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20 X. SAINT RAYMOND

Nous avons alors v, = exp [F,+iG,], et F, et G, vérifient (2.10) et (2.11)

grace a ces formules qui les définissent et 4 (2.4), (2.5), (2.6), (2.13) (=1=0)
et (2.15).

24. CONSTRUCTION DES FONCTIONS # ET a

Par un calcul élémentaire nous voyons que pour y e Y et k assez grand,
3 3 .
Ops1 < O — 7 b <my + efy) < 8., + 1 l+1 < 8. Nous choisissons alors
une fonction 4 valeurs réelles X € C(R) telle que

x(t) =1 pour zte [—3/4,3/4],
suppx < [—1,1] et x(t)e[0,1] pour te[—1,1];

puis avec x,(1) = x(I; (t—8&;)) nous posons

3 u(y, 1) = k;k XDy, 1) pour (y,)eY x ]0,8,[,
u(y,t) = 0 pour (y,t)eY x 1—64,, 0]
a(ya t) = - (L+CO)u(y9 t)/u(ya t) pour u(ya t) # 0 ’
aly,t) = 0 pour u(y,t) = 0.

lukﬂl——L\

____,_/;,/"‘-4. TroTcatures _\_R_
3

3
&+1 D} 5, _Zlk D} my + efy) D} Sevr + Zlk+l D{ 6,

FiGure 2.2.
Profils des fonctions u, et Ug+g POUTr L€ [0,44,6,].
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‘ Régularité de la fonction u. Remarquons d’abord qu’une telle fonction u
est C°. En effet, pour t > 0, u est somme d’au plus deux termes non nuls
- qui sont des fonctions C*®, et u est donc C* dans Y X 10, &,[; pour voir
que u est C* au voisinage de t = 0, il suffit de montrer que pour tout

o e N,
>=0.

Or tous les éléments ayant servi a la construction de u, se comportent
comme des puissances de k ainsi que leurs dérivées; on peut donc écrire

0" (Xt )

(2.16) lim ( sup

k=00 \Y X18k+ 1,0k -1

| 0%(xattr) | < C k" exp (—vx+Re @) .

. 3
Mais — 7,(y) ~ — % B(y, 0, 0)k>/4, et

4
| Re ¢ | < 3 8¢ 212 B(y, 0,0) < kM*B(y, 0, 0)

pour k suffisamment grand et ye Y; comme [(y,0,0) >0 pour yeY,
cela donne (2.16).

Détermination des supports des fonctions u et a. D’apres (2.10), nous
savons que | vy, t) | < 1 pour t € [0, 41, m+e(y)[, et comme dans ce méme
domaine u = .y + Yk, SOIt U = uy (1 4+%0;), on en déduit que u ne
sannule pas; on démontrerait de méme que u ne s’annule pas pour
te Imesq+ers+1(y), 0x+ 1], ni donc dans le domaine

| D={00eY x1-8,,8,[1t>0 et t #m + efy) pour tout k > ko)

qui est dense dans Y x [0, §,[; il en résulte que suppu = Y x [0, 0oL
{ et par deéfinition de a, on a supp a < supp u. Pour obtenir (1.1), il ne nous
§ reste plus qu’a montrer que a est C* dans Y x ]—§,,, &,[-

| Régularité de la fonction a. Dans le domaine D défini ci-dessus, u # 0
}  donc la fonction a est définie par la formule a = — (L+cq)u/u; il en résulte

§ que aest C* dans D. Pour ¢ voisin de m; + e(y), 4 = u,,, + u,, donc pour

] Uty +uw #0,a = —(Ltcou/u = — (Fys 1Upr 1 +1e) [ (Ups 1+ )3 en
 particulier, ‘

a = — (rese1+r0)/(1+0;) si t<m + ey) (<] v <1)
a= — (10 )+ si o t>m + ay) (= lvg ! <1).
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Dans la premiére de ces deux formules, le numérateur est plat sur
L = m + ey) 4 cause de (2.8), et le dénominateur vérifie

Bok®

1 >1— || >
1400 > 1~ o] > 22

(my+ e(y) — t)

F
d’apres (2.10) et en utilisant I'inégalité ef < 1 + ry pour F € [ -2, 0]. L’expres-

sion (11 +7.0;,)/(1+v,) définit donc une fonction plate sur t = m, + ely),
et comme il en est de méme pour Iautre expression, nous avons obtenu
que, méme si u s’annule en certains points de t = my + ey) (ce qui
entraine que a = 0 par définition de a), la fonction a est C*® dans
Y x ]0,5,[.

Pour montrer que a est C® pour ¢ voisin de 0, il nous faut estimer
les dérivées de a sur Y x [6x+1, 6] lorsque k tend vers Iinfini. Pour cela,
nous €tudions a successivement sur les quatre intervalles schématisés sur la
figure 2.2.

3
L SurDyp = {008, <t<3§, _Zlk},ona
k? 3 B
Fk(y’ t) < BO3 (5"—2 lk—mk—ek(y)) £ — 5_00 k1/4

pour k assez grand d’aprés (2.10). En utilisant aussi (2.11), on obtient que
pour tout a € N” et tout ve N,

lim (sup]k"@“v“) =0.
k= 1
Dy

Sur Di, u et a sont données par les formules u = u,,, + Yk €t
a = — (L+cy)u/u, ot ' *

t—39
a = — l:(L+CO)uk+1 + X L+co)uy, + 11 X’( ] k) uk:'/u

k

(-3
= — (rk+1 + [Xkrk + Ity ( ] k)] Uk)/(l + kak)-
k

On en déduit, 4 l'aide de I’estimation précédente et de (2.9) que pour tout
a e N”,

lim(supla"al) =0.
k- 1 '

k
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2. Sur D2 = {3, 1) & — %lk <t <m+ ey)), on a Fi(y,t) <0 d’apres
(2.10) dou |v, | < 1. Comme u = W4y + U 7 0, on peut alors écrire
a = — (Lt+coufu = — (Trrrthor 1 +7) [ (e 1 + %)

= — (rpe1+r0n) /(1 +v),

et toutes les dérivées d’une telle expression peuvent étre estimées par des
sommes de puissances de k avec des coefficients de la forme (0%ry+ y) /A +v).
Mais grace a (2.10)

2

o1 Bok
11+l =21—|vnl= mln{E,BTOZ—(mk+ek(y)— )}

F
car ef <% pour Fe]—oo, —1] et e <1 + 4 pour Fe[—2,0], et le
théoréme des accroissements finis donne pour (y, t) € D}
| (aark(+ 1)(ya t)) / (mk+ek(y)_t)v |
< sup {| amHirk(+1)(y: nl1(t)eDy et |B]<vV}

puisque 74 est plate sur t = my + e(y) (cf. (2.8)). On obtient donc en
utilisant (2.9) que pour tout o € N”,

k 2

lim (suplé“al) = 0.

3
3. Sur D ={nt)|m + ely) <t <84y + i le+1} on procéde comme

sur D? en échangeant les roles de u, et u,,,, et donc en utilisant v, * 4 la
place de v,.

3 B
4. Sur Df = {(n, 1) | 8ks1 + Zlk“ <t < 8} on procéde comme sur Dj

en échangeant les roles de u; et u;. 4.

CHAPITRE 3: TECHNIQUES D’UNICITE

Dans ce chapitre, nous allons montrer comment prouver certaines iné-
galités de Carleman, et comment les utiliser pour obtenir I'unicité de Cauchy.

En guise d’exemple, nous donnons une démonstration compléte pour le cas
elliptique (3.1).

%
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