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Now, the computation of D, — dg in the proof of theorem 10.1 shows
that, if span <L> = 4c, one has D, — dg = 4c¢ and so |A| +|B| =R
As T and A have no cut vertex, the proposition 11.12 implies that
A=SorA=L.

j’ By lemma 11.9, this means that L is alternating. Q.E.D.

§ 12. THE PATH FROM VON NEUMANN ALGEBRAS TO KNOT POLYNOMIALS

The discovery of the knot polynomials discussed here is due to Jones’
investigations on von Neumann algebras, and not to the flourishing activity
in low dimensional topology. In the light of previous work by J. Conway
on Alexander’s polynomial and of subsequent work by L. Kauffman (among
others) on Jones’ polynomial, such a genesis may seem unexpected. However
this cannot be challenged, and should indeed appear rather as a delight
of the subject than as any unpleasant awkwardness. With this point of view,
we offer some guidelines for (some of) the surprising relationships put into
light by V. Jones’ work.

FAcTORS OF TYPE Il

An involution on a complex algebra M is a conjugate linear transforma-
tion x+ x* of M such that (x*)* = x and (xy)* = y*x* for all x, y e M.
The algebra I(H) of all continuous operators on a Hilbert space H has a
canonical involution, with x* the adjoint of x, defined by <x*¢|n>
= <§&|xn> for all £, m e H. A representation of an involutive algebra M
on H is a morphism of algebras n: M — L(H) with n(x*) = (n(x))* for all
x € M. The algebra L(H) carries several useful topologies, and in particular
the weak topology, for which a sequence (x;),; of operators converges
to 0 iff the numerical sequences (<x;&|n>);; converge to 0 for all pairs
(€, ) of vectors in H.

A von Neumann algebra is an involutive algebra M with unit which has a
faithful representation m on H with (1) = id and with (M) a weakly
} closed self-adjoint subalgebra of L(H). (There are several equivalent defini-
i tions: see any textbook on the subject, for example one of [Di], [SZ],
[Tak].) A von Neumann algebra is defined to be a factor of type 11, if

(1) The center of M is reduced to scalar multiples of 1.

(2) There exists a normalized finite trace, namely a linear form tr: M — C
with tr(1) = 1 and tr(xy) = tr(yx) for all x, y € M.
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(3) The dimension of M over C is infinite.

Moreover, if M is a factor of type II, :
(4) There exists a unique normalized finite trace.

(5) For any real number d € [0, 1], there exists a self-adjoint idempotent
e € M with tr(e) = d.

(6) The trace is positive and faithful: tr(x*x) > 0 for all x e M, with
equality for x = 0 only.

(7) The algebra M is 81mple In particular, any representation of M is
faithful.

Let us add three comments. The notion of trace used in (2) may seem
slightly unusual in the context of operator algebras, but is the same as the
standard notion because we consider factors of type II, only; see [FH].
Because of (5), factors of type II, are also called finite and continuous.
Concerning (7), the following may be added under suitable separability
assumptions : Murray and von Neumann have defined for any representation
of M a multiplicity, which is a positive number (possibly infinite), and two
representations of M are unitarily equivalent iff they have the same
multiplicity.

A factor M of type II; is said to be hyperfinite if it has the following
property: for any integer n > 1, for any sequence x,, .., x, € M and for any
e > 0, there exists a finite dimensional self-adjoint subalgebra K of M such
that

dZ(ij K) < 8, j == 1, seey n

where d, is the distance associated to the norm x — tr(x*x)'/? on M. Murray
and von Neumann showed that two hyperfinite factors of type II; which can
be represented on a separable Hilbert space are *-isomorphic; the standard
notation for “the” hyperfinite factor of type I, is R. Moreover, they showed
that any factor of type II, contains a copy of R [MN]. Instead of
“hyperfinite ”, the factor R is also called “approximately finite dimensional”,
“injective ”, “semi-discrete” or “amenable”, and there is a good reason for
each of these words. A sub-factor of R is either finite dimensional or
isomorphic to R itself [Co 1] The importance of R in the theory cannot be
overemphasized.
Consider for example a countable group I', the Hilbert space [*T)

of complex functions &:T — C with ) |&(g)|? < oo, the right regular
gell

representation p: I' - L(I*(T')) defined by (p(g)€) (h) = &(hg), and the algebra
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W*[I') of operators x on 1) such that xp(g) = p(g)x for all geI'. It can

be shown that W*(I) is the von Neumann algebra generated by M9g)

for g e T, where (Mg)) (h) = &(g~ 'h). If all conjugacy classes (other than {1})

in T are infinite, then W*(I') is a factor of type II,; moreover it makes

sense to write any element in W*(I) as a (usually infinite) sum Y. z,M9),
g

and the normalised trace of such an element is z;. Assuming that T’
has infinite conjugacy classes and moreover that T contains an element a
of infinite order, we may formulate a nice exercise to illustrate property (5)
above: for any d € [0, 1], show that the infinite sum

d+ )

neZ
n¥F0

sin(dnm)

Ma")

defines in W*({I) a self-adjoint idempotent of normalized trace d (solution
in [Au}).

If T has infinite conjugacy classes and is moreover amenable, then
W*() is a model for the hyperfinite factor R, by [Co,]. Examples of
amenable groups: the group of permutations with finite supports of a
countable set, or any solvable group.

~ To cut a long story short, Murray and von Neumann knew of two non
isomorphic factors of type II;, namely R and W*T) for T the non abelian
free group on two generators [MN]. J. Schwartz established the existence of
a third one twenty years later [Sc], and D. McDuff showed there are
uncountably many [McD]. During the 1970’s, A. Connes made several
break-throughs in the knowledge of factors; for a review of the subject
before 1980, see [Co,]. By then, it was reasonable for V. Jones to embark
in the study of relative problems: understand subfactors (of type 1II,) in a
given factor of type II; .

THE INDEX

Let M, = M, be a pair of factors of type II,. It is natural to look
for invariants of these data, with respect to conjugacy of M, by (possibly
inner) automorphisms of M, . For the present discussion, the most successful
invariant is the index [M,:M,]e[l, co]. Its definition appears in [Jo,]
and [Jo,]; see also below.

Once the index is defined, the most obvious problem is to compute
exactly its possible values. If M, is the hyperfinite factor of type II,
then the set of possible values [M, : M,] consists of
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a continuous spectrum [4, 0] ,

a discrete spectrum {4 cos*(n/n)}, =3 4 s, ... -

This was quite a surprise at the time, as continuity is so often the rule
for objects defined by M, . (If the factor M, is not hyperfinite, our know-
ledge is fragmentary and the possible values for [M, : M,] may constitute a
proper subset of the spectrum just described. See [PP].)

Let us now define the index and indicate some steps in the proof of
Jones’ result about its spectrum. Given a pair M, ¢ M,, there exists a
conditional expectation e, : M; — M, which is a projection such that e,(axb)
= aey(x)b and tr(ey(x)) = tr(x) for a,be M, and xe M,. In fact both
e; and elements in M, may be looked at as operators on the Hilbert
space L?*(M,,tr) obtained by completion of M, for the scalar product
<x|y> = tr(x*y); then e; is the orthogonal projection of M, onto M,,
and xe M, acts on L*M,,tr) as the extension of the multiplication
V> Xy

Thus it makes sense to consider the von Neumann algebra M,
generated by e; and M. With one exception which is precisely the case in
which [M,:M,] = oo, the algebra M, is again a factor of type II,.
In the later case, the definition of the index is

1

[M,:M,] = tro(ey)

where tr, denotes the trace on M,.
As M; < M, is again a pair as above, the same construction may be
iterated, and one obtains a tower

MycMic..cM,cM,,, = <M,,e,> c ..

of factors of type II;. A basic fact is that the e;s satisfy three types of
relations

idempotence: e? = e;,
braiding : e; 16; = [M,:My] le;,
commutation: ee; = eje; if |i—j| > 2.
Also the traces on the M,’s induce a trace tr on the algebra generated
by the e;’s with

Markov property: tr(we;) = [M,:M,] *tr(w) for w in the algebra
generated by My, e, ..e;_;.
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] The invocation of Markov here refers to the property of the trace: its
= <M,,e,> is readily computable in terms of the

value on each step M, 4
There is moreover the crucial tool of

trace on the previous step M,.

positivity:  the algebra of operators generated by the /s has an involution
w — w* and tr(w*w) > 0 for any w # 0 in this algebra.

An analysis of these properties shows that, in case the index is smaller

than 4, then only the discrete spectrum.
[M;:My] e {4 cos*(T/n)}n>3

ed. (The reader will have some flavour of the analysis if he solves

is permitt
, in the usual

the following exercise: consider four unit vectors ej, .., €
3-space such that the scalar products satisfy

<e |e,> = <eyles> = <ezleg> = CosQ

<ej|es> = <eyle,> = <eyle> = 0

for some angle ¢; then cos ¢ = 1/2(\/3 —1) and ¢ can only be one of

two possible angles.)

Constructing pairs with [M;:M,] > 4 turns out to be easy (at least
when M, is hyperfinite). For the discrete spectrum, consider first a complex
number B # 0, an integer n > 1, and the algebra </, , abstractly defined

(as a complex associative algebra) by

generators: 1,81, s En—1>
2 _
& = &,
: . _ -1
relations: £81+1& = P&,
gg; = &g if |i—jl =2

If B > 0, the construction of a pair with [M, :M,] = P reduces to finding
a representation of &/ ,, = lim &/ , by operators on a Hilbert space with

n—> oo

each ¢, self-adjoint. Manipulations of linear algebra show that this can be
done precisely when P is in the spectrum of indices; see Jones’ papers,
as well as the expository [GHJ].

Note finally that the e’s and the g’s should not be confused: Given
some pair M, = M, of index B, it is of course obvious that /g , maps

onto the algebra generated by 1,e;,..e,—;. But for B in the discrete
spectrum, this map has a non trivial kernel when n is large enough.
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HECKE ALGEBRAS AND POLYNOMIALS

One of the main points to retain from above is the following: an
interesting problem with a surprising solution in the theory of von Neumann
algebras has motivated a serious study of the algebras ./ ,. Now </,
appears to be in close relationship with

(a) Artin’s braid group B, with generators oy, .., 0,_; and relations as
in § 6.
(b) The Hecke algebra of §4, that we denote from now on by H,,
to stress the dependence on ¢, where parameters fit well if
=2+qg+q "
To make this relationship transparent, we turn to another presentation of

oA, ,. Choose a complex number g with p =2 + g + g~ ' (observe that
qg# —1 as B#0) and set

T; = q5; — (1—¢g;) sothat g =

for i = 1,..,n—1. Then a straightforward computation shows that ./,
has a presentation with generators T, ..., T,,_; and relations

1) T? =@-DT:+ 4,

2 T.T;,T; = T 1 TiTiyy,

B) T.T;=T;,T;, i |[|i—j|=>2,

(S) TiTi+1Ti+ T;Tivy + TisiT; + Ty + Tiny +1=0.

The last relation was first pointed out by R. Steinberg. One has now more
precisely : ‘

(a) The assignment o;+ T; extends to a homomorphism p, from B,
to the invertible elements of &/, , (compare with § 6).

(b) £, is the quotient of the Hecke algebra H, , of § 4 by the relation (S).

For infinitely many values of g (namely g € R and g > 1, corresponding
to B > 4), Jones knew from his study of factors [Jo,] that </ , is given
with a faithful positive Markov trace tr. For each braid o€ B,, he set

1
Vg = — (2-11_,2> qe/ 2’Cr(pq(oc))

where e is the exponent sum of o as a word on the o;s. The first
theorem in [Jo,;] is that V, depends only on the link K(o) obtained by
closing o. Also V,(q) [respectively ¢q*/*V (g)] is a Laurent polynomial in g
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if K(o) has an odd [resp. even] number of components; in particular

| V,(q) can be defined for any g € C, not just for those corresponding to good
nd, most importantly for the early growth of the

| subject, a computation in the summer 1984 with the trefoil knot showed that
| v is not a mere variant of the Alexander polynomial. In fact, during a few
hours, this was thought to reveal a mistake in computations See end

of § 7 for more details on the independence of the polynomials.
One way to recover the two variable polynomial is to introduce a
family of traces on Hy o = lim H, ,, indexed by a complex parameter Zz.

Ocneanu, and exposed in §§ 5-6 above.

| traces on some &g .- A

This programme Wwas pursued by

Observe that

(1) Only one of Ocneanu’s traces
corresponding to z = q(q+ 1)~ 2.

(2) Ocneanu’s traces are positive for some values of the pair (g, z) only:

the picture appears in Wenzl’s thesis [We] and also in [J 04])-
studing knot

pass to the quotient A s, 0 namely that

(3) Tt does help to keep positivity considerations in mind when
polynomials: see § 14 in [Jos].

ADDED IN PROOF

| 1. V. Turaev has another and simpler proof of some of the geometric
| arguments given in § 11. See a next issue of this journal.

2. K. Murasugi has informed us that he has now proved conjecture C.
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