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où les 0Cj(x) et les ß;(x) sont à valeurs réelles. Pour 1,1, soit

yt(x) la solution du système

yk(x', 0) xk
n— 1dny,c+ Z 0.
i= i

dxSi de plus nous posons £(x) comme la matrice jacobienne

admet l'unité pour déterminant en (0,..., 0), nous pouvons utiliser (y, t)

comme nouvelles coordonnées locales; nous obtenons que L + c0 (.Lt)ôt

+ Yj(Lyk)dyk + c0 est de la forme 3, d'où le lemme.

Chapitre 2: Construction d'un contre-exemple

Dans ce chapitre, nous proposons une démonstration du théorème 1.1.

La méthode utilisée pour obtenir ce résultat est désormais classique; elle a

été mise au point successivement par Cohen [8], Plis [18], Hörmander [10],
Alinhac-Zuily [3]. Ici, nous suivrons de très près la démonstration du théorème

1 d'Alinhac [1] (qui, pour le premier ordre, est un cas particulier du
théorème 2.2 ci-dessous avec k1 0 et k2 1).

La technique consiste à choisir une suite de valeurs positives 5fc tendant
vers 0, puis à construire par les méthodes de l'optique géométrique des

fonctions uk, pour cp(x) voisin de cp(x0) + ôfc, qui soient approximativement
dans le noyau de L + c0 : c'est ce que nous faisons en 2.2. Puis on ajuste
la taille de ces fonctions afin de pouvoir les recoller pour obtenir une
solution u définie au voisinage de x0 et telle que u et a — (L + c0)u/u
soient régulières: c'est l'opération effectuée en 2.3, les dernières vérifications
étant reportées en 2.4.

Afin de limiter la complexité de la construction, il convient de choisir un
bon système de coordonnées. C'est ce par quoi nous commençons.

2.1. Nouveau choix de coordonnées

Plaçons-nous dans les hypothèses du théorème 1.1 et fixons le voisinage Q.
Grâce au lemme 1.3, nous pouvons déjà trouver des coordonnées locales
(y, t)e R"~1 x R dans D (quitte à restreindre ce dernier) telles que
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1- *o (0, 0)

2. <p(x) - cp(x0) t
3. L+ c0 dt+ ib(y, t)• dy+ c(y, tà un facteur non nul près.
De plus, en utilisant l'hypothèse x0eS3, on peut trouver un point
x3 — (>'3, 0) e ß tel que rg £f(x3) 3. Nous pouvons alors écrire notre
opérateur L+ c0sousune forme encore plus précise que celle donnée par le
point 3. ci-dessus, comme le montre le lemme suivant.

LEMAŒ2.1. Supposons que L + c0et querg^(*3) > 3 pour un point x3sSR"1 x {0}. Alors, pour tout voi-
sinage Q de x3, il existe un point x2 e Q n S, un voisinage co de x2et des entiers et k2>0 teet bl(y,t)- bi(y, 0) + t 2b2(y, t) dans co avec (bfix,), b2(x2)) linéairement indé-
pendants.

Demonstration. On peut déjà supposer que il est suffisamment petit pour
que le rang de reste supérieur ou égal à 3 dans ß n

Soit kx~inf {k>0I 3x e ß n S: 0* b(x) * 0}. Alors k, < 00 car
rg i?(x3) > 3. Soit donc x1un point deûnS tel que dkl ^ 0 et soit
co c ß un voisinage de x, tel que df b(x) * 0 pour tout xetonS. Dans co
on a b(y, t) tkibl(y,t) avec bfix)

Soit maintenant k2 M{k>0\3xeo>nS:d!etsoient
hneairement indépendants}. Alors k2 < co car rg ^ 3. On peut donc
écrire dans co, bl(y, t) b}(y, 0) + t">b2(yt)et il existe un point x2 e co n S
tel que h1(x2) et b2(x2) soient linéairement indépendants.

Ce lemme nous permettra donc de déduire le théorème 1.1 du théorème
suivant (que nous démontrerons aux paragraphes 2.2, 2.3 et 2.4).

Théorème 2.2. Supposons que L +ib(y, c(y, t), queb:R" x R-> R" 1 et c:R"1 x R-> C sont des fonctions C00 dans
un voisinage ß de x0(y0,0)et qu'il existe des entiers ^ 0 et
k2>0 tels que b(y,t)bfiy, t) et bfiy, t) bfy, 0) + tk> b2{y, t)

dans ß avec (bfixo), b2(x0)) linéairement indépendants. Alors il existe un
voisinage co de x0,ue Cœ(a) et ae00)vérifiant (1.1).

2.2. Optique géométrique

Nous dirons 1ue w e ßm(R" x R+ si w(x, 8) est une fonction continue surR" x [0, 00 [, indéfiniment dérivable en x pour 8 > 0 et dont les dérivées
restent bornées quand ô tend vers 0.
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Proposition 2.3. Sousles hypothèses du théorème il existe au

sinage de (y0,0,0) deux fonctions cp et ß e CfR^ xdCxR) telles que

Re cp(3£, ô) - 5il+fa-1(t-S)2 ß(y, 8) pour S > 0

(2.1)
ß(3>o,0,0) ß0 > 0

et telles que pour toute fonction y eB<R"1 x R+ existe une fonction

w(y, s,e) e B°°(R"~1 x R x R+ telle que w{y, 0, 0) 1 et

Va e N", Vv eN,35cli v : pour 0 < 8 < 8a v et

pour (y, 8 ~ 2(t- 8)) dans un voisinage fixe de (y0, 0)

(2.2) ^dépendant de a et v)
| d«[{L+c0)h/h]| < 2 Sv

où on a posé :

h{y, t, 8)

w(y, 8~2(t—8), 81/3) exp [-8"5/3 y(y, 8) + h-A~kl~kl cp(y, t, 8)]

(dans (2.2),d* désigne la dérivation d'ordre a par rapport à y et t).

(2.3)

Démonstration : en trois parties.

1. Construction de cp et de ß. Choisissons Po s R" 1 tel que bfix^) Po ~ ^

et b2(x0)-r\0 < 0 (ce qui est possible grâce à l'hypothèse d'indépendance).

Il existe alors une fonction Cm à valeurs réelles vß x telle que

bfiy, 8) • d^fy, 8) 0

fyMyo.O) "Ho

et on pose :

Wy. t, 8) | b(y, r) • éyW(y, 8

<p(y, t, 8) v|t, 8) + h|p(y, 8).

On calcule alors que :

Wy> 8,8) o,
d,v|/2(y, 8, 8) b(y, 8) • ö/l/ßy, 8) 0 par choix de \\>i, et

bf^2(y, t, S) ôth(y, t) • ô/h(y, 5)
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kitk' ~ 1b1(y, 0) + (k1+k2)tkl+k^1b2(y,t) + tk<+k%b2{y,t) 3»v|'10', 5)

-k11kl~18k2b2(y, 8) + (k.+k^^'^iy, t) + tkl+k2 ôtb2(y,

__ gfcl+fe2" "{-kl

+ 5

Sy^lliy, S)

biiy? 5) + (&i + &2)
g

ki +k,2 ~ 1

b2(y, t)

ki +k2

dtb2(y, t) fyK (y, s) •

Par la formule de Taylor avec reste intégral, on obtient donc

Re <pO, t,8) \| r2(y,t,8) — +fc2"x(r — ô)2 ß(y, 8~l(t-8), 8)

OÙ

ß(y, a, 8) (0-1) -^(l+Gaf'-^S)

+ (k, + k2)(1 + 0a)k'+'k2 -%(y, 8(1 + 0a))

+ 8(1 + 9o)k'+k2 ôtb2(y, 8(1 + 0a)) ' fyKCc, §)d0

ce qui donne (2.1) puisque ß(yo,0,0) - - 0) • q0 > 0 grâce à

notre choix de r|0.

Notons que

Lcp(y, t,8)- i8"+fe-1(t-8)28(y, • 3,ß(y, S'^f-S), 8)

par (2.1), et si on pose s S—2(t — 8),

L [s-^-^-^cp (y,t,8)] - • Ôfi(y, 8s, 8).

2. Construction de w. Définissons l'opérateur M par la relation (Mw/w)
((L+c0)h/h) où /z est donnée par (2.3); on calcule alors que

Mw 5"2 [3sw + eiVw] avec iVw iB • 3 w + Cw

où B et C sont des fonctions de l'espace £°°(Rn ^RxR+J définies par:
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B(y, s,e) e5b(y,s3+e6s),

C(y, s,s) - ibiy, s3 + s6s) • dyy{y,e3)- ie2s2b(y, s3 + s6s) • dy$(y, s
3s,e3)

+ s5c(y, e3 + e6s).

Définissons une suite de fonctions Wj de l'espace ß°°(R" 1 x R x R+

par les formules (toutes ces fonctions sont bien définies sur un même

domaine)

w0(y, s, s) 1,

Wy+iCy, s, s) - Nwj(y, r, s)dr, pour j > 0

Une solution de (2.2)-(2.3) est alors obtenue formellement en posant

w £ dwj. Choisissons donc une fonction de troncature, c'est-à-dire une

fonction x e C°°(R) telle que x 1 sur [0,1], x 0 sur [2, +oo[ et

X(e) e [0, 1] pour 8 g [0, + oo[. Nous posons

My, s, e) X s, 8),
o

et nous allons prouver dans la troisième partie de cette démonstration

qu'il existe une suite de réels positifs Xj telle que cette formule définisse

une fonction w de l'espace ß°°(R"-1 x R x R+) qui vérifie de plus (2.2)-(2.3).

3. Construction de la suite Xj. Nous allons montrer qu'il suffit que la suite

Xj croisse assez vite pour que l'on ait les deux propriétés précédentes.

Nous pouvons déjà imposer que Xj+1 > 2Xj de sorte que pour tout s > 0 fixé,

les %(XjS) soient tous égaux à 1 ou à 0 sauf au plus l'un d'entre eux.

Soient k un voisinage compact de y0, s0 > 0 et s0 > 0 tels que les

fonctions Wj soient bien définies dans K k x [ — s0,s0] x [0, s0]. Pour
obtenir que w g 5co(Rn_1 x R x R+), il suffit d'imposer pour tout Je N,

Xj > (J+1) sup {| DaWj{y, s, e) | | (y, s, e) g K, | a | < J et j ^ J + 1}

où Da désigne la dérivation d'ordre oc en y et s. En effet, si (XJ+1)~1

^ 8 ^ (\j) 1,

j
My, s,e) X s> 8) + zJ+1%(h+iz)wj+i(y, s, 8)

j=o

donc si 0 < | a | ^ J, (XJ+1)~1 ^ s ^ (Xj)_1 et (y, s, e) g K,

| D"w(y, s, e) | < £ s | D«Wj(y, s, s) | ^ 1

j=i



14 X. SAINT RAYMOND

Il en résulte que w6ß00(R""1xRxR+) car w est continue sur K comme
somme d'une série uniformément convergente de fonctions continues sur K.

On a w(y, 0, 0) 1, et si on a choisi le compact K assez petit, on

a aussi | w | > — dans K (un tel compact K pourra être choisi après coup,

une fois que les Xj auront été fixés) ; il en résulte que | (Dyw)/w | reste
inférieur à 2 pour s ^ (X^)-1. Comme on peut écrire D\Nwj/w) comme une
somme (algébrique) comportant au plus (|a| + l)! x 2 termes de la forme
[(DpATw7-)/w] [(DY1w)/w] [(DYMw)/w] (avec oc= ß + Yi + + Y|a|, par la
formule de Leibniz), on obtient une majoration

| D°(NwjM|< (|a| +1) 21-1+ 2
sup {| D*Nwj | | ß < a}

pourvu que e < (^|a|)_1- Si donc nous demandons pour tout que

Xj > (/+1) 2J+2sup{| D"NWj{y,s,s) | | (y, s, s) e K, | a | ^
et j< J+ 1}

alors pour (A,J+1)_1 ^ e <

Mw s7"5 [iVwj( 1 — %(Xj+ e)) + NwJ+1ex(Xj+1e)]

d'où | D"(Mw/w)|=% 2eJ~6 pour | a | < (et (X.J+1)_1 ^ et
(y, s, s) e K). Cette majoration étant obtenue pour tout J, on peut remplacer
la condition (!XJ+1)~1 ^ s ^ (À,,)-1 par 8 ^ (XjJ"1.

Pour aeN" et veN fixés, on obtient, en posant J 6(1 -h|oc|) + 3v,

que pour (y, s, s) e K et 8 ^ (Xj)_1,

| da((L + c0)h/h) | | 8~6tXtDa(Mw/w) | ^ 2e3v 2ÔV.

2.3. Ajustement des fonctions uk

Nous posons

Puis nous considérons les fonctions hk(y,t) h(y,t,dk) définies par (2.3);
ces fonctions vérifient (2.2) pour k suffisamment grand et t e ]8fc+1,

pourvu que §k2lk tende vers 0 lorsque k tend vers l'infini, ce qui est bien

En vue de poser u hk + hk+1 pour t voisin de mk et de montrer que
a — (L + c0)u/u est C00, il nous faut déterminer le lieu d'équation hk+1

— hk (qui est contenu dans le lieu d'équation \hk+1\ \hk\).

le cas puisque 8fc
2 lk ~ — k 1/4.
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Proposition 2.4. Sousles hypothèses précédentes, il existe un voisinage

de y0, une fonction yeB°°(R"-1xR+)

y(y, 0) > 0 pour yeY, et trois suites de fonctions ek e C°°(R" fk

et gkeC^CR"-1 x R) à valeurs réelles telles que les fonctions hk(y,t)

h(y, t, Sk) définies en (2.3) (avec la fonction y ci-dessus) vérifient

hjhk+1 exp[fk+i9k] avec

(2.4)

(2.5)

(2.6)

lim sup I fk{y, | 0,
fc^oo V Y

et dtfk{y, t) >
ßok2

sur Y x ]St+1, <\.[ ;

pour tout a e N", il existe Ca et v„eN tels que sur

Y x ]5t+1, ôfc[, | Ô"fk(y,t) | < CX* et | t) | < Cafcv° ;

I K(y,t)|| hk+1(y,t)|o ek(y)

et ek(y)o(lk)(pourk^co)

Démonstration* Posons

<pk(y, t) _fc2<p(y, t, 5J et wk(y, t) w(y, 8(2(t-6k), 6f3) ;

les constructions s'effectuent en trois temps.

1. Construction de y. Nous allons choisir la fonction y de telle sorte que

Log | hk(y,mk)| - Log | hk+1(y, | 0

du moins si on néglige l'influence de w dans la formule (2.3). Nous posons donc

Ik(y) Re (pk{y, mk)-Re(pfc+ i(y, mk)4.„ 1

ß(y> o, 0) + o(i)
ç

sk5 ik + — Ôfc+j ik (pour k—> oo)

d'après (2.1), et donc si on a choisi Y de telle façon que ß(j/, 0, 0) > 0

pour y e 7 (ce qui est possible grâce à (2.1)),

Ik(y) ~ -1
ß(y, 0,0)55 IIß(j,, o, 0)fc1/4 pour yeY.

Remarquons que de même, pour tout a g N" -î

|3«Jt(y)K Cafc1/4.

k- 1

Nous posons alors, pour k0 assez grand, yk(y) — £ l/OO î nous avons :

j ko
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Y*0') ~ ~ ß(y. 0, 0)k5'4 A ß0,; o, 0)6* 5'3, et

I daJk(y) I ^ Cadk5'3 pour tout a e Nn_1,

et il existe donc une fonction y e Bœ(R"-'xR+) telle que pour tout

k> k0, yk(y)8k5/3y(y, 6*) et que y{y, 0) ^ ß(y, 0, 0) > 0 pour e

2. Construction des suites fk et gk. Comme àk2 lk tend vers 0 quand k
tend vers l'infini, la fonction w fournie par la proposition 2.3 vérifie

(2.7) lim sup I wh(y, t) - 1 | 0 ;
fc-> oo \Y x]öfc + i,8fc-i[ /

nous utiliserons donc la détermination principale du logarithme de w, qui
possède les mêmes propriétés de régularité que w ; nous posons

fkRe Log w* - Re Log wk+1 + yk - yk + 1 Re <p* - Re cp*+1

gkIm Log wk - Im Log wk+1 + Im cp* - Im <p*+ *.
Nous avons donc (cf. (2.3)) hk/hk+1 exp [A + igJ, et grâce au choix de y

et à (2.7) nous obtenons la première moitié de (2.4) soit lim I sup | fk(y, mk)
k~> oo

0. De plus, il est facile de vérifier (2.5) sur les formules ci-dessus
définissant fk et gk.

3. Construction de la suite ek. Compte tenu de ce qui précède, il ne nous
reste plus qu'à montrer la minoration de dtfk (deuxième moitié de (2.4))

et (2.6). Mais (2.6) découle de (2.4) parce que | hk+1(y, t) | | hk(y, t) | équivaut

à fk(y, t) 0 et que k2lk ^ k1/4^j tend vers l'infini avec k.

En reprenant l'expression de fk ci-dessus, calculons-en la'dérivée par
rapport à t

dtfk S/T2 Re(3sw*/w*) - 8kfk Re{dswk+1/wk+1)

+ d,Re<p* - d, Re <p*+1.

Les deux premiers termes sont 0(6 k2)lorsquek tend vers l'infini (cf. (2.7));

pour estimer les deux autres, on écrit, grâce à (2.1)

51-*!-*, ôf Re ^ f> s) - 2(t—6)ß(y, ô'Ht-S), 6)

_ 5 - _ 5)25CTß(y, 5 - l(t- S), ô)

^ ~~ ßo(^ 8)
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pourvu que | y- y0|,S"2(£-8) et 5 soient suffisamment petits. On obtient

donc

d,fk(y, t)> ß0S*"5(8fc-t) + ßoSfc+Vt-Sfc+i) + 0(8(i 2)

ï? ßo8t 5(8t—8t+1) + ßo(f—8fc+1)(8^+!— 5) + 0(bk

S* %?>k5k + Oß^yr1) + 0(St"2) (pour fe^co).

Enfin, ôt-% ~ ^k2etS*"2 k3'2,d'où (2.4) puis (2.6).

Maintenant que nous avons circonscrit le lieu où u s'annule (par (2.6)),

il faut nous assurer que (L+c0)u s'annule suffisamment en ce même lieu

pour que (L+c0)u/u soit régulière. Pour cela, nous devons modifier les

fonctions hk.

Proposition 2.5. Sous les hypothèses précédentes, il existe un voisinage Y
de y0, un entier k0 et trois suites de fonctions uk g Cco{Y x ]5fc+1, 8fe-iD
à valeurs complexes et Fk et Gk g C°°(7 x]5fc+1, 8fcD à valeurs réelles tels

que si Von pose

rk(y, t) {L+c0)uk(y, t)/uk(y, t)

vk(y, t) uk(y, t)/uk+1(y, t)

on ait vk exp (Fk + iGk], et rk, Fk et Gk possèdent les propriétés
suivantes pour k ^ k0:

rk(y, t) et rk+1(y, t) sont «plates» sur t mk + ek(y)

(ce qui signifie que toutes leurs dérivées s'y annulent) ;

pour tout a g N" et tout v e N,

(2.8)

(2.9)

(2.10)

(2.11)

lim I sup I kvdark(y, t)\ 0 ;
le-* co \yx]8k+i,ôk-i[

Fk{y,mk + ek(y)) 0

et dtFk(y,t)> sur 7x]5l+1, 8k[ ;

pour tout a e N71, il existe Ca et va g N tels que sur
Y x ]Sfe+ x, 5fe[, | d«Fk(y, t) | ^ CakV(t et \ d«Gk(y, t) \ ^ Cak>

Démonstration : en deux parties.

1. Construction de la suite uk. Nous choisissons les fonctions uk(y, t) par la
formule uk hk(l + ek) avec
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%(y, t) e(y, 8k)

où la fonction e(y, t, 8) est à choisir. Pour obtenir (2.8), il faudra que pour
tout a e N",

^[(L+Co)V^] + 3»[L8jA1 + 6»)] 0

sur t mk+ ek(y) et sur tmi_1 + Si nous demandons de plus à
la fonction e de s'annuler sur les fermés et définis ci-dessous, ces
conditions sont encore équivalentes à la suite d'équations suivante:

(2.12)

pour tout j>1 et tout k^k0,
Sis0>, t, 8) k(y) sur

{(y>T>5)I y6Y,8 8ketT lk1(mk + ek(y)-8k)}
d{ e(y, t, 8) \|/Jit(y) sur

{Ce, t, 8) | ye Y,8St et x /^K-i +e^iOO-S,

ou les fonctions <pjjy)etv|/j, tCy) s'expriment en fonction des dérivées de
(L+ c0 )hjhket sont donc à décroissance rapide en k ainsi que toutes leurs
dérivées grâce à (2.2). Nous demanderons aussi à la fonction s de vérifier

(213) i pour tout l>0et tout 7" > 0, ainsi que pour j / 0,
et pour tout k^ k0,d{d\ e(y, t, 8) 0 sur <l>k et *Pt, et

(2-14) S s s( y,t,0) 0 pour tout > 0.

fi existe une fonction e e C^R""1 x R x R) vérifiant (2.12), (2.13) et (2.14) :

elle nous est fournie par le théorème d'extension de Whitney [26] appliqué
au fermé

{(y,t,8) e R""1 x R x R | 8 0} u (u<0 u
\k>ko J \k^k0 J

Les conditions de compatibilité requises pour pouvoir utiliser ce théorème
sont trivialement vérifiées puisque les fonctions <phk et \Jfjtk sont à décroissance

rapide en k ainsi que leurs dérivées, et que lk1(mk + ek{y)—8k)

2 i~ 3" + *) et lk 1{p^k-i+^k-iiy)—= - + 0{k~1) (pour 00).
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Le fermé auquel on applique le théorème de Whitney.

2. Construction des suites Fk et Gk. Les équations (2.12) ont été choisies

pour que rk et rk+1 soient plates sur t mk + ek(y): la propriété (2.8) est

donc acquise. De la condition (2.14) nous tirons que pour tout a e N" et

tout v e N,

(2.15) lim I sup I kvd"ek | 1 0.
k~*co \Y x]ôk+ î,5k-i[ /

et par conséquent, on obtient (2.9) en utilisant (2.2) et la formule

5% 3"[(L + c0)feA] + ôa[LSt/(l + st)]

L'estimation (2.15) permet aussi d'utiliser la détermination principale du

logarithme de 1 + s; nous posons donc:

Fk fk +ReLog (l + efc) - ReLog(l + efc+1)

Gk gk + ImLog(lH-Sft) - Im Log(l+et+1).
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Nous avons alors vk exp [Ft + iGJ, et F, et G, vérifient (2.10) et (2.11)
grace a ces formules qui les définissent et à (2.4), (2.5), (2.6), (2.13) (j=l=0)et (2.15).

2.4. Construction des fonctions m et a

Par un calcul élémentaire nous voyons que pour assez grand,
ö*+i < St - - lk< mk +efc(y) < Sj.+ 1 + -lk + 1 < Nous choisissons alors

une fonction à valeurs réelles %e C^(R) telle que

X(t) 1 pour te [-3/4, 3/4],
supp x c= [-1, i] et x(t) £ [0,1] pour r e [-1,1] ;

puis avec %k(t) y_(lk l(/ - 8t nous posons

^ Xk(t)uk(y, t) pour ]0, Sto[,

U(y' ^0 Pour (y, ]-ôto, 0]
a(y, t) — L+c0)u(y,t)/u(y,t) pour u(y, 0

a(y, t) 0 p0ur t) 0

Figure 2.2.
Profils des fonctions uk et uk+1 pour t e [8i+1, SJ
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Régularité de la fonction u. Remarquons d'abord qu'une telle fonction u

est C00. En effet, pour t > 0, u est somme d'au plus deux termes non nuls

qui sont des fonctions C00, et u est donc C00 dans Y x ]0, 5fco[; pour voir

que u est C°° au voisinage de t 0, il suffit de montrer que pour tout

a g Nn,

Or tous les éléments ayant servi à la construction de uk se comportent

comme des puissances de k ainsi que leurs dérivées; on peut donc écrire

pour k suffisamment grand et y e Y; comme ß(y, 0, 0) > 0 pour y g Y,

cela donne (2.16).

Détermination des supports des fonctions u et a. D'après (2.10), nous
savons que | vk(y, t) | < 1 pour £ g [5k+1, mk + ek(y)[, et comme dans ce même
domaine u uk+1 + %kuk, soit u uk+1(l+%kvk), on en déduit que u ne
s'annule pas; on démontrerait de même que u ne s'annule pas pour
t g ]mfc+1 + ek+1(y), ôk+1], ni donc dans le domaine

D {(yV t)eY x ]-8ko, 8ko[ | t > 0 et t ^ mk + eh(y) pour tout k ^ k0}

qui est dense dans Y x [0, ôfco[; il en résulte que supp u Y x [0, 5fco[,

et par définition de a, on a supp a c= supp u. Pour obtenir (1.1), il ne nous
reste plus qu'à montrer que a est C00 dans Y x ] — 8ko, 8fco[.

Régularité de la fonction a. Dans le domaine D défini ci-dessus, u #= 0
donc la fonction a est définie par la formule a — (L + c0)m/m; il en résulte
que a est C00 dans D. Pour t voisin de mk + ek(y), u uk+1 + wk, donc pour
uk+1 + uk 7^ 0, a — (L + c0)u/u — (rk+1uk+1 -\-rkuk) / (uk+1 + wfc); en
particulier,

(2.16) sup
yx]ôk+i,ôk_i[

I ^a(Xfe%) I ^ CJcv* exp (—Yfc + Re cpfe).

Mais - y k(y)~-^ß(y, 0,0)fc5/4, et

I Re <pJ ^ ^ 8t~5 IIß(y,0,0) < kll4f>(y, 0, 0)

a - (rk+i + rkvk)/(l + vk) si

a ~ + si

t < mk + ek(y)(<>| 1)

t > mk + ek(y) (<*> | < 1).
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Dans la première de ces deux formules, le numérateur est plat surt- mk +ek(y) à cause de (2.8), et le dénominateur vérifie

1 + Vk I > 1 — I Vk I ^
ßofc2

12 K + ek(y)-t)

d après (2.10) et en utilisant l'inégalité e< 1 + L pour Fe [-2, 0], L'expression

(rk+l+rkvk)/(l + vk) définit donc une fonction plate sur ek(y),
et comme il en est de même pour l'autre expression, nous avons obtenu
que, meme si u s'annule en certains points de t mk + ek(y) (ce quientraîne que a0 par définition de a), la fonction a est C°° dans

Y x]0,5to[.
• Pour montrer que a est C00 pour t voisin de 0, ü nous faut estimer
es denvees de asur Yx[St+1, 5J lorsque k tend vers l'infini. Pour cela

nous étudions a successivement sur les quatre intervalles schématisés sur la
figure 2.2.

1. Sur Dk {(y, t) | ô4+1 < t<ô4 — - lkj,on a

Fk(y,h—m<- h
pour k assez grand d'après (2.10). En utilisant aussi (2.11), on obtient que
pour tout a e N" et tout v 6 N,

k~>oo \ 1
Dk

lim I sup I kvdavk | 0

Sur Dl, u et a sont données par les formules u uk+1 + ikuk et
a — {L+c0)u/u, d'où

a — (L+ c0)uk+1 + %k{L + c0)uk + Ik1 %'
t — ô.

/u

i^k+i + | \krk+ lk1 x'^+

On en déduit, à l'aide de l'estimation précédente et de (2.9) que pour tout
a G N",

lim sup I daa\ 1 0.
*>k
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2. Sur Dl {(y, t) \ bk -^lk«S t< +ek(y)}, on a Fk(y, 0 d'après

(2.10) d'où | uj < 1. Comme u uk+l +# 0, on peut alors écrire

a, — (L+c0)u/u {i"k+ iFk+1 "b / (^k+i~bwk)

— (7fc+i +rA) / (1 + %) 9

et toutes les dérivées d'une telle expression peuvent être estimées par des

sommes de puissances de k avec des coefficients de la forme (darfe(+i)) / (1 + vk).

Mais grâce à (2.10)

| 1 + vkIs* 1 - | vk\ÏSmin

1 F
car eF ^ — pour Fe] —oo, — 1] et eF ^ 1 H- — pour Fe [ — 2,0], et le

théorème des accroissements finis donne pour (y, t)e Dk

I (dVfc(+1}(y, t)) / (mk + efe(y)- é)v |

^ sup {| da+%+i)(y, t) | | (y, t) e Dj? et | ß | < v}

puisque rfc(+1) est plate sur t mk + ek(y) (cf. (2.8)). On obtient donc en

utilisant (2.9) que pour tout a e N",

lim sup I ôaa | ] 0
k~~* oo V 2 /X Dk '

3
3. Sur Dl {(y, t) \ mk + ek(y) < t ^ bk+1 + -lk+1} on procède comme

sur Dl en échangeant les rôles de uk et uk+1, et donc en utilisant vkx à la

place de vk.
3

4. Sur Dk {(y, t) | 8k+1 + - lk+1 ^ t ^ 5k} on procède comme sur Dk

en échangeant les rôles de uk et uk+1.

Chapitre 3: Techniques d'unicité

Dans ce chapitre, nous allons montrer comment prouver certaines
inégalités de Carleman, et comment les utiliser pour obtenir l'unicité de Cauchy.
En guise d'exemple, nous donnons une démonstration complète pour le cas

elliptique (3.1).
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