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§ 11. PROOF OF THE THEOREMS OF L. KAUFFMAN AND K. MURASUGI

Let I be an unoriented link projection in S2. We shall always suppose
that the image is connected, to avoid unnecessary complications. Observe
that all projections of an unsplittable link have this property.

We consider the chessboard associated to I'. To the shaded regions we
associate a graph £ < S? in the following way: In each shaded region we
select a point which will be a vertex of X. If two shaded regions meet at
a double point of I', we draw an edge joining the two vertices through
the double point. (If the two regions are not distinct, we will get a loop.)

We proceed in the same way with the unshaded (lightened) regions,
to obtain another graph A < S2.

Notice that, if ¢ is the number of double points of I' and if R is the
number of regions determined by I', one has R = ¢ + 2. This is an immediate
consequence of Fuler formula and the fact that the image of I' is a
quadrivalent graph.

Now, let L be an unoriented link diagram and write I for the underlying
link projection.

Let S be a state of L. We shall associate to S a subgraph Xg
of ¥ and a subgraph Ag of A in the following way:

(i) X5 contains all the vertices of X.
(i) Ag contains all the vertices of A.

(ii1) At each double point of I', one edge of A and one edge of X cross
each other. We keep the edge which joins the two regions which are
connected by the choice (marker) of S at the crossing point and we discard
the other edge.

LemMA 11.1. X5 is a deformation retract of S* — Ag and Ag is a
deformation retract of S*> — Zg. In other words, Xy and Ag are duals

in S? in the sense of J. H. C. Whitehead.

Let Iy be the configuration of disjoint simple closed curves in S?
obtained by cutting and glueing I" at each crossing point according to ‘the
indication given by S. By definition, | S| is the number of connected
components of I'.

LemmA 11.2. T’y is the boundary of a regular neighborhood of Xg
in S> |

As X5 and Ag are Whitehead duals, we can replace Zg by Ay if we wish.
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Proof of lemmas 11.1 and 11.2. Let us observe that we can recapture from
Y the union of the shaded regions in the chessboard by the following

procedure:
1) Choose a small disc D, around each vertex v of X.

2) For each edge e in X, choose a double apex A, like in the picture:

The union | ) D, u | J 4, is equal, up to an homeomorphism of S2, to

the union of the shaded regions of the chessboard. Its boundary (frontier)
is the link projection I'.

Of course, we could have replaced everywhere in the construction
“shaded” by “lightened ”.

Now, let S be a state for L. Let P be a double point of I'. The
cutting and glueing operation associated to § at P will remove the double
point P.

Near P, I' will be the boundary of the shaded surface newly obtained.
(And also the boundary of the lightened surface newly obtained.) Suppose,
for instance, that the state S chooses at P the marker corresponding to the
} shaded regions. Then, it is easy to see that, locally around P, the new
shaded surface deformation retracts to the edge of Xg going through P.
It is also easy to see that, locally around P, the new lightened region
deformation retracts on the two vertices of the edge of A which has been
. deleted to obtain As.

Picture:




what happens locally:

should help to see

The following pictures
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These small deformation retractions can be pieced together in order that
globally the newly shaded surface is a regular neighborhood N(Xg) of XZg.
In the same way, the newly lightened surface is a regular neighborhood N (Ay)
of Ag. The common boundary of N(Zg) and N(Ag) is I's.

These constructions are illustrated in the next two pictures. In the first
one, a knot projection is shown, with its chessboard, its graphs ¥ and A.
A state S is indicated. The second picture shows I'g, Zg, As.

This ends the proofs of lemmas 11.1 and 11.2.
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LemMA 113. Let G be a graph in S* and let N be a regular

neighborhood of G. Then the number of connected components of 0N
is equal to byo(G) + b(G).

Notation. b{G) denotes the i-th Betti number.
Proof of Lemma 11.3. By Alexander duality:
bo(ON) = by(N) + bo(S*—N) — 1
and by(N) = by(S?—N) — 1.
As N deformation retracts onto G, the result follows.

Recall that the number |S| of connected components of I's is an
important ingredient in Kauffman’s polynomial.

ProrosiTION 11.4. | S| = by(Zg) + bi(Ag) + 1.

Note. This proposition is the generalization to any state S of lemma 2
of K. Murasugi’s paper [Mu,].
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Proof of proposition 11.4. We know that| S| = bo(I's). Now I's = IN(Zs).
So, if we apply lemma 11.3 to G = X5, we get

bo(I's) = bo(Zs) + by(Zs) -
As X and Ag are S-duals, Alexander duality implies that
bo(zs) = bl(AS) + 1.

We substitute and the proof is finished.

LEMMA 11.5. Let G be a connected graph. Let G, and G, be two
subgraphs of G such that (1) G = G, U G,. Let Gy = G; NG, and
suppose that (2) G, contains no edge. Then

b1(Gy) + b1(G) < by(G).

Suppose moreover that (3) G, and G, have no isolated vertices. Then,
one has b(G;) + b(G,) = by(G) if and only if each vertex of G, is a
cut vertex (for the partition associated to G; and G,).

Consequence : Suppose that G; and G, have no isolated vertices and that
G has no cut vertex at all. Then, if b,(G;) + b;(G,) = b{(G) one has that
G, or G, is empty (and G,=G or G, =G).

Before proving lemma 11.5, we make some comments on the notion of
cut vertex.

Let v be a vertex of a graph H. Let E, be the set of edges of H
which have v in their boundary. Suppose given a partition of E, into two
non empty classes E; and E,. Then the chopping of H at v is constructed
in the following way:

Replace v by two vertices v; and v, and declare that the edges in E;
will have v; in their boundary instead of v (i=1, 2).

Definition. v is a cut vertex for the partition E, Il E, if the chopping
of H we just described produces a graph with one more connected component.
v is a cut vertex if there exists a partition such that... etc., etc.

Proof of lemma 11.5. The inequality is an immediate consequence of
Mayer-Vietoris, using that b,(G,) = O.

Now observe that conditions (1) and (2) amount to say that G, and G,
produce a (global) partition of the edges of G in two classes.

{
3§
El
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Suppose that moreover condition (3) is also satisfied. Let v be a vertex
of G,. Then G, and G, induce a partition of the set E in two non-empty
classes. Hence, the chopping of G at v is well defined.

Write G for the graph obtained by chopping G at all the vertices

of G,. Remark that G; and G, naturally embed in G. Their union is G
and their intersection is empty. So

b(Gy) + by(Gy) = by(G).

Now, let ©: G - G be the natural projection which identifies the pairs
of vertices created by the chopping. Remark that identifying two vertices
has homologically the same effect as adding a new edge between the two
vertices. This replaces m by an inclusion. If we write the end of the
homology exact sequence of this inclusion, we see immediately that =
induces a monomorphism

Hy(G) o Hy(G).

The same exact sequence shows that the monomorphism is an iso-
morphism if and only if each vertex of G, is a cut vertex for the partition
induced by G, and G,.

End of proof of lemma 11.5.

Notation. Let og be the subgraph of Xg obtained by removing the
isolated vertices of Xg. Let Ag be the .subgraph of Ag obtained in the

same way. |
Of course b,(Zs) = by(os) and by(As) = by(As). So, proposition 11.4 gives
| S| = bi(os) + bi(hs) + 1.

Definition. If S is a state, L. Kauffman calls S the dual state of S if,
at every double point of I, the choice opposite to S is made.
It is obvious from the definitions that:
(1) oguog =
(2) og N oy contains no edge.
(3) os and oy have no isolated vertices.
The same holds for Ag and A5 in A.

LeMMa 11.6. by(Z) + 1 = | = number of lightened region of the chess-
board. b,|A| + 1 = s = number of shaded region in the chessboard.

Proof. Obvious.
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PropoSITION 11.7. |S| 4+ |S| <Il+s= R = c+2.
Comment. This inequality is the “dual state lemma” of L. Kauffman.

Proof of proposition 11.7.
| S|+ 181 < by(os) + by(hs) + 1 + by(o3) + bi(hg) + 1
Recall that L is an unoriented link diagram and that I' is the underlying
link projection. Write A for the state defined by choosing “A” at every

double point of L. Write B for the state defined by choosing “B” every-
where. Of course, A and B are dual states.

Notation. If S is a state of L, write ¢g(A) for the contribution of the
state S to the polynomial <L>. @A) is an element of Z[4*1].

Write Dg for the maximal degree of the monomials in @g(A4) and write
dg for the minimal degree.

LeEMMA 11.8. For any state S one has:
Ds < D, and dg < dg.

Proof of lemma 11.8. We prove Dg < D,, the proof of dy < dg being
analogous. Write b = b(S) for the number of times “B” has been chosen
in the state S. There is a sequence of states:

A =5,8,..,8, = S where §; differs from S; ; in one double point
of L where the “ A” has been replaced by a “B”.

CLamM: Dg < Dy, _, .

Obviously the claim implies that Dg < D,. Come back to the definition of
< L>. The contribution of S; is

A%S) BbS) 18]~ 1 )
where B = A™! and d = —(A?+ A~ 2). The degree of A*S) B¥S) ig then
a(S;) — b(S;). |

- So (¥) a(S;) — b(S;) = a(S;—1) — b(S;—;) — 2.

Moreover: | S;_; | — 1 < |S;| <|S;_,| + 1.

- So (++) the maximal degree in A of (—A2—A~2)51~1 js at most two more
. than the one of (— 42— A4~ ?)ISi-11-1,

| Putting together (*) and () finishes the proof of lemma 11.8.
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An easy computation shows that:
Dy = ¢+ 2(Al-D),
dg = —[c+2(B|-1)].
Proof of theorem 10.1. Let L be any projection of an unsplittable link K
in R>. Then
Span f; = span <L> < D, — dg
and
Dy —dg =c+c+2Al + 2B —4 <2+ 2R-4
=2c+ 2c+4—4 = 4c.

As V(1) = f(t'*, this gives at once a proof of theorem 10.1.

We now proceed towards the proof of theorems 10.2 and 10.3.

LEMMA 119. Let L be a link diagram. Then L is alternating if
and only if either all the “A” are shaded or all the “B” are shaded.

Recall that we suppose that the image of the projection is connected.
Recall also that our convention to make a projection alternating was that
the “ A” should be shaded.

This lemma is essentially Tait’s theorem of § 9.

LEmMa 11.10. Let L be a link diagram, alternating according to the
convention. Suppose L without nugatory crossing, i.e. L reduced. Let S
be any state, distinct from A and B. Then

Dg < Dy and dg < dg .

Proof of lemma 11.10. The proof begins like the proof of lemma 11.8.
We assert that, because the link diagram is reduced, one has

l)s1 < DSO == DA‘

If the reader goes back to lemma 11.8, he will see that the assertion is
all that is needed to get lemma-11.10.
We prove the assertion:

As the link diagram alternates, according the convention the “A4” are
shaded. So | A| = [ = number of lightened regions.

We claim that | S; | = [—1, the reason being the following: At exactly
one double point P of T, the marker has passed from 4 = shade to




|
1
i
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B = light. By this operation, two different lightened regions have been
connected, and the newly shaded surface is still connected. (This immediately
implies | S, | = [—1.)

If not, the lightened spots in the neighborhood of P would belong to
the same lightened region. One could thus draw a circle entirely in the light,
joining the two spots:

This means that L would not be reduced, contrary to the hypotheses.
The same kind of argument proves dg < ds.
This finishes the proof of lemma 11.10.

Notation. Let S be the state obtained by choosing “shade” at every
double point and let L be the state obtained by choosing “light” at every
double point. Of course, S and L are dual states.

LemMma 11.11. |S| 4+ |L| = R.
Proof of lemma 11.11. One has

GS=2 )\‘S=®
and oL =Q A=A

oo . T L L ARS8 a-F pF

Then apply the proof of proposition 11.7. Q.E.D.
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Proof of theorem 10.2. First of all, we do not restrict the generality by
supposing that the diagram alternates according to the convention.

Now lemma 11.10 implies that the highest degree of the monomials
in <L> is D, and that the lowest degree is dy. The coefficients of these
monomials are different from zero.

Moreover A = Sand B = L.

So|A|+ |B| = R bylemma 11.11.

Hence:

Span <L> = D, —dg = 2c + 2|JA| + 2|B| —4 = 2¢c + 2R — 4
= 2c + 2(c+2)—4 = 4c.

1
As span V(t) = 2 span < L>, this finishes the proof.

ProrosITION 11.12.  Suppose that the graphs X~ and A have no cut
vertex. Suppose that for a state S we have

|S|+|S|=R.

Then S=S or S=0L.

Remark. X and A have no cut vertex if and only if I is not a non-trivial
connected sum. See also proof of prop. 11.7.

The proof of proposition 11.12 follows immediately from the consequence
of lemma 11.5.

Remark. There is an obvious generalisation of proposition 11.12 to the
case of a connected sum. Use the full lemma 11.5 instead of its consequence.

We now state an equivalent form of theorem 10.3.

THEOREM 10.3". Let L be a link diagram such that ¥ and A have
no cut vertex. (This will be fulfilled if the link is prime.) Suppose that
span V(t) = c(L). Then L isreduced and alternating.

Remark. There 1s a generalisation of theorem 10.3' to the case of a
connected sum: the only possible counter-examples to non-alternativity are
non-alternating connected sums of alternating links, as in the square knot.
We leave this to the reader. (Use generalisation of proposition 11.12)

Proof of theorem 10.3'. If L were not reduced, we could reduce it. But
this would contradict theorem 10.1.
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Now, the computation of D, — dg in the proof of theorem 10.1 shows
that, if span <L> = 4c, one has D, — dg = 4c¢ and so |A| +|B| =R
As T and A have no cut vertex, the proposition 11.12 implies that
A=SorA=L.

j’ By lemma 11.9, this means that L is alternating. Q.E.D.

§ 12. THE PATH FROM VON NEUMANN ALGEBRAS TO KNOT POLYNOMIALS

The discovery of the knot polynomials discussed here is due to Jones’
investigations on von Neumann algebras, and not to the flourishing activity
in low dimensional topology. In the light of previous work by J. Conway
on Alexander’s polynomial and of subsequent work by L. Kauffman (among
others) on Jones’ polynomial, such a genesis may seem unexpected. However
this cannot be challenged, and should indeed appear rather as a delight
of the subject than as any unpleasant awkwardness. With this point of view,
we offer some guidelines for (some of) the surprising relationships put into
light by V. Jones’ work.

FAcTORS OF TYPE Il

An involution on a complex algebra M is a conjugate linear transforma-
tion x+ x* of M such that (x*)* = x and (xy)* = y*x* for all x, y e M.
The algebra I(H) of all continuous operators on a Hilbert space H has a
canonical involution, with x* the adjoint of x, defined by <x*¢|n>
= <§&|xn> for all £, m e H. A representation of an involutive algebra M
on H is a morphism of algebras n: M — L(H) with n(x*) = (n(x))* for all
x € M. The algebra L(H) carries several useful topologies, and in particular
the weak topology, for which a sequence (x;),; of operators converges
to 0 iff the numerical sequences (<x;&|n>);; converge to 0 for all pairs
(€, ) of vectors in H.

A von Neumann algebra is an involutive algebra M with unit which has a
faithful representation m on H with (1) = id and with (M) a weakly
} closed self-adjoint subalgebra of L(H). (There are several equivalent defini-
i tions: see any textbook on the subject, for example one of [Di], [SZ],
[Tak].) A von Neumann algebra is defined to be a factor of type 11, if

(1) The center of M is reduced to scalar multiples of 1.

(2) There exists a normalized finite trace, namely a linear form tr: M — C
with tr(1) = 1 and tr(xy) = tr(yx) for all x, y € M.
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