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PROBLEMES DE CAUCHY 9

ou les a;(x) et les B;(x) sont a valeurs réelles. Pour k=1,.,n— 1, soit
y(x) la solution du systéme

yk(x,9 0) = Xk
n—1
a,,yk + 'Zl Otjajyk = 0 .
=
. Y a(y, 1)
Si de plus nous posons #(x) = x,, comme la matrice jacobienne I

admet l'unité pour déterminant en (0, .., 0), nous pouvons utiliser (y,?)
comme nouvelles coordonnées locales; nous obtenons que L + ¢, = (Lt)J,
+ Y(LyWd,, + ¢, est de la forme 3, d’ou le lemme.

CHAPITRE 2: CONSTRUCTION D’UN CONTRE-EXEMPLE

Dans ce chapitre, nous proposons une démonstration du théoréme 1.1.
La méthode utilisée pour obtenir ce résultat est désormais classique; elle a
été mise au point successivement par Cohen [8], Pli§ [18], Hormander [10],
Alinhac-Zuily [3]. Ici, nous suivrons de trés prés la démonstration du théo-
réme 1 d’Alinhac [1] (qui, pour le premier ordre, est un cas particulier du
théoréme 2.2 ci-dessous avec k;, = Oet k, = 1).

La technique consiste a choisir une suite de valeurs positives 8, tendant
vers 0, puis a construire par les méthodes de l'optique géométrique des
fonctions u,, pour ¢(x) voisin de @(x,) + 9., qui soient approximativement
dans le noyau de L + ¢,: c’est ce que nous faisons en 2.2. Puis on ajuste
la taille de ces fonctions afin de pouvoir les recoller pour obtenir une
solution u définie au voisinage de x, et telle que u et a = — (L+c¢y)u/u
soient régulieres: c’est I'opération effectuée en 2.3, les derniéres vérifications
etant reportées en 2.4.

Afin de limiter la complexité de la construction, il convient de choisir un
bon systéme de coordonnées. C’est ce par quoi nous commengons.

2.1. NOUVEAU CHOIX DE COORDONNEES

Plagons-nous dans les hypothéses du théoréme 1.1 et fixons le voisinage Q.
Grace au lemme 1.3, nous pouvons déja trouver des coordonnées locales
(»nt)eR"! x R dans Q (quitte a restreindre ce dernier) telles que
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1. xo = (0, 0)

2. 0(%) — @(xp) = ¢
3. L+cy=0,+ ib(y,t)- d, + ¢(y, t) & un facteur non nul pres.

De plus, en utilisant Phypothése x,€ S, on peut trouver un point
X3 = (y3,0) € Q tel que rg Z(x3) = 3. Nous pouvons alors écrire notre opé-
rateur L + c, sous une forme encore plus précise que celle donnée par le
point 3. ci-dessus, comme le montre le lemme suivant.

LEMME 2.1.  Supposons que L + ¢y = 0, + ib(y, t) - O, + c(y,t) et que
18 L(x3) > 3 pour un point x3€8 = R"™ ! x {0}. Alors, pour tout voi-
sinage Q de x5, il existe un point x,€Q NS, un voisinage ® de X,
et des entiers k, >0 et ky >0 tels que b(y,t) = t*b,(y, 1) et bi(y, 1)
= b:1,0) + *by(y,1) dans ® avec (b1(x;), ba(x,)) linéairement inde-
pendants.

Démonstration. On peut déja supposer que Q est suffisamment petit pour
que le rang de . reste supérieur ou égal 4 3 dans Q n S.

Soit k; =inf{k >0|3IxeQn S:0¢{b(x) # 0}. Alors k, < o0 car
1g Z(x3) = 3. Soit donc x; un point de Q A S tel que 0F b(x;) # 0, et soit
® < Q un voisinage de x, tel que 0¥ b(x) # 0 pour tout xe ® M S. Dans w,
on a b(y, t) = t* by(y, t) avec b,(x) # O si x € S.

Soit maintenant k, = inf{k > 0|3Ixecw  §: 0 by(x) et by(x) soient
linéairement indépendants}. Alors k, < oo car 18 L(x;) = 3. On peut donc
écrire dans , by(y, t) = by(y, 0) + tb,(y, 1) et il existe un point X,e@N S
tel que by(x,) et b,(x,) soient lindairement indépendants.

Ce lemme nous permettra donc de déduire le théoréme 1.1 du théoréme
suivant (que nous démontrerons aux paragraphes 2.2, 2.3 et 2.4).

THEOREME 2.2. Supposons que L + Co = 0; + ib(y, 1)+ 0, + ¢y, t), que
bR XxR->R"™! ¢f ¢c:R"™! xR C sont des fonctions C*® dans
un voisinage Q de xy, = (y,,0) et qu’il existe des entiers k, > 0 et
k; >0 tels que b(y,t) = %' b,(y, 1) et bi(y, 1) = by(y,0) + ¥ by(y, 1)
dans Q avec (by(xo), by(xo)) linéairement indépendants. Alors il existe un
voisinage ® de x,,ueC®w) et ac C*(w) vérifiant (1.1).

2.2. OPTIQUE GEOMETRIQUE

Nous dirons que w e B®(R” x R ) si w(x, 8) est une fonction continue sur
R" x [0, o, indéfiniment dérivable en x pour 6 > 0 et dont les dérivées
restent bornées quand § tend vers 0.
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PROPOSITION 2.3. Sous les hypothéses du théoréme 2.2, il existe au vOi-
sinage de (yo,0,0) deux fonctions @ -et BeC?R" ' xRxR) -telles que
Re ¢(y,t,8) = — Sk ke = 11— §)2 B(y, 8~ 1(t—9), § pour d&>0

(2.1)
B(J’ana 0) = BO >0

et telles que pour toute fonction Y€ B*(R""*xR,), il existe une fonction
w(y, s, €) € B°(R"" ! xR xR, ) telle que w(y,0, 0)=1 et
Vae N VveN, 35, ,: pour 0<8<3,, et

pour (y, 8 %(t—38)) dans un voisinage fixe de (¥o,0)
(22) ) (indépendant de o et V)

| 0*[(L+co)hfh] | < 28"

\

o ON a pOSé:

(23) h(y, t, d)
= w(y, 572(—38), 8% exp [—87 P y(», 8) + 37T 0y, 1, 8)]

(dans (2.2), 0 désigne la dérivation d'ordre o par rapport a y et t)

Démonstration : en trois parties.

1. Construction de ¢ et de B. Choisissons 1, € R"™* tel que by(xo) - Mo = 0
et by(x)* Mo < O (ce qui est possible grace a ’hypothese d’indépendance).
Il existe alors une fonction C*® a valeurs réelles \; telle que

i bl(ya 8) ' ay\ljl(ya 8) =0
ay\|11(}70>0) = To

et on pose:

\I"Z(y: L, 8) = J‘ b(y> 7") * 6y\l/1(ya 6)611‘ s
(P(y, L, 6) = \VZ(ya t: 8) + l‘*"l(ya 8) .

On calcule alors que:

\1]2(.}}3 85 6) = 0 s
at‘l’Z(ya 85 6) = b(ya 8) ‘ ay\ljl(ya 6) = 0 par ChOiX de \bl 5 et

0tVa(y, ¢, 8) = 0:b(p, 1) - O,01(y, d)
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= | ket 7 1by(y, 0) + (k, +hy )T (3, 1) + FrR0,b,(y, t)] * 0,V4(y, 6)

= | =kt 718by(y, 8) + (ky+ky)tFr 2T p(y, £) 4 kTR 0,b5(y, t):l * 0,\4(y, 6)

¢ =1 t ki+ka—1
_ 6’“+"2‘1[—k1 <g> a9, 8) + (ky +ky) (g) b3,

£\ K1tk
+ 0 (g) 0:b(y, t)] * 0,4(y, 9) -

Par la formule de Taylor avec reste intégral, on obtient donc

Re 9y, £,8) = a3, 1, 8) = —87271(t—8)* B(y, 87 (t—8), §)

ou
1
By, o, 8) = J (9—1)[—k1(1+90)’“_1bz(y, 0)
0
+ (ki +ky) (1460) k27 1p,(y, §(1 +00))
+ 3(14+00)**2 9,b,(y, 8(1 +90)):| - 0,4 (y, 8)do
. : 1 N
ce qui donne (2.1) puisque PB(yy,0,0) = — 7 kyby(¥9,0)ne > 0 griace a
notre choix de n,.
Notons que )
L(P(ya (A 8) = - i8k1+k2_1(t—8)2b(y9 t) * ayB(ys 8_l(t——6)9 6)
par (2.1), et si on pose s = & %(t—3),
L[37* " (), 1,8)] = — i87'sb(y, 1) - 3,B(, 8s, 3) .

2. Construction de w. Définissons Iopérateur M par la relation (Mw/w)
= ((L+co)h/h) ot h est donnée par (2.3); on calcule alors que

Mw = 87?[0w+eNw], avec Nw = iB-dw + Cw,

ou B et C sont des fonctions de I'espace B®(R"" ' xR xR, ) définies par:
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B(y, s, €) = &°b(y, €°+¢%),
C(y7 S, 8) = - lb(y> 83 +865) * ayY(ya 83) - iezszb(ys 83 +86S) * ayB(ya 8333 83)
+ €3¢(y, e3+¢%) .

r . . . _1 o
Définissons une suite de fonctions w; de I'espace B*(R” xRxR,)
par les formules (toutes ces fonctions sont bien définies sur un meéme
domaine)

wo(y, s,€) =1,

Wj+1(ys S, 8) = J1 - ij(y’ r, S)dra pour .] = 0.
0
Une solution de (2.2)-(2.3) est alors obtenue formellement en posant
w = Y &'w;. Choisissons donc une fonction de troncature, c’est-a-dire une
fonction x € C*(R) telle que x = 1 sur [0,1], x = 0 sur [2, +oo[ et
v(€) € [0, 1] pour € € [0, + co[. Nous posons
W(ya S, 8) = Z SjXO\'jg)wj(ya Sy 8) s

iz0

et nous allons prouver dans la troisiéme partie de cette démonstration
quil existe une suite de réels positifs A; telle que cette formule définisse
une fonction w de lespace B®(R" ! x Rx R, ) qui vérifie de plus (2.2)-(2.3).

3. Construction de la suite \;. Nous allons montrer qu’il suffit que la suite
A; croisse assez vite pour que l'on ait les deux propriétés précédentes.
Nous pouvons déja imposer que A;,; > 2A; de sorte que pour tout & > 0 fixe,
les y(\jg) soient tous égaux a4 1 ou a O sauf au plus 'un d’entre eux.

Soient k un voisinage compact de y,,so > 0 et g, > 0 tels que les
fonctions w; soient bien définies dans K = k X [—so, So] X [0, &]. Pour
obtenir que we B®(R""*xRxR,), il suffit d’imposer pour tout JeN,

Ay > (J+1)sup {| Dw(y, 5, 8)| | (s, e)e K, |a| <J et j<J+ 1}

ou D* désigne la dérivation d’ordre o en y et s. En effet, si (A;.;)"*
< € S ()\‘J)_ln

J

W(ya S, 8) = .20 8j"‘)j(ya S, 8) + 3H1X(7VJ+ 18)WJ+ 1(y> S, 8)
j=

doncsiO < o] <J,(hysy) t <e<(y) Let(s ek,

J+1

|Daw(y9 S, 8)' < z 8|Dawj(y: S, 8)' < 1‘

ji=1
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Il en résulte que we B®(R" " * xR xR, ) car w est continue sur K comme
somme d’une série uniformément convergente de fonctions continues sur K.
On a w(y,0,0) = 1, et si on a choisi le compact K assez petit, on
. 1 . .
a aussi [w| > 7 dans K (un tel compact K pourra étre choisi aprés coup,
une fois que les A; auront été fixés); il en résulte que |(D'w)/w| reste
inférieur a 2 pour £ < (M)~ ' Comme on peut écrire D*(Nw;/w) comme une
somme (algébrique) comportant au plus (Jof+1)! x 2 termes de la forme
L(DENw;)/w] [(D"*w)/w] ... [(D"=w)/w] (avec a=B+47v;+...+ 7 par la for-
mule de Leibniz), on obtient une majoration

| D*(Nw;/w) | < (e +1)! 2112 sup {| DPNw; | | B < o}
pourvu que € < (}Vlal)—l' Si donc nous demandons pour tout J que

Ay > (J+D)!127* 2 sup {| D*Nw{(y, s, ¢) | | (1, s, e) e K, | o | < J
et j<J+ 1}, |

alors pour (A;, ;) ! <e < (A) Y,
Mw = ¢'~?° [NWJ(I_X()“J+18)) + Nwyy18x(\y418)]

dou | DY Mw/w)| < 2¢’7° pour |a|<J (et (Ayjpy) P <e<(A,) ! et
(3, 5, €) € K). Cette majoration étant obtenue pour tout J, on peut remplacer
la condition (A, ;)" ! <e << (M) *pare < (A,) L

Pour aae N" et ve N fixés, on obtient, en posant J = 6(1+|a|) + 3v,
que pour (y, s, e)e Kete < (A,)" 1,

| 0((L+co)h/h)| = | e~ 5D Mw/w) | < 2e% = 28".

2.3. AJUSTEMENT DES FONCTIONS

Nous posons .
_ 3. . 1 2
& = k™34 I = & — &y | ~ k77 et mp = -0 + - Oy
4 -3 3
Puis nous considérons les fonctions hy(y, t) = h(y, t, §,) définies par (2.3);
ces fonctions vérifient (2.2) pour k suffisamment grand et te18,,,, &, _4[
pourvu que &, >, tende vers O lorsque k tend vers Iinfini, ce qui est bien
3
le cas puisque 8, %[, ~ 7 k=14,

'd

En vue de poser u = h, + I, pour t voisin de m, et de montrer que
a = — (L+co)u/u est C*, il nous faut déterminer le lieu d’équation h, , ,
= — Iy (qui est contenu dans le lieu d’équation | h, ., | = | & |).
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PROPOSITION 2.4. Sous les hypothéses précédentes, il existe un voisinage Y
de y,, une fonction ye B°R""'xR,) 4 valeurs réelles telle que
v(y,0) > 0 pour yeY, et trois suites de fonctions e, € C°(R"™ 1), fi
et g€ C°(R"'xR) a valeurs réelles telles que les fonctions (Y, t)
= h(y,t,8,) définies en (2.3) (avec la fonction Y ci-dessus) vérifient

h/hiv1 = €XP [fxtigil avec

lim (SUP | filys mi) |> =0,

k— o Y

(24) A

2

Bok®
et 0. fdy,t) > sur Y X 1841, 0L
(25) { pour tout o€ N, il existe C, et v, € N tels que sur
' Y x 100s1, 8L 1 °Fu0, D] < Cke et | 0%y, 1) | < Cok™;

{ |3, D] = | b5 D] =t = my + &)

' (26) et ey) = o(ly) (pour k—o0).

Démonstration. Posons
Oy, 1) = 8547 0(y, 1, 8) et wi(y, 1) = w(y, 85 2(t—8x), 8"%);

les constructions s’effectuent en trois temps.

1. Construction de vy. Nous allons choisir la fonction y de telle sorte que

Log | h(y, m;) | — Log | s 1 (0, i) | = 0,

du moins si on néglige I'influence de w dans la formule (2.3). Nous posons donc

I(y) = Re oy, m;) — Re @y, (v, my)
4 1
= [B(J’, 0,0) + 0(1)] [— 55{5 12 + 55,;51 l,%jl (pour k— o0)

d’aprés (2.1), et donc si on a choisi Y de telle fagon que B(y,0,0) > 0
pour y € Y (ce qui est possible grace a (2.1)),

1 _ 3
Ik(y) ~ = 5 B(y’ 0, 0)6k > ll% ~ E B(ya 07 O)k1/4 pour A Y.

Remarquons que de méme, pour tout o € N* 71,

| 0* L) | < CkM*.

&

v

3
P 3
i
i
B
\
«§
is

k—1
Nous posons alors, pour k, assez grand, y,(y) = — ), I;(y); nous avons:
j=ko
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3 3
’Yk(y) ~ _2—6 B(ya 09 0)k5/4 = % B(ya 03 0)81:5/3 s et

| v, () | < C,6;,°° pourtout oeN""1,

et il existe donc une fonction ye B®(R""!xR,) telle que pour tout
3
k> ko, 1) = 8710, 8) et que ¥(y,0) = 5 B(», 0,0) > 0 pour ye Y.

2. Construction des suites f, et g,. Comme 6, 2 [, tend vers 0 quand k
tend vers l'infini, la fonction w fournie par la proposition 2.3 vérifie

2.7) 1im< sup |wk(y,t)—1|>=0;

k-0 \Y X16k+1,8k-1[

nous utiliserons donc la détermination principale du logarithme de w, qui
possede les mémes propriétés de régularité que w; nous posons

fr = ReLogw, — ReLog w1 + ¥ — Yi+1 + Re @ — Re @4

g = Im Logw, — Im Logwy .y + Im ¢, — Im @4 .

Nous avons donc (cf. (2.3)) hi/h,+; = exp [ fr+1ig:], et grace au choix de y

et a (2.7) nous obtenons la premiére moitié de (2.4) soit lim <sup | fuly, m) | )
Y

k— o0
= 0. De plus, il est facile de vérifier (2.5) sur les formules ci-dessus défi-
nissant f, et g;.

3. Construction de la suite e,. Compte tenu de ce qui précéde, il ne nous
reste plus qua montrer la minoration de 0,f, (deuxiéme moitié de (2.4))
et (2.6). Mais (2.6) découle de (2.4) parce que | i, (3, t) | = | h(y, t) | équivaut

3
a fi(y,t) = 0 et que k%I, <~ ) k”“) tend vers D'infini avec k.

En reprenant I'expression de f, ci-dessus, calculons-en la dérivée par
rapport a t

0fx = 6k_2 Re (Owi/wy) — 8k_+21 Re (OsWi+1/Wi+1)
+ 0, Re o, — 0, Re @ 4 -

Les deux premiers termes sont O3, %) lorsque k tend vers linfini (cf. (2.7));
pour estimer les deux autres, on écrit, grace a (2.1)

§1k17k2 9. Re @(y, 1, 8) = — 2(t—B)B(y, 5~ 1(t—$5), )
— 5t —8)*0,B(y, 8~ 1(t—3), 5)
< — Bo(t—9)
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pourvu que |y — yo |, 8 *(t—0J) et & soient suffisamment petits. On obtient
donc

0.f1(y, 1) = ﬁosk_s(sk_t) + BOSk—fl(t"—Sk+1) + O(Sk_z)
> Bodi 3B—0ks1) + Bot—8kr1) Bii1—8x %) + 0@ ?)
=

By 5L + OB 5Lk™Y) + 08,2  (pour k—o0).

3 | .
Enfin, 8; °h ~  k? et 8, % = k" d'oi (2.4) puis (26)

Maintenant que nous avons circonscrit le lieu ou u s’annule (par (2.6)),
il faut nous assurer que (L+c,)u sannule suffisamment en ce méme lieu
pour que (L+4co)ufu soit réguliére. Pour cela, nous devons modifier les
fonctions h; .

PROPOSITION 2.5. Sous les hypothéses précédentes, il existe un voisinage Y
de y,, un entier ko et trois suites de fonctions u,€ C°(Y X 16,41, 0;—1D
a valeurs complexes et F, et Gpe C®(Y X 10z41,0kl) d valeurs réelles tels
que si l'on pose

rk(y s t) = (L+CO )uk(yn t)/ uk(y) t)
vy ) = iy, Dfver 10, 1)

on ait v, = exp [F,+iG,], et r,, F, et G, possédent les propriétés
suivantes pour k = kg:

r(y,t) et ro .0y, t) sont «plates» sur t = my, + ey)
(2.8) . "o
(ce qui signifie que toutes leurs dérivées s’y annulent ) ;
pour tout o€ N" et tout veN,
(29) _
lim sup | K'0*ri(y, t)] | = 0
k=0 \Y X180k +1,0k-1[
F k(y, mk+ek(y)) =0
2.10 k?
(2.10) et 0. Fy, 1) = ISO3 sur Y X 18,11, 6

(2.11) { pour tout ae N", il existe C, et v,eN tels que sur
Yx 141, SL I F3, 0] < Gk et |Gy, 1) | < ke

Démonstration : en deux parties.

1. Construction de la suite u,. Nous choisissons les fonctions u,(y, t) par la
formule u, = h(1+¢,) avec
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8k(y> t) = 8()’5 lk_ l(t_ak): 8la:)

ou la fonction &(y, 1, 8) est 4 choisir. Pour obtenir (2.8), il faudra que pour
tout a e N”,

OFLUL+colm/h] + o[ Ley/(1+2,)] = 0

surt = my, + ey) et sur t = m,_; + e,_,(y). Si nous demandons de plus a
la fonction ¢ de s’annuler sur les fermés ®, et ¥, définis ci-dessous, ces
conditions sont encore équivalentes a la suite d’équations suivante:

pour toutj > 1 et tout k > k,,
dley,1,8) = ©; () sur
2.12) O = {09 |ye .8 = 5, et © = I; {m+e(y)—5,)
01e(y, 7, 8) = {; () sur
Vo= {0,%0)|ye¥,8 = 8, ot v = I (my_, +e,_,()—5,)}

ou les fonctions @; () et V; «(y) s’expriment en fonction des dérivées de
(L+co)h/hy et sont donc a décroissance rapide en k ainsi que toutes leurs
deérivées grice a (2.2). Nous demanderons aussi & la fonction ¢ de vérifier

213 { pour tout [ > 0 et tout j > 0, ainsi que pourj =1 =0,
(2.13) et pour tout k > ko, 0105 6(y,7,8) = 0 sur @, et ¥, et

(2.14) 05€(»,7,0) =0 pourtout [>0.

11 existe une fonction € € C*(R* "1 x R x R) vérifiant (2.12), (2.13) et (2.14):
elle nous est fournie par le théoréme d’extension de Whitney [26] appliqué
au fermé

{0,,)eR"' xR x R[5 = O}u(u @k)u<u Tk).
k

kZko Zko

Les conditions de compatibilité requises pour pouvoir utiliser ce théoréme
sont trivialement vérifiées puisque les fonctions ©;,x €t ;. sont & décrois-
sance rapide en k ainsi que leurs dérivées, et que [ 1(mk+e,,(y)—8k)

1
= — % + O(k™ ) et lk_l(mk—l +ek—1(y)_8k) = 3 + O(k™") (pour k— c0).
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T
A

e

{6=0} -

+

_2/3
///
/ k+1 (Dk

FIGURE 2.1.
Le fermé auquel on applique le théoréme de Whitney.

\§\§
N
X

2. Construction des suites F, et G,. Les équations (2.12) ont été choisies
| pour que r, et r,, soient plates sur ¢t = my, + e(y): la propriéte (2.8) est
}  donc acquise. De la condition (2.14) nous tirons que pour tout oe N" et
{ toutveN,
| 15 hm( sup |kva°‘ek|> =0,
: k= \Y X]8k+1,08k-1l
f % et par conséquent, on obtient (2.9) en utilisant (2.2) et la formule

o°ri = O[(L+co)m/m] + o[ Lew/1+&)] -
4 L’estimation (2.15) permet aussi d’utiliser la détermination principale du
logarithme de 1 + €; nous posons donc:

F, = f, + ReLog(14+¢) — ReLog(14+¢,4,)
G, =g, + ImLog(1+¢,) — ImLog(14+¢&.+1).
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Nous avons alors v, = exp [F,+iG,], et F, et G, vérifient (2.10) et (2.11)

grace a ces formules qui les définissent et 4 (2.4), (2.5), (2.6), (2.13) (=1=0)
et (2.15).

24. CONSTRUCTION DES FONCTIONS # ET a

Par un calcul élémentaire nous voyons que pour y e Y et k assez grand,
3 3 .
Ops1 < O — 7 b <my + efy) < 8., + 1 l+1 < 8. Nous choisissons alors
une fonction 4 valeurs réelles X € C(R) telle que

x(t) =1 pour zte [—3/4,3/4],
suppx < [—1,1] et x(t)e[0,1] pour te[—1,1];

puis avec x,(1) = x(I; (t—8&;)) nous posons

3 u(y, 1) = k;k XDy, 1) pour (y,)eY x ]0,8,[,
u(y,t) = 0 pour (y,t)eY x 1—64,, 0]
a(ya t) = - (L+CO)u(y9 t)/u(ya t) pour u(ya t) # 0 ’
aly,t) = 0 pour u(y,t) = 0.

lukﬂl——L\

____,_/;,/"‘-4. TroTcatures _\_R_
3

3
&+1 D} 5, _Zlk D} my + efy) D} Sevr + Zlk+l D{ 6,

FiGure 2.2.
Profils des fonctions u, et Ug+g POUTr L€ [0,44,6,].
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‘ Régularité de la fonction u. Remarquons d’abord qu’une telle fonction u
est C°. En effet, pour t > 0, u est somme d’au plus deux termes non nuls
- qui sont des fonctions C*®, et u est donc C* dans Y X 10, &,[; pour voir
que u est C* au voisinage de t = 0, il suffit de montrer que pour tout

o e N,
>=0.

Or tous les éléments ayant servi a la construction de u, se comportent
comme des puissances de k ainsi que leurs dérivées; on peut donc écrire

0" (Xt )

(2.16) lim ( sup

k=00 \Y X18k+ 1,0k -1

| 0%(xattr) | < C k" exp (—vx+Re @) .

. 3
Mais — 7,(y) ~ — % B(y, 0, 0)k>/4, et

4
| Re ¢ | < 3 8¢ 212 B(y, 0,0) < kM*B(y, 0, 0)

pour k suffisamment grand et ye Y; comme [(y,0,0) >0 pour yeY,
cela donne (2.16).

Détermination des supports des fonctions u et a. D’apres (2.10), nous
savons que | vy, t) | < 1 pour t € [0, 41, m+e(y)[, et comme dans ce méme
domaine u = .y + Yk, SOIt U = uy (1 4+%0;), on en déduit que u ne
sannule pas; on démontrerait de méme que u ne s’annule pas pour
te Imesq+ers+1(y), 0x+ 1], ni donc dans le domaine

| D={00eY x1-8,,8,[1t>0 et t #m + efy) pour tout k > ko)

qui est dense dans Y x [0, §,[; il en résulte que suppu = Y x [0, 0oL
{ et par deéfinition de a, on a supp a < supp u. Pour obtenir (1.1), il ne nous
§ reste plus qu’a montrer que a est C* dans Y x ]—§,,, &,[-

| Régularité de la fonction a. Dans le domaine D défini ci-dessus, u # 0
}  donc la fonction a est définie par la formule a = — (L+cq)u/u; il en résulte

§ que aest C* dans D. Pour ¢ voisin de m; + e(y), 4 = u,,, + u,, donc pour

] Uty +uw #0,a = —(Ltcou/u = — (Fys 1Upr 1 +1e) [ (Ups 1+ )3 en
 particulier, ‘

a = — (rese1+r0)/(1+0;) si t<m + ey) (<] v <1)
a= — (10 )+ si o t>m + ay) (= lvg ! <1).
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Dans la premiére de ces deux formules, le numérateur est plat sur
L = m + ey) 4 cause de (2.8), et le dénominateur vérifie

Bok®

1 >1— || >
1400 > 1~ o] > 22

(my+ e(y) — t)

F
d’apres (2.10) et en utilisant I'inégalité ef < 1 + ry pour F € [ -2, 0]. L’expres-

sion (11 +7.0;,)/(1+v,) définit donc une fonction plate sur t = m, + ely),
et comme il en est de méme pour Iautre expression, nous avons obtenu
que, méme si u s’annule en certains points de t = my + ey) (ce qui
entraine que a = 0 par définition de a), la fonction a est C*® dans
Y x ]0,5,[.

Pour montrer que a est C® pour ¢ voisin de 0, il nous faut estimer
les dérivées de a sur Y x [6x+1, 6] lorsque k tend vers Iinfini. Pour cela,
nous €tudions a successivement sur les quatre intervalles schématisés sur la
figure 2.2.

3
L SurDyp = {008, <t<3§, _Zlk},ona
k? 3 B
Fk(y’ t) < BO3 (5"—2 lk—mk—ek(y)) £ — 5_00 k1/4

pour k assez grand d’aprés (2.10). En utilisant aussi (2.11), on obtient que
pour tout a € N” et tout ve N,

lim (sup]k"@“v“) =0.
k= 1
Dy

Sur Di, u et a sont données par les formules u = u,,, + Yk €t
a = — (L+cy)u/u, ot ' *

t—39
a = — l:(L+CO)uk+1 + X L+co)uy, + 11 X’( ] k) uk:'/u

k

(-3
= — (rk+1 + [Xkrk + Ity ( ] k)] Uk)/(l + kak)-
k

On en déduit, 4 l'aide de I’estimation précédente et de (2.9) que pour tout
a e N”,

lim(supla"al) =0.
k- 1 '

k
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2. Sur D2 = {3, 1) & — %lk <t <m+ ey)), on a Fi(y,t) <0 d’apres
(2.10) dou |v, | < 1. Comme u = W4y + U 7 0, on peut alors écrire
a = — (Lt+coufu = — (Trrrthor 1 +7) [ (e 1 + %)

= — (rpe1+r0n) /(1 +v),

et toutes les dérivées d’une telle expression peuvent étre estimées par des
sommes de puissances de k avec des coefficients de la forme (0%ry+ y) /A +v).
Mais grace a (2.10)

2

o1 Bok
11+l =21—|vnl= mln{E,BTOZ—(mk+ek(y)— )}

F
car ef <% pour Fe]—oo, —1] et e <1 + 4 pour Fe[—2,0], et le
théoréme des accroissements finis donne pour (y, t) € D}
| (aark(+ 1)(ya t)) / (mk+ek(y)_t)v |
< sup {| amHirk(+1)(y: nl1(t)eDy et |B]<vV}

puisque 74 est plate sur t = my + e(y) (cf. (2.8)). On obtient donc en
utilisant (2.9) que pour tout o € N”,

k 2

lim (suplé“al) = 0.

3
3. Sur D ={nt)|m + ely) <t <84y + i le+1} on procéde comme

sur D? en échangeant les roles de u, et u,,,, et donc en utilisant v, * 4 la
place de v,.

3 B
4. Sur Df = {(n, 1) | 8ks1 + Zlk“ <t < 8} on procéde comme sur Dj

en échangeant les roles de u; et u;. 4.

CHAPITRE 3: TECHNIQUES D’UNICITE

Dans ce chapitre, nous allons montrer comment prouver certaines iné-
galités de Carleman, et comment les utiliser pour obtenir I'unicité de Cauchy.

En guise d’exemple, nous donnons une démonstration compléte pour le cas
elliptique (3.1).

%
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