (e,—¢,) (2e0—e; —¢€,) < 0, il suffit de laisser t tendre vers I'infini
pour savoir que u = 0 dans K, donc au voisinage de x,.

Démonstration de l'inégalité (3.2). Comme d\i(xy) = do(x,) # Oet que L
est elliptique en x,, le probléme (avec ) est non caractéristique et nous
pouvons d’aprés le lemme 1.3 trouver des coordonnées (y,f)eR x R
telles que

L. Xo = (Oa O)a

2. ¥(x) =t
3. L+ ¢y =0, + ib(y, )0, + c(y, t) & un facteur non nul pres.

Comme L est elliptique en x,, nous supposerons que b(0,0) > O (sinon,
changer y en —y), et prendrons g, suffisamment petit pour que b > 6 > 0
dans K, .

En vue d’écrire w = e **v, posons L, = e "¥(L4cy)e™, et ¢ = ¢, + ic,
ou c¢; et c, sont a valeurs réelles; d’aprés les points 2 et 3 ci-dessus,
on calcule que:

IJ,t - at i 21:(1"""80) + lb ay + cl + iCZ = M + lN 01‘1

M = at + iCZ
N — b ay + 1(2T(t—80)—cl) .

Dans le découpage ci-dessus, nous avons seéparé la partie autoadjointe
de la partie anti-autoadjointe pour pouvoir effectuer des intégrations par
parties. En effet, pour w € C}(R?) avec supp w = K

€0

1 — 1 — | Nw |2 1 —
Re | — LwWwNw = Re | — MwNw + > Re | — MwNw
ib ib b ib

puisque b > 0 dans K, ; puis
2 Re f Mw(Nw/ib) = J | w]28,[(2t(t—eo)—cy)/b] — f | w2d,c,

par intégrations par parties. On obtient donc:
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j w122 (b—(t— )b}/ — [o,03-+ dey/B)])

1 _
< 2ReJ‘€LTwNw i 2J|Ltw| | Nw/b | .
i

Choisissons donc g, assez petit pour que | (t—€0)0b | < 8/2 dans K,
puis 7, suffisamment grand pour que | ,c, + Ofcy/b) | < 0To/(2 sup b?) dans

K.,; alors, pour T > 1o €t Co = 4 sup b?/3,

CTOJIWIZ JlLtWIINW/b'I-

Enfin, pour v € C}(R?) avec supp v = K,,, posons w = e~ "Yp, et reportons
cette expression dans I'inégalité précédente; on obtient:

C .
je—w 0|2 < —nge—m' [Ltcol| | @y—icy/b|

+ C, Je‘”" | (L+co)v| | 2(t—eo)v/b|

d’ou I'inégalité (3.2) si nous posons
R =0, —icy/b et C = max {Co/To, Cosup | 2t—go)/b |} -

Remarques. 11 existe pour les champs elliptiques des inégalités de
Carleman meilleures que Iinégalité (3.2); nous avons fait ce choix parce que
ce résultat sétend a des champs non elliptiques comme nous le verrons
plus loin. L’introduction du facteur 1/b dans les intégrales a pour but de

remplacer Jb&,wayw qui nécessite des calculs pour étre estimée, par Ja,wayw

dont la partie imaginaire est nulle; c’est 1a que nous utilisons Pellipticité de L.
Dans le prochain paragraphe, nous allons montrer qu'un tel calcul est encore
possible sous des hypothéses plus faibles sur L. Avant cela, donnons un
corollaire du théoréme 3.1.

COROLLAIRE 3.2. Soit Q un ouvert connexe de R? dans lequel
le champ L est elliptique. Si ue C{Q) vérifie (L+cou(x) = 0 dans Q
et sSannule dans un ouvert non vide ® < Q, alors u est nulle dans Q.

Démonstration. Notons F = supp u et supposons que F # F.

Alors il existe x, eF\F Comme x, €, il existe une boule ouverte
centrée en Xx,, B(xg, 8), qui soit contenue dans Q. Comme Xx, ¢ F il existe
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un point x; € B(xq, 8/2) tel que x,¢ F. Soit alors & = sup {r|B(x;, )
NF = (@}; on a 0<¢g< 82 puisque F est fermé et que x,€ F, donc

B(x;,€) = B(xq,0) = Q. De plus, par compacité il existe x, € F n B(x, €).
Soit @(x) = | x — x; |%; alors u est nulle dans {xeQ|o(x) < &’}

= B(x,,€) puisque B(x,,&) n F = () par définition de €; or le probléme
est elliptique en x, et do(x,) = 2(x,—x;) # 0, donc par le théoreme 3.1,
u = 0 au voisinage de x,, ce qui contredit le fait que x,€ F = supp u.

Cette contradiction prouve que le support de u est a la fois ouvert et
fermé. Mais supp u # Q puisque ® # () est contenu dans le complémentaire
de ce support. Comme Q est connexe, c’est que supp u = Q.

3.2. UN LEMME TECHNIQUE

Pour préparer la démonstration du théoréme 1.2, nous donnons main-
tenant un résultat d’unicité dans R? copié sur le résultat précédent, mais
sous des hypotheses plus faibles.

LemMMeE 3.3. Soient 0:R >R et b:R?>—> R deux fonctions C*.
Supposons quil existe un voisinage convexe ® de (yo,0(yo)) tel que b
soit positive sur ®, = {(),)ew|t = 0()} et byy,ty) >0 pour un
to tel que (yo,to)€w,. Alors pour toute ue C'(®) solution du systéme

ou +ibou+ cu =0 dans o, et
(33)
u=20 dans o_ = {(y,)eo|t < 0(y)}
la fonction u sannule au voisinage de (o, 8(yo)). .

Démonstration. Elle sera trés semblable a celle du théoréme 3.1. Pour
commencer, nous allons choisir un poids | fabriqué de telle maniére que
I'opérateur n = N/b soit encore bien défini.

Si b(yo,0(yo)) > 0, nous sommes dans le cas elliptique, et le résultat
découle du théoréme 3.1; nous supposerons donc tout au long de cette
démonstration que b(y,, 0(yo)) = 0. Le t, de I'hypothése vérifie donc
to > 0(yo), et il existe un voisinage de (yo,to) contenu dans o, tel que
b > 6 > 0 dans ce voisinage (et nous supposerons & < 1 dans la suite);
nous pouvons méme choisir ce voisinage de la forme
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Iyo—o, yo+al X Jto—0a, to+of .

Nous posons alors

t

(34) V(. 1) = 0—o)* + J b(y, s) (to + o —s)ds .

6(»)

Alors, pour tout 0 < ¢ < o3, K, = {xen, | Y(x) < g} est un compact
tel que x, soit un point intérieur de K, L ®_, ce qui nous permettra de
déduire Tunicité de linégalité de Carleman (3.5) comme dans la démons-

tration du théoréme 3.1.

Soit 0 < g, < a?8 que nous fixerons plus loin. En vue d’écrire

t
w = vexp (—t\l/ + J c(y, s)ds), posons

to

L = [exp(—rxl;+ Jt oy, s)ds):| [6,+»ib6y+c] I:exp('cql— Jt c(y, s)d )]

to

t

Grace a (3.4), et en posant J 0,c(y, s)ds = c1(y, 1) + icy(y, 8) ou ¢y et ¢,

to

sont a valeurs réelles, on calcule que:

L, = [0,+tb(to+o—t)—c] + ib[0,+1d,W—(cs +ic;)] + ¢
=M+ iN =M + ibn

ol nous avons séparé la partie autoadjointe de la partie anti-autoadjointe:

0 o
M=—+ith— —i
o + ith oy ibc,
{
| n = 5}—;‘— it(to+a—t) — ic, .

Alors, pour w € C}(R?) avec suppw < K,
1 — 1. — (1 —
Re ?Ltwnw = Re ?Mwnw + |b|nw|? = Re | - Mwnw
i
puisque b > 0 dans K, ; puis,

2 Re JMW(W/i) = — JI w20 (t(to+a—18)+c,) — JI w | 20,(thd y —bc; )
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par intégrations par parties. On obtient donc

J | w12 [o(1—0,(ba, ) +(3,(be; ) —3/(c,))]

1
<2Rej—,L1wnw<2f|L1w| | nw | .
i

I nous faut maintenant distinguer deux cas. Pour cela, posons
Bo = sup {t > 6(yo) | Vs € [6(3), t], b(yo, ) = 0}; alors 8(y,) < 0, < to. Si
O = 6(yo), alors pour tout voisinage de (y,, 6(y,)) on peut trouver un
€ > 0 tel que K, soit contenu dans ce voisinage; en revanche, si 0, > 0(y,),
alors Y est nulle sur Ky = {yo} x [0(yo), 0o, €t C’est seulement pour tout
voisinage de K, qu’on peut trouver un & > 0 tel que K, soit contenu
dans ce voisinage. Cette distinction de cas nous permet d’écrire :

1. Si 8y = 6(ye), calculons 0, par la formule (3.4):

t

oV = 2(y—y,) + j 0,b(y, 8) (to +a—3s)ds + O'(¥)b(y, 6()) (to + —6(»))

8(»)

et donc b()’o: 9()’0)) = 6y‘l’()’o, 9()’0)) = 0; dou ay(bay‘*ll)(yo’ 9()’0)) =0, ce
qui fait qu’on peut trouver g, assez petit pour que | 0,(bo, V) | < 1/2 dans K, .

2. Si 8y > 6(yo), alors b est nulle sur K,, et comme b est positive dans
®,, O,b est également nulle dans {y,} x ]0(y,), 8,], donc dans K,; dou
0y(bd,y) = 0 dans K,, ce qui fait qu'on peut trouver g, assez petit pour
que | 9,(bd,¥) | < 1/2 dans K, .

Le nombre g, > 0 étant choisi, oublions maintenant cette distinction des
deux cas, et choisissons 1, suffisamment grand pour que | d,(bc;) — d,c, |
< To/4 dans K, _; alors, pour T > 1, ‘

§J|w|2<2f|LTwl|nw|.

Enfin, pour v € C*(R?) avec supp v = K,,, posons

t

w = vexp(—ty + f c(y, s)ds)

t

et reportons cette expression dans I'inégalité précédente; on obtient :
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Je—zw e2Refe) 412 < %Je—m e2Refe | 9.0 + ibd,v + cv| | 0,0 + ¢qv]|

+ 8 Je‘z““ e2Refe | a0 + b0, + cv | | (@, +i(to+a—1) | .

Tl existe donc une constante C telle que pour toute v € C'(R?) avecsupp v = K,
et tout T = T,

(3.5) Je‘z“" lv|2<C Je""‘" | 8 + b0, + cv | (10,04 c1|+v]) -

3.3. UNICITE EN DIMENSION DEUX SOUS LA CONDITION (R)

Nous continuons en donnant une version faible du théoréme 1.2 sous la
condition (R) lorsque I’espace est R2.

THEOREME 3.4. Supposons que 18 L(x,) = 2 en un point Xx€ R%
Si le probléme est non caractéristique (en x, ), alors pour tout voisinage ®
de x, ettoute ue CY(w) solution du systéme

{ (L+co)u(x) = 0 dans o et

(3.6) ux) =0 dans o_ = {xeo|ox) < 0(xy)},

la fonction u sannule au voisinage de x.

Démonstration. D’aprés le lemme 1.3, nous pouvons prendre sur R?
des coordonnées (y, t) telles que:

1. xO — (0, O),
2. 9(x) — @(xo) =,
3. L+ ¢y = 0, + ib(y,t) 0, + c(y, t) & un facteur non nul preés.

St b(0, 0) # 0, nous sommes dans le cas elliptique et le résultat découle
du théoréme 3.1. Sinon, par ’hypothése rg #(x,) = 2, il existe k > 0 tel que }
0% b(0, 0) # 0 tandis que 87 b(0,0) = O pour j < k. Alors, par le théoréme |
de préparation de Malgrange (cf. Hoérmander [11, th. 7.5.5]), il existe, |
pour (y,£)e]1—Y,Y[x]—T,T[ avec Y >0 et T > 0, une factorisation |

b(y, t) = a(y, 1) (t*+ a1 (N1 + ... + ag())
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avec a, dy, ..., 4, des fonctions C® a valeurs réelles telles que .a(y, t) # 0
dans ]-Y, Y[ x]-T, T[, et ai{0) = 0 pour j = 0,..,k — 1. Nous allons
maintenant découper le domaine ]—Y, Y[ x]—T, T[ en petits morceaux
pour pouvoir appliquer le lemme 3.3; ce découpage nous est donné par le
lemme suivant:

LEMME 3.5. Dans la situation décrite ci-dessus, il existe une suite d’in-
tervalles ouverts disjoints (I;),y dont la réunion est dense dans ]—Y, Y[,
et pour chaque i€N, un nombre fini de fonctions C®6;;:I, >R tels
que pour tout yel;:

1. ji <j2=0; ;00 < 6, ;,0),
2. by, 1) = 0«13 telque t = 6, ;().

Démonstration du lemme. Avec les notations précédentes, posons
P, 1) =t + a0 + o + ag(y)

qui est un polyndme en ¢ & coefficients réels et réguliers en y.

Soit O Touvert de ]—7Y, Y[ tel que P(y, t) posséde k racines complexes
distinctes en ¢ pour y € O,; notons ¢, lintérieur du complémentaire de O,
dans ]—Y, Y[. Si O est vide, c’est que O, est dense dans ]—Y, Y[ et
nous arrétons la notre construction; sinon P(y,t) posséde au plus k — 1
racines complexes distinctes en t pour y € ¢;,. Nous définissons alors 0, _,
comme l'ouvert de ) tel que P(y,t) posséde exactement k — 1 racines

complexes distinctes en t pour ye Op_,, puis O,_, comme Iintérieur du
k
complementaire de ¢, dans O,. Et ainsi de suite; I'ouvert U O; est

j=1
alors dense dans ]—Y, Y[. Nous appelons (I;);.y les composantes connexes
des ouverts 0;. .

Dans chaque intervalle I;, les racines en ¢ de P(y, t) sont de multiplicité
constante, et par le théoreme des fonctions implicites, elles sont donc fonc-
tions C® de y; de plus, P étant a coefficients réels, O est racine si et
seulement si O est racine, et donc, toujours a cause de la multiplicité
constante, les racines réelles et distinctes restent réelles et distinctes quand y
décrit I;. Ces racines réelles sont donc représentées par des fonctions

C*9; ;:I; —» R vérifiant 1. et 2.

Démonstration du théoréme 3.4 (fin). Soit u € C*(®) une solution du pro-
bléme (3.6). Supposons qu’elle soit non nulle en un point de ]—Y, Y[ x 0, T[;
alors elle est non nulle dans tout un voisinage de ce point, et donc il
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existe un point (yo, fo) € SUpp # avec y, € I; pour un i e N. L’intervalle I;
étant ouvert, il existe aussi ¢ > 0 tel que [yo—¢& yo+e] < I;.

Posons Y(y, t) = t + to(y—Yo)’e” 2 ot considérons les paraboles P, d’équa-
tions Y(y, ) = 1. La fonction u est nulle en dessous de la parabole P,
puisque P, < {t<0}, mais P, coupe le support de u et P, n {t=0}
c I, x [0, T[. Par compacité, il existe donc un point (y;,t;) € supp u
A (I, x [0, TD) tel que u = 0 dans {(3, ) € ® | U(y, ) < Y0y, 1)} Nous distin-
guerons alors deux cas:

1. Sib(y,,t;) # 0, le probléme est elliptique en (y;, t;) et d(y;,t;) #0;
donc par le théoréme 3.1, u = 0 au voisinage de (y;,t;) ce qui contredit
le fait que (y;, t;) € Supp u.

2. Si b(y,,t;) =0, par le lemme 3.5 il existe j tel que t; = 0; ;(y1)-
En outre, le lemme 3.5 permet d’affirmer que

0 Q= {(yel, x R|6;;_4(y) <t <0 ;(y)} est un ouvert connexe;
B. b ne s’annule paé dans Q, donc L est elliptique dans Q

Comme u s’annule dans {(y, t) € © | V(y, £) < V(y1, t,)}, elle sannule dans
Pintersection de ce domaine avec ©, qui est une partie ouverte non vide
de Q. Par le corollaire 3.2, u est nulle dans (.

De méme, la fonction b ne s’annule pas dans {(y,t)el; x R[8; ;(y)
<t<0;;+1()}, et on peut donc supposer, quitte a changer y en —y,
que b est strictement positive dans ce domaine. Il existe donc un voisinage
convexe w de (y,, t;) tel que b soit positive sur w, = {(y, )ew|t > 0, ;()},
strictement positive en un point (y;,t,)€w,, et tel que u = 0 dans

_={(t)ewl|t <6;;(»} Tout cela nous permet alors d’utiliser le
lemme 3.3 au point (y,, t;): nous obtenons u = 0 au voisinage de (y;, t;),
ce qui contredit le fait que (y,, ;) € supp u.

TTT7] U
(vo- to) }hsupp u—»{ / I//////
TN > = {t=9i.,(}’)}
P, Q
= (}’0,0) ‘—{t=0}—> _______ I S——
K 3 — =0 ;00 '
P, ; \
g ~ Les paraboles P, et P,,. Cas 2.

FIGURE 3.2.
Les paraboles P..
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3.4. DEMONSTRATION DU THEOREME 1.2 SOUS LA CONDITION (R)

Dans ce paragraphe, I'espace est R, n entier quelconque.

Commengons par expliciter les hypothéses du théoréme 1.2 sous la
condition (R); le probléme étant non caractéristique, nous pouvons choisir
(lemme 1.3) des coordonnées locales (y, t) telles que:

1' Xo = (07 O)a

2. 0(x) — 9(xo) = ¢,
3. L+c¢o =0, +ib(y,1)-9, + c(y, t) & un facteur non nul prés.

L’intersection de I'ouvert » avec le domaine dans lequel la propriété (R)
est vérifiée contient un voisinage de (0,0) de la forme v x ]—T, T[ ou
T > 0 et v est un voisinage de 0 dans R"™! suffisamment petit pour que
gL <2sur§S = {(y0eR"|yev}. Onarg.¥ > 1 sur S puisque 9, € Z,
ce qui entralne encore que:

1. Pour un point (y,,0)e S tel que rg L(yy,0) = 1, la variété intégrale
passant par (y,, 0) est {y,} x 1—T, TT[. |

2. Pour un point (y,,0)€ S tel que rg L(y,,0) = 2, si la courbe y = §
est la trace sur S de la variété intégrale passant par (y,, 0), cette derniére
esty x 1T, TI.

Comme la réunion des traces sur § des variétés intégrales de & est égale
a § par la propriété (R), la réunion des variétés intégrales de .# coupant S
est égale au voisinage v x ]— T, T[ tout entier.

Soit u € C'(®) une solution du probléme (1.2), et supposons qu’il existe un
point (yo, o) €v x 0, T[ tel que u(y,, ty) # 0. Ce point (y,, t,) est donc
situ¢ sur une variété intégrale de ¥ coupant S. Si (y,,?,) est sur une
varieté integrale de dimension 1, c’est que b(y,, t) = O pour tout t € ]— T, TJ,
et u vérifie donc I'équation \

atu(yO: t) + C(.VO) t) u(yOa t) = 0 pour tE]-—T, T[

ou y, n’est plus qu'un paramétre; la théorie des équations différentielles
ordinaires nous permet de conclure que u(yy,t) = 0 pour t € ]0, T[, ce qui
contredit le fait que u(y,, ty) # 0.

Il s’ensuit donc que (yo,t,) est sur une variété intégrale de ¥ de
dimension 2 que nous noterons ¥". Utilisons (z, t) comme coordonnées sur ¥~
ou z est I'abscisse curviligne sur ¥" N S, et désignons par z, I'abscisse du
point (yo,t,) dans les coordonnées (z,t). Alors il existe € > 0 tel que
[zo—¢, zo+€] x ]—T, T[ soit contenu dans ¥". Comme dans la démons-
tration du théoréme 3.4, nous posons (z,t) = ¢ + to(z—z,)*> €2 et intro-
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~ duisons les paraboles P, d’équations V(z, t) = t. Nous obtenons ainsi un
d point (z;,t;) du support de la trace de u sur ¥ tel que u =0 dans

{z,t) eV |z, 1) < U(z, , t;)}. Or le probléme (pour \/) est non caractéristique
en (z,,1;) et 18 L2y, 1) = 2 puisque nous sommes sur une variété inte-
grale de ¥ de dimension 2. Nous pouvons donc appliquer le théoréme 3.4
pour conclure que u est nulle au voisinage de (z;,t;) sur ¥, ce qui
contredit le fait que (z;,t;) est un point du support de la trace de u
sur 7.

Nous avons donc obtenu que u = Odansv x ]—=T, T L.

35, DEMONSTRATION DU THEOREME 1.2 SOUS LA CONDITION (P)

Comme le probléme est non caractéristique, nous pouvons faire usage du
lemme 1.3 pour trouver des coordonnées locales (y, ) e R"™! x R, un voisi-
nage v de 0 dans R*~ ' et un nombre T' > 0 tels que

1. xo = (0,0),

2. o(x) — olxo) = 1,

3. L+ ¢y =0, + ib(y, 1)+ 0, + c(y, t) dans v x ]—T, T[ a un facteur non
nul pres,

4. v x 1-T, TL € o n Q.

Soit u € CY(w) une solution du probléme (1.2) et supposons quil existe
Vo, to) €0 x 10, T[ tel que u(yo, o) # 0. Si on avait b(y,,t) = 0 pour tout
t €10, to[, équation se réduirait a une équation différentielle ordinaire, ce
qui conduirait & une contradiction.

Tl existe donc t, €10, to[ tel que b(yo,t;) # 0. Il existe aussi tout un
voisinage de y, tel que b(y, t;) # 0 pour y dans ce voisinage, par continuiteé,
et le vecteur '

d(y) = by, 1) /1 b(y, t1) |

est bien défini et régulier au voisinage de y,; par conséquent, le champ reel
d(y) - 0, admet en y, une courbe intégrale que nous noterons .

Comme la condition (P) est vérifice dans v x ]O, T[, nous avons
b(y,t) = | b(y, t) | d(y) pour tout (y,t) ey x ]0, T[, et donc le champ L est
tangent & vy x JO, T[; nous pouvons désormais nous restreindre a

§ VX 1—T, T[ qui contient le point (yo,t,) ou u ne s’annule pas et sur
§ lequel nous prenons comme coordonnées le couple (z,t) ou z est 'abscisse

curviligne sur y associée au champ d(y):0,; z, désignera l'abscisse du
point (yo, o).

25T i SR T S -
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- Par continuitg, il existe un &€ > 0 suffisamment petit pour que le probléme
restreint 4 y x ]— T, T[ se présente de la fagon suivante:

Lo ¥ = Jzo—¢,2o+e[x]—T, T[cyx]-T, T[;

2. u(z, ty) # O pour z€Jzo—¢, zo+¢[;

3. L4co=20,+ibz,8)9, + c(z,t) dans ¥, = Jzo—¢, zo+€[ [0, T[;
4. b(z,t) > 0 dans 7", (par la condition (P)).

Comme dans la démonstration du théoréme 3.4, introduisons la fonction
V(z, 1) = t + to(z—20)* €% et les paraboles P, d’équations (z, ) = 1. Nous
obtenons ainsi un point (z,,t,) du support de la trace de u sur ¥ "
tel que t, < toetu = Odans {(z,t)e ¥ | Y(z, ) < U(z,, t,)}.

Comme tout a T'heure, si on avait b(z,,t) = 0 pour tout telt,, T,
on prouverait que u(z,,t,) = 0 ce qui contredit le point 2 ci-dessus. Il
existe donc t; € Jt,, T[ tel que b(z,, t;) > 0. Nous distinguons alors deux cas
de figure:

) ' Zy—2Zg \ 2 z—1zq )\ 2
1. Sit, > 0, posons 0(z) = t, + ¢, . — to . (en sorte que

t 2 8(z) < Y(z, ) = Y (22, t,)). Nous pouvons alors trouver un voisinage
convexe w de (z,,t,) contenant (z,,t;) (ou b>0) tel que b soit positive
dans w, = {(z,)ew|t > 0(z)} et u = 0 dans w_ = {(z,)ew|t < 0(z)}.
Par le lemme 3.3 nous en déduisons que u = 0 au voisinage de (z,,t,)
ce qui contredit le fait que (z,,t,) est un point du support de la trace
de u sur ¥, .

2. Sit, = 0, posons 6(z) = 0. Nous pouvons alors trouver un voisinage
2 > P

convexe w de (z,,t,) possédant les mémes propriétés que dans le cas

précédent, d’ou la méme conclusion.

CHAPITRE 4: ETUDE D’UN MODELE DANS R2

Lorsque nous supprimons les hypothéses « techniques », le théoréme 1.2
devient faux; c’est ce que montre I'un des premiers contre-exemples a
I'unicité de Cauchy historiquement construits: le contre-exemple de Cohen [8].
Plut6t que d’en répéter la construction, que le lecteur trouvera par exemple
dans Hormander [9, th. 8.9.2], nous avons préféré étudier de facon assez
précise un modéle dans R? (ce qui assure que rg ¥ < 2) qui fournit des
contre-exemples ou le champ L est complétement explicite; c’est 'objet de ce
chapitre.
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