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10 X. SAINT RAYMOND

1. xo = (0, 0)

2. 0(%) — @(xp) = ¢
3. L+cy=0,+ ib(y,t)- d, + ¢(y, t) & un facteur non nul pres.

De plus, en utilisant Phypothése x,€ S, on peut trouver un point
X3 = (y3,0) € Q tel que rg Z(x3) = 3. Nous pouvons alors écrire notre opé-
rateur L + c, sous une forme encore plus précise que celle donnée par le
point 3. ci-dessus, comme le montre le lemme suivant.

LEMME 2.1.  Supposons que L + ¢y = 0, + ib(y, t) - O, + c(y,t) et que
18 L(x3) > 3 pour un point x3€8 = R"™ ! x {0}. Alors, pour tout voi-
sinage Q de x5, il existe un point x,€Q NS, un voisinage ® de X,
et des entiers k, >0 et ky >0 tels que b(y,t) = t*b,(y, 1) et bi(y, 1)
= b:1,0) + *by(y,1) dans ® avec (b1(x;), ba(x,)) linéairement inde-
pendants.

Démonstration. On peut déja supposer que Q est suffisamment petit pour
que le rang de . reste supérieur ou égal 4 3 dans Q n S.

Soit k; =inf{k >0|3IxeQn S:0¢{b(x) # 0}. Alors k, < o0 car
1g Z(x3) = 3. Soit donc x; un point de Q A S tel que 0F b(x;) # 0, et soit
® < Q un voisinage de x, tel que 0¥ b(x) # 0 pour tout xe ® M S. Dans w,
on a b(y, t) = t* by(y, t) avec b,(x) # O si x € S.

Soit maintenant k, = inf{k > 0|3Ixecw  §: 0 by(x) et by(x) soient
linéairement indépendants}. Alors k, < oo car 18 L(x;) = 3. On peut donc
écrire dans , by(y, t) = by(y, 0) + tb,(y, 1) et il existe un point X,e@N S
tel que by(x,) et b,(x,) soient lindairement indépendants.

Ce lemme nous permettra donc de déduire le théoréme 1.1 du théoréme
suivant (que nous démontrerons aux paragraphes 2.2, 2.3 et 2.4).

THEOREME 2.2. Supposons que L + Co = 0; + ib(y, 1)+ 0, + ¢y, t), que
bR XxR->R"™! ¢f ¢c:R"™! xR C sont des fonctions C*® dans
un voisinage Q de xy, = (y,,0) et qu’il existe des entiers k, > 0 et
k; >0 tels que b(y,t) = %' b,(y, 1) et bi(y, 1) = by(y,0) + ¥ by(y, 1)
dans Q avec (by(xo), by(xo)) linéairement indépendants. Alors il existe un
voisinage ® de x,,ueC®w) et ac C*(w) vérifiant (1.1).

2.2. OPTIQUE GEOMETRIQUE

Nous dirons que w e B®(R” x R ) si w(x, 8) est une fonction continue sur
R" x [0, o, indéfiniment dérivable en x pour 6 > 0 et dont les dérivées
restent bornées quand § tend vers 0.
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PROPOSITION 2.3. Sous les hypothéses du théoréme 2.2, il existe au vOi-
sinage de (yo,0,0) deux fonctions @ -et BeC?R" ' xRxR) -telles que
Re ¢(y,t,8) = — Sk ke = 11— §)2 B(y, 8~ 1(t—9), § pour d&>0

(2.1)
B(J’ana 0) = BO >0

et telles que pour toute fonction Y€ B*(R""*xR,), il existe une fonction
w(y, s, €) € B°(R"" ! xR xR, ) telle que w(y,0, 0)=1 et
Vae N VveN, 35, ,: pour 0<8<3,, et

pour (y, 8 %(t—38)) dans un voisinage fixe de (¥o,0)
(22) ) (indépendant de o et V)

| 0*[(L+co)hfh] | < 28"

\

o ON a pOSé:

(23) h(y, t, d)
= w(y, 572(—38), 8% exp [—87 P y(», 8) + 37T 0y, 1, 8)]

(dans (2.2), 0 désigne la dérivation d'ordre o par rapport a y et t)

Démonstration : en trois parties.

1. Construction de ¢ et de B. Choisissons 1, € R"™* tel que by(xo) - Mo = 0
et by(x)* Mo < O (ce qui est possible grace a ’hypothese d’indépendance).
Il existe alors une fonction C*® a valeurs réelles \; telle que

i bl(ya 8) ' ay\ljl(ya 8) =0
ay\|11(}70>0) = To

et on pose:

\I"Z(y: L, 8) = J‘ b(y> 7") * 6y\l/1(ya 6)611‘ s
(P(y, L, 6) = \VZ(ya t: 8) + l‘*"l(ya 8) .

On calcule alors que:

\1]2(.}}3 85 6) = 0 s
at‘l’Z(ya 85 6) = b(ya 8) ‘ ay\ljl(ya 6) = 0 par ChOiX de \bl 5 et

0tVa(y, ¢, 8) = 0:b(p, 1) - O,01(y, d)
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= | ket 7 1by(y, 0) + (k, +hy )T (3, 1) + FrR0,b,(y, t)] * 0,V4(y, 6)

= | =kt 718by(y, 8) + (ky+ky)tFr 2T p(y, £) 4 kTR 0,b5(y, t):l * 0,\4(y, 6)

¢ =1 t ki+ka—1
_ 6’“+"2‘1[—k1 <g> a9, 8) + (ky +ky) (g) b3,

£\ K1tk
+ 0 (g) 0:b(y, t)] * 0,4(y, 9) -

Par la formule de Taylor avec reste intégral, on obtient donc

Re 9y, £,8) = a3, 1, 8) = —87271(t—8)* B(y, 87 (t—8), §)

ou
1
By, o, 8) = J (9—1)[—k1(1+90)’“_1bz(y, 0)
0
+ (ki +ky) (1460) k27 1p,(y, §(1 +00))
+ 3(14+00)**2 9,b,(y, 8(1 +90)):| - 0,4 (y, 8)do
. : 1 N
ce qui donne (2.1) puisque PB(yy,0,0) = — 7 kyby(¥9,0)ne > 0 griace a
notre choix de n,.
Notons que )
L(P(ya (A 8) = - i8k1+k2_1(t—8)2b(y9 t) * ayB(ys 8_l(t——6)9 6)
par (2.1), et si on pose s = & %(t—3),
L[37* " (), 1,8)] = — i87'sb(y, 1) - 3,B(, 8s, 3) .

2. Construction de w. Définissons Iopérateur M par la relation (Mw/w)
= ((L+co)h/h) ot h est donnée par (2.3); on calcule alors que

Mw = 87?[0w+eNw], avec Nw = iB-dw + Cw,

ou B et C sont des fonctions de I'espace B®(R"" ' xR xR, ) définies par:
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B(y, s, €) = &°b(y, €°+¢%),
C(y7 S, 8) = - lb(y> 83 +865) * ayY(ya 83) - iezszb(ys 83 +86S) * ayB(ya 8333 83)
+ €3¢(y, e3+¢%) .

r . . . _1 o
Définissons une suite de fonctions w; de I'espace B*(R” xRxR,)
par les formules (toutes ces fonctions sont bien définies sur un meéme
domaine)

wo(y, s,€) =1,

Wj+1(ys S, 8) = J1 - ij(y’ r, S)dra pour .] = 0.
0
Une solution de (2.2)-(2.3) est alors obtenue formellement en posant
w = Y &'w;. Choisissons donc une fonction de troncature, c’est-a-dire une
fonction x € C*(R) telle que x = 1 sur [0,1], x = 0 sur [2, +oo[ et
v(€) € [0, 1] pour € € [0, + co[. Nous posons
W(ya S, 8) = Z SjXO\'jg)wj(ya Sy 8) s

iz0

et nous allons prouver dans la troisiéme partie de cette démonstration
quil existe une suite de réels positifs A; telle que cette formule définisse
une fonction w de lespace B®(R" ! x Rx R, ) qui vérifie de plus (2.2)-(2.3).

3. Construction de la suite \;. Nous allons montrer qu’il suffit que la suite
A; croisse assez vite pour que l'on ait les deux propriétés précédentes.
Nous pouvons déja imposer que A;,; > 2A; de sorte que pour tout & > 0 fixe,
les y(\jg) soient tous égaux a4 1 ou a O sauf au plus 'un d’entre eux.

Soient k un voisinage compact de y,,so > 0 et g, > 0 tels que les
fonctions w; soient bien définies dans K = k X [—so, So] X [0, &]. Pour
obtenir que we B®(R""*xRxR,), il suffit d’imposer pour tout JeN,

Ay > (J+1)sup {| Dw(y, 5, 8)| | (s, e)e K, |a| <J et j<J+ 1}

ou D* désigne la dérivation d’ordre o en y et s. En effet, si (A;.;)"*
< € S ()\‘J)_ln

J

W(ya S, 8) = .20 8j"‘)j(ya S, 8) + 3H1X(7VJ+ 18)WJ+ 1(y> S, 8)
j=

doncsiO < o] <J,(hysy) t <e<(y) Let(s ek,

J+1

|Daw(y9 S, 8)' < z 8|Dawj(y: S, 8)' < 1‘

ji=1



14 X. SAINT RAYMOND

Il en résulte que we B®(R" " * xR xR, ) car w est continue sur K comme
somme d’une série uniformément convergente de fonctions continues sur K.
On a w(y,0,0) = 1, et si on a choisi le compact K assez petit, on
. 1 . .
a aussi [w| > 7 dans K (un tel compact K pourra étre choisi aprés coup,
une fois que les A; auront été fixés); il en résulte que |(D'w)/w| reste
inférieur a 2 pour £ < (M)~ ' Comme on peut écrire D*(Nw;/w) comme une
somme (algébrique) comportant au plus (Jof+1)! x 2 termes de la forme
L(DENw;)/w] [(D"*w)/w] ... [(D"=w)/w] (avec a=B+47v;+...+ 7 par la for-
mule de Leibniz), on obtient une majoration

| D*(Nw;/w) | < (e +1)! 2112 sup {| DPNw; | | B < o}
pourvu que € < (}Vlal)—l' Si donc nous demandons pour tout J que

Ay > (J+D)!127* 2 sup {| D*Nw{(y, s, ¢) | | (1, s, e) e K, | o | < J
et j<J+ 1}, |

alors pour (A;, ;) ! <e < (A) Y,
Mw = ¢'~?° [NWJ(I_X()“J+18)) + Nwyy18x(\y418)]

dou | DY Mw/w)| < 2¢’7° pour |a|<J (et (Ayjpy) P <e<(A,) ! et
(3, 5, €) € K). Cette majoration étant obtenue pour tout J, on peut remplacer
la condition (A, ;)" ! <e << (M) *pare < (A,) L

Pour aae N" et ve N fixés, on obtient, en posant J = 6(1+|a|) + 3v,
que pour (y, s, e)e Kete < (A,)" 1,

| 0((L+co)h/h)| = | e~ 5D Mw/w) | < 2e% = 28".

2.3. AJUSTEMENT DES FONCTIONS

Nous posons .
_ 3. . 1 2
& = k™34 I = & — &y | ~ k77 et mp = -0 + - Oy
4 -3 3
Puis nous considérons les fonctions hy(y, t) = h(y, t, §,) définies par (2.3);
ces fonctions vérifient (2.2) pour k suffisamment grand et te18,,,, &, _4[
pourvu que &, >, tende vers O lorsque k tend vers Iinfini, ce qui est bien
3
le cas puisque 8, %[, ~ 7 k=14,

'd

En vue de poser u = h, + I, pour t voisin de m, et de montrer que
a = — (L+co)u/u est C*, il nous faut déterminer le lieu d’équation h, , ,
= — Iy (qui est contenu dans le lieu d’équation | h, ., | = | & |).




	2.2. Optique géométrique

