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of K. Hence, for a knot, a link with a single component, the exponent of m
in PK(/, m) is even and therefore AK(t) PK(i, -1~1/2)) is indeed a Laurent
polynomial in t.

To obtain the one-variable Jones polynomial we use the substitution
I it, m i(tll2-t~1/2). Explicitly,

VK(t) PK(it, i(tll2-r112))

Then we have

Property 7.6. VK(t) satisfies the skein invariance

tV(K+) - r1^-) + (t1/2-rll2)v(K0) o,

which (together with F(0) 1) characterizes Jones one-variable polynomial,
with the sign conventions used in reference [Jo3].

Whereas PK(l, m) determines AK{t) and VK(t), it is known that there are
no other relations between these polynomials. More precisely :

(1) The Alexander polynomial AK(t) does not determine Jones polynomial
VK(t) because the trivial knot O and Conway's eleven crossing knot
11471 have A(t) 1, but VK(t) ^ 1 for K 11471.

(2) VM does not determine AK(t): The knots 4X and 11388 have the
same V(t) but dilferent A(t).

(3) VK(t) and AK(t) together do not determine PK(l, m): The knot 11388
and its mirror image have the same V(t) and A(t) but different P(l, m).

For more details on these questions, see [L.-M.].

We now turn to L. Kauffman's definition of the one-variable Jones
polynomial VK(t) directly from the link diagram.

§ 8. L. Kauffman's approach to V. Jones' one-variable polynomial

The importance of Kauffman's approach [Ka3] is that it gives a new way
to define and compute Jones polynomial VK(t). It is by using this definition
that Kauffman and Murasugi prove their theorems about alternating links
(see § 10 and 11).

Let L be an unoriented link diagram. Look at a double point; with no
string orientation, they all look the same, up to a local homeomorphism :
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Locally, the plane R2 is divided into four regions.

Look at the quarter turn the "over" line must make, in the positive

sense, in order to coincide with the "under" line. Call "A the two regions

which are swept by the over line during the trip. Call "J5" the other two.

Definition. A marker for a double point is a choice of "A" or "B"
for this double point. It is symbolised like that :

Marker A Marker B
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Now, if a marker is chosen, one can split the link diagram by connecting
the two opposite regions whose name has been elected. Here are the pictures.

Definition. A state S for L is a choice of a marker at every double
point of L.

Suppose now that a state S for L is given. Make the correct splitting
at every double point of L. The underlying knot projection T is transformed
into a bunch Ts of disjoint simple closed curves in S2. Let | S | be the
number of curves in Fs.

Write a(S) for the number of markers A in the state S and write
b(S) for the number of B's.

If c(L) denotes the number of crossings (double points) of L, one clearly
has 2C(L) states.

L being given, Kauffman defines a polynomial <L> e Z[A, B, d~\ in the

following way :

<L> £ Afl(S) Bb(S) d|s|_1
s

the summation being taken over the 2C(L) states.

Notations. Write "O" for an unoriented, connected, simple closed curve in
R2 and write O II L for a disjoint union of such a diagram and an
unoriented link diagram L.

Property 1. <0> 1.

Property 2. <OLIL> d<L> if L is non empty.



JONES POLYNOMIAL 301

Property 3. Let L be an unoriented link diagram. Select a crossing x

and write LA for the diagram obtained from L by connecting the two

regions i at x, and write LB for the diagram obtained by connecting

the two JB's. Then :

<L> A<La> + B<Lb>

Proposition 8.1. <> is the unique function from the set of unoriented

link diagrams to Z[yl, B, d] which satisfies properties 1, 2 and 3.

The proof is straightforward.

Proposition 8.2. If one sets B A 1 and d —(A + A one

gets a function into Z[yl± x] which is invariant under Reidemeister moves ii)
and (Hi).

Notations. Following Kauffman, we shall still write < > for the function

into Z[^[±1]. From now on, only this function will be used.

We now recall briefly Kauffman's proof of proposition 8.2.

First of all, we shall use Kauffman's schematic way of writing property 3 :

<X> AO<> + B<X>
Invariance under move (ii) :

<<)^> — ^ ^ X ^
A[B <X > + A<X>]

+B[B<X> + AO >]
{AB d + A* + B2) <X > + AB <) C>

<)<>,
< since we have set B A'1 and d — (A2 + A~2).

# Invariance under move (iii) :

<-y-> B <-> <> + a<^\<>
B <?c\"_> +A <0\->



302 P. DE LA HARPE, M. KERVAIRE ET C. WEBER

by invariance under move (ii)

=<-\-> •

Q.E.D.

This seems to be as far as one can get without orienting link diagrams,

because < > is not invariant under Reidemeister move (i).

To remedy this state of affairs, Kauffman proceeds like this:

Let L be an oriented link diagram.

Recall now that, up to a rotation in R2, there are two types of double

points :

Sign +1 Sign -1

Definition. The writhe number w(L) is the sum of the signs of the

double points of L.
This number is also called twist number. It was known to Tait and

much used by Little. See § 9 of these notes.

Kauffman's polynomial fL(A)eZlA±1^ is then defined in the following

way:

fL(A) (-T)~3w(L)<L>

Proposition 8.3. The polynomial f is invariant under Reidemeister

moves (i), (ii) and (iii).

Proofofproposition 8.3. The writhe number is unchanged by the moves (ii)

and (iii). Hence proposition (8.2) implies the invariance of / under the

moves (ii) and (iii).
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We now prove the invariance under move (i).

Let L be a link diagram with a portion looking like this :

and let L be the link diagram obtained from L by removing the loop.

It is immediate that

If we apply property 3 for < > we get

<L> A<L> + A'1 <LIIO> •

By property 2

<L> A<L> + A-\-A2-A~2) <L>

So <L> (A-A-^AA'2)) <L> {-Ay3 <L>
Now, for any orientation of the string, the sign of the double point

is —1.

Hence w(L) w(L) — 1.

Going back to the definition,

fL {-A)~3ML) <L> (~Ay3w{L) + 3 <L>

From proposition 8.3 we deduce that Kauffman's polynomial induces a

map /:«£?- Z[^4±1].

Theorem 8.4. The map / : Jâf Z[^4±1] satisfies :

and

(—y4)~3w(L) + 3 —^4)-3 <L>
{-A)~3^L) <L> =fL.

The proof for the other loop is similar. Q.E.D.

1. /(0) i.

2. If L+, L_ and L0 are skein related (see § 3), then:

A4fL+-A~*fL_ (A~2-A2)fLo.
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From the universality of Jones polynomial, we obtain:

Corollary 8.5. Let K be an oriented link in R3 and let L be

an oriented diagram of K. Then :

VK(t)fL(tm).

Recall that we use Jones definition in the Bulletin AMS [Jo3] for VK.

If we were to use Jones definition in the Notices AMS [Jo4], we would

set A r1/4.

Proofof theorem 8.4. The proof of 1. is straightforward from the definition.

For 2., using Kauffman's notations one has:

< X> ^4<X> + A'l<K>
and

<X> A_1<X>

Hence :

A<X>-A"1<X> =(A2-Ä1)<^>

If we orient the strings and put the writhe number in the picture, we get

the formula 2. Q.E.D.

Using L. Kauffman's definition of Jones polynomial, the following

properties are easily proved (enjoyable exercise left to the reader) :

I. If Kx and K2 are two oriented links in S3, let Kill K2 denote their

distant union (one in each hemisphere). Then :

K2 t1 VKI ' VK2

where \x -(t1/2 + r1/2).

II. Let K1 # K2 denote any connected sum of K1 and K2 as in § 7

prop. 4. Then :

# K2 Vki ' VK2 -
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III. Let Kxdenote the mirror image of K. Then :

vK.{t)

The first three formulas are rather straightforward from the definitions.

IV. (Jones reversing result). Let K be an oriented link in S and let

be a component of K. Let Xbe the linking coefficient of y with what is

left of K when we remove y.(Wesuppose that this is not empty!) Let K

be the oriented link obtained from K by changing the orientation of y,

while keeping the others fixed. Then :

Vk{t)

Proof. Of course, we have <K> <K>, because, for the polynomial

< >, orientations do not matter.

Now : w(K) w(y) + 2X.

So: w{K) w(y) - 2X.

Hence : w(K) w{K) — 4X.

We substitute and get :

fk(A) (-^)"3w® <K> (-4)"3w<x> + 12x

(-^)12X(-^)-3w(K) <K> A'21fK(A)

As one substitutes f1'4 for A to get Jones 1-variable polynomial, the

result follows.

To finish this paragraph, we illustrate quickly Kauffman's definition by

computing Jones one variable polynomial for the right-handed trefoil T +.
(Compare § 3.)

There are 8 states associated to the standard knot diagram. One readily

sees that

< T+ > A3d+ 3 A2Bd°+ + B3d2

Substituting d -(A2 + A~2) and B one gets

< T+ >—A5-A~3 +

As w(T+) 3, one gets

fTJA) -Ar9 <T+>+ A'12 - A'16.

Substituting t A1/4 one finally obtains

VTft)t'1 + t"3 - r4 t_4(-l + t + t3).
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Now, if one uses our computation in § 3

P{T+) —2fl_fl +
1

— a2ia+2 + a+2al

and substitutes a+ /, a_ Z-1, a0 m one gets

PT+(l,m) (-2r2-r4)m° + l~2m2

The last substitution I it; m i(t1/2 — t~1/2) gives (with relief!) the

same result for Jones one variable polynomial. (Bulletin AMS definition.)

§9. Tait conjectures

Tait was primarily interested in the classification of knots (i.e. one

component links). He organized the job in two steps.

Step 1. Classify generic immersions of the circle in S2 (not R2 modulo
homeomorphisms (possibly orientation reversing) of S2. This was mostly done

by the Rev. T. P. Kirkman (around 1880).

In this process, one has to remember that one is looking at knots in R3

and that one is trying to list knots according to their "knottiness", i.e.

their minimal crossing number. So, Tait first reduced the number of double

points of a generic immersion by making one "local 180° rotation".

Examples.
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