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10 X. SAINT RAYMOND

1- *o (0, 0)

2. <p(x) - cp(x0) t
3. L+ c0 dt+ ib(y, t)• dy+ c(y, tà un facteur non nul près.
De plus, en utilisant l'hypothèse x0eS3, on peut trouver un point
x3 — (>'3, 0) e ß tel que rg £f(x3) 3. Nous pouvons alors écrire notre
opérateur L+ c0sousune forme encore plus précise que celle donnée par le
point 3. ci-dessus, comme le montre le lemme suivant.

LEMAŒ2.1. Supposons que L + c0et querg^(*3) > 3 pour un point x3sSR"1 x {0}. Alors, pour tout voi-
sinage Q de x3, il existe un point x2 e Q n S, un voisinage co de x2et des entiers et k2>0 teet bl(y,t)- bi(y, 0) + t 2b2(y, t) dans co avec (bfix,), b2(x2)) linéairement indé-
pendants.

Demonstration. On peut déjà supposer que il est suffisamment petit pour
que le rang de reste supérieur ou égal à 3 dans ß n

Soit kx~inf {k>0I 3x e ß n S: 0* b(x) * 0}. Alors k, < 00 car
rg i?(x3) > 3. Soit donc x1un point deûnS tel que dkl ^ 0 et soit
co c ß un voisinage de x, tel que df b(x) * 0 pour tout xetonS. Dans co
on a b(y, t) tkibl(y,t) avec bfix)

Soit maintenant k2 M{k>0\3xeo>nS:d!etsoient
hneairement indépendants}. Alors k2 < co car rg ^ 3. On peut donc
écrire dans co, bl(y, t) b}(y, 0) + t">b2(yt)et il existe un point x2 e co n S
tel que h1(x2) et b2(x2) soient linéairement indépendants.

Ce lemme nous permettra donc de déduire le théorème 1.1 du théorème
suivant (que nous démontrerons aux paragraphes 2.2, 2.3 et 2.4).

Théorème 2.2. Supposons que L +ib(y, c(y, t), queb:R" x R-> R" 1 et c:R"1 x R-> C sont des fonctions C00 dans
un voisinage ß de x0(y0,0)et qu'il existe des entiers ^ 0 et
k2>0 tels que b(y,t)bfiy, t) et bfiy, t) bfy, 0) + tk> b2{y, t)

dans ß avec (bfixo), b2(x0)) linéairement indépendants. Alors il existe un
voisinage co de x0,ue Cœ(a) et ae00)vérifiant (1.1).

2.2. Optique géométrique

Nous dirons 1ue w e ßm(R" x R+ si w(x, 8) est une fonction continue surR" x [0, 00 [, indéfiniment dérivable en x pour 8 > 0 et dont les dérivées
restent bornées quand ô tend vers 0.
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Proposition 2.3. Sousles hypothèses du théorème il existe au

sinage de (y0,0,0) deux fonctions cp et ß e CfR^ xdCxR) telles que

Re cp(3£, ô) - 5il+fa-1(t-S)2 ß(y, 8) pour S > 0

(2.1)
ß(3>o,0,0) ß0 > 0

et telles que pour toute fonction y eB<R"1 x R+ existe une fonction

w(y, s,e) e B°°(R"~1 x R x R+ telle que w{y, 0, 0) 1 et

Va e N", Vv eN,35cli v : pour 0 < 8 < 8a v et

pour (y, 8 ~ 2(t- 8)) dans un voisinage fixe de (y0, 0)

(2.2) ^dépendant de a et v)
| d«[{L+c0)h/h]| < 2 Sv

où on a posé :

h{y, t, 8)

w(y, 8~2(t—8), 81/3) exp [-8"5/3 y(y, 8) + h-A~kl~kl cp(y, t, 8)]

(dans (2.2),d* désigne la dérivation d'ordre a par rapport à y et t).

(2.3)

Démonstration : en trois parties.

1. Construction de cp et de ß. Choisissons Po s R" 1 tel que bfix^) Po ~ ^

et b2(x0)-r\0 < 0 (ce qui est possible grâce à l'hypothèse d'indépendance).

Il existe alors une fonction Cm à valeurs réelles vß x telle que

bfiy, 8) • d^fy, 8) 0

fyMyo.O) "Ho

et on pose :

Wy. t, 8) | b(y, r) • éyW(y, 8

<p(y, t, 8) v|t, 8) + h|p(y, 8).

On calcule alors que :

Wy> 8,8) o,
d,v|/2(y, 8, 8) b(y, 8) • ö/l/ßy, 8) 0 par choix de \\>i, et

bf^2(y, t, S) ôth(y, t) • ô/h(y, 5)
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kitk' ~ 1b1(y, 0) + (k1+k2)tkl+k^1b2(y,t) + tk<+k%b2{y,t) 3»v|'10', 5)

-k11kl~18k2b2(y, 8) + (k.+k^^'^iy, t) + tkl+k2 ôtb2(y,

__ gfcl+fe2" "{-kl

+ 5

Sy^lliy, S)

biiy? 5) + (&i + &2)
g

ki +k,2 ~ 1

b2(y, t)

ki +k2

dtb2(y, t) fyK (y, s) •

Par la formule de Taylor avec reste intégral, on obtient donc

Re <pO, t,8) \| r2(y,t,8) — +fc2"x(r — ô)2 ß(y, 8~l(t-8), 8)

OÙ

ß(y, a, 8) (0-1) -^(l+Gaf'-^S)

+ (k, + k2)(1 + 0a)k'+'k2 -%(y, 8(1 + 0a))

+ 8(1 + 9o)k'+k2 ôtb2(y, 8(1 + 0a)) ' fyKCc, §)d0

ce qui donne (2.1) puisque ß(yo,0,0) - - 0) • q0 > 0 grâce à

notre choix de r|0.

Notons que

Lcp(y, t,8)- i8"+fe-1(t-8)28(y, • 3,ß(y, S'^f-S), 8)

par (2.1), et si on pose s S—2(t — 8),

L [s-^-^-^cp (y,t,8)] - • Ôfi(y, 8s, 8).

2. Construction de w. Définissons l'opérateur M par la relation (Mw/w)
((L+c0)h/h) où /z est donnée par (2.3); on calcule alors que

Mw 5"2 [3sw + eiVw] avec iVw iB • 3 w + Cw

où B et C sont des fonctions de l'espace £°°(Rn ^RxR+J définies par:
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B(y, s,e) e5b(y,s3+e6s),

C(y, s,s) - ibiy, s3 + s6s) • dyy{y,e3)- ie2s2b(y, s3 + s6s) • dy$(y, s
3s,e3)

+ s5c(y, e3 + e6s).

Définissons une suite de fonctions Wj de l'espace ß°°(R" 1 x R x R+

par les formules (toutes ces fonctions sont bien définies sur un même

domaine)

w0(y, s, s) 1,

Wy+iCy, s, s) - Nwj(y, r, s)dr, pour j > 0

Une solution de (2.2)-(2.3) est alors obtenue formellement en posant

w £ dwj. Choisissons donc une fonction de troncature, c'est-à-dire une

fonction x e C°°(R) telle que x 1 sur [0,1], x 0 sur [2, +oo[ et

X(e) e [0, 1] pour 8 g [0, + oo[. Nous posons

My, s, e) X s, 8),
o

et nous allons prouver dans la troisième partie de cette démonstration

qu'il existe une suite de réels positifs Xj telle que cette formule définisse

une fonction w de l'espace ß°°(R"-1 x R x R+) qui vérifie de plus (2.2)-(2.3).

3. Construction de la suite Xj. Nous allons montrer qu'il suffit que la suite

Xj croisse assez vite pour que l'on ait les deux propriétés précédentes.

Nous pouvons déjà imposer que Xj+1 > 2Xj de sorte que pour tout s > 0 fixé,

les %(XjS) soient tous égaux à 1 ou à 0 sauf au plus l'un d'entre eux.

Soient k un voisinage compact de y0, s0 > 0 et s0 > 0 tels que les

fonctions Wj soient bien définies dans K k x [ — s0,s0] x [0, s0]. Pour
obtenir que w g 5co(Rn_1 x R x R+), il suffit d'imposer pour tout Je N,

Xj > (J+1) sup {| DaWj{y, s, e) | | (y, s, e) g K, | a | < J et j ^ J + 1}

où Da désigne la dérivation d'ordre oc en y et s. En effet, si (XJ+1)~1

^ 8 ^ (\j) 1,

j
My, s,e) X s> 8) + zJ+1%(h+iz)wj+i(y, s, 8)

j=o

donc si 0 < | a | ^ J, (XJ+1)~1 ^ s ^ (Xj)_1 et (y, s, e) g K,

| D"w(y, s, e) | < £ s | D«Wj(y, s, s) | ^ 1

j=i
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Il en résulte que w6ß00(R""1xRxR+) car w est continue sur K comme
somme d'une série uniformément convergente de fonctions continues sur K.

On a w(y, 0, 0) 1, et si on a choisi le compact K assez petit, on

a aussi | w | > — dans K (un tel compact K pourra être choisi après coup,

une fois que les Xj auront été fixés) ; il en résulte que | (Dyw)/w | reste
inférieur à 2 pour s ^ (X^)-1. Comme on peut écrire D\Nwj/w) comme une
somme (algébrique) comportant au plus (|a| + l)! x 2 termes de la forme
[(DpATw7-)/w] [(DY1w)/w] [(DYMw)/w] (avec oc= ß + Yi + + Y|a|, par la
formule de Leibniz), on obtient une majoration

| D°(NwjM|< (|a| +1) 21-1+ 2
sup {| D*Nwj | | ß < a}

pourvu que e < (^|a|)_1- Si donc nous demandons pour tout que

Xj > (/+1) 2J+2sup{| D"NWj{y,s,s) | | (y, s, s) e K, | a | ^
et j< J+ 1}

alors pour (A,J+1)_1 ^ e <

Mw s7"5 [iVwj( 1 — %(Xj+ e)) + NwJ+1ex(Xj+1e)]

d'où | D"(Mw/w)|=% 2eJ~6 pour | a | < (et (X.J+1)_1 ^ et
(y, s, s) e K). Cette majoration étant obtenue pour tout J, on peut remplacer
la condition (!XJ+1)~1 ^ s ^ (À,,)-1 par 8 ^ (XjJ"1.

Pour aeN" et veN fixés, on obtient, en posant J 6(1 -h|oc|) + 3v,

que pour (y, s, s) e K et 8 ^ (Xj)_1,

| da((L + c0)h/h) | | 8~6tXtDa(Mw/w) | ^ 2e3v 2ÔV.

2.3. Ajustement des fonctions uk

Nous posons

Puis nous considérons les fonctions hk(y,t) h(y,t,dk) définies par (2.3);
ces fonctions vérifient (2.2) pour k suffisamment grand et t e ]8fc+1,

pourvu que §k2lk tende vers 0 lorsque k tend vers l'infini, ce qui est bien

En vue de poser u hk + hk+1 pour t voisin de mk et de montrer que
a — (L + c0)u/u est C00, il nous faut déterminer le lieu d'équation hk+1

— hk (qui est contenu dans le lieu d'équation \hk+1\ \hk\).

le cas puisque 8fc
2 lk ~ — k 1/4.
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