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6 X. SAINT RAYMOND

Iexistence de variétés de dimension 1 ou 2 le long desquelles le champ L
reste tangent (sans quiil s’agisse de variétés intégrales de %) ainsi qu’une
condition de signe sur les coefficients de L.

1.3. ENONCE DES RESULTATS PRINCIPAUX

Munis de ces notations, nous pouvons énoncer les principales réponses
apportées a la question posée en 1.1.

THEOREME 1.1. Posons S5 = {xeR"|o(x) = ¢(x,) et rg L(x) > 3}.
Si le probléme est non caractéristique et si x,e€ S5, alors pour tout voi-
sinage Q de x,, il existe © < Q avec ®©NS;# O, ueCw) et
ae C®w) tels que -

(L+co+a)u(x) =0 dans o,

(11) Suppu' = 0, = {xe®| o) > o(x)}, et
Suppa < o, .

Moralement, ce théoréme signifie que pour avoir la propriété d’unicité,
il est nécessaire que rg ¥ < 3 sur la surface d’¢quation @(x) = @(x,). Cette
condition est également suffisante lorsque nous faisons I'une des deux hypo-
théses « techniques » introduites au paragraphe précédent :

THEOREME 1.2. Posons S; = {x e R"| 9(x) = @(x,) et r1g L(x) > 3},
supposons que le probléme est non caractéristique et que x, ¢ S;; supposons
encore quil existe un voisinage Q de x, tel que Pune des deux hypothéses
« techniques » suivantes soit vérifiée : soit L wvérifie la condition (R) dans Q,
soit L vérifie la condition (P) dans Q, = {xeQ|o(x) > ¢o(xq)}. Alors,
pour tout voisinage ® de Xx, et toute ue CYw) solution.du systéme

(L+co)u(x) =0 dans o, et
(1.2)

ux) =0 dans - = {xe®|o() < 0(x)},

la fonction u s’annule au voisinage de x,.

1.4. COMMENTAIRES SUR LES THEOREMES

‘1. Comme nous le verrons au paragraphe 2.1, le théoréme 1.1 s’applique
essentiellement aux opérateurs de la forme
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L = 0, + i[t"0, +t*0,,], ky # ky, 0 = t.

Ce théoréme a été démontré dans le cadre plus général des opérateurs
d’ordre m quelconque par Alinhac [1] et Robbiano [19] sous la condition
k, = 0.

2. Le théoréme 1.2 sapplique aux deux opérateurs suivants definis
dans R?:

L(R) = at + lt(t+y) ay et L(P) = at + ie_llt2 aya o=t,

le premier vérifiant la condition (R), mais pas la condition (P), et recipro-
quement pour le second. Ce théoréme 1.2 est dii a Strauss et Treves [24]
qui Pont démontré d’une part sous la condition rg #(x,) = 2 dans R? (cas
particulier de la condition (R)) et d’autre part en supposant que L vérifie
la condition (P) dans tout un voisinage Q de x,.

3. Le théoréme 1.2 devient faux si nous supprimons les hypotheéses
« techniques » ou méme si nous supposons seulement que L vérifie la condition
(R) dans Q,; nous montrerons en effet au chapitre 4 que l'opérateur

.1 :
L=20,+ie smzay si t>0,

L =20, ' si t<0

ne posséde pas la propriété d’unicité par rapport a ¢ = 0 pourvu que l'on
ajoute un terme d’ordre inférieur, bien que rg & = 2 pour t > 0.

4. Dans I’énoncé du théoréme 1.1, il convient de remarquer que I'ouvert ®
ne contient pas nécessairement le point x,; le théoréme 1.1 signifie donc
ceci: sl nous ne savons pas toujours construire une solution de (1.1) au
voisinage de x,, nous savons du moins le faire au voisinage de x; pour
un point x, arbitrairement proche de x, sur la surface d’équation @(x)
= 0(xo). En revanche, lorsque les hypotheses du théoréme 1.2 sont vérifiées
en Xx,, elles le sont en tout point suffisamment proche de x, sur la surface
d’équation @(x) = @(x,), et la conclusion s’applique quel que soit le terme
d’ordre inférieur; le théoréme 1.2 est donc bien une réciproque du théo-
reme 1.1. Cette remarque correspond a la propriété d’unicité « stable »
dont nous avons parlé au paragraphe 1.1.

5. Les hypotheses du théoréme 1.2 sous la condition (R) sont équivalentes
au groupe d’hypothéses suivant: le probléme est non caractéristique, et il
existe un voisinage de x, ou rg ¥ < 2 et ou la propriété (Q) introduite
par Nirenberg et Tréves [17] est vérifiée (cette propriété (Q) peut s’énoncer
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de la fagon suivante: par tout point x € Q tel que rg £(x) = 1 passe une
variété intégrale de .#). Sous la condition (P), nous pourrions omettre
I'hypothése x, ¢ S5 (car (P) dans Q, = S; N Q = @), mais nous préférons
considérer ce groupe d’hypothéses comme I'hypothése x, ¢ S; 4 laquelle nous
avons rajouté une hypothése « technique ».

6. Plan de I'ensemble. Nous exposerons les techniques de construction de
contre-exemples 4 I'unicité dans le chapitre 2 que nous consacrons & démontrer
le théoréme 1.1. Symétriquement, le chapitre 3 contiendra la démonstration
du théoréme 1.2 comme illustration des méthodes développées pour obtenir
l'unicité. Par ces deux théorémes, nous avons « génériquement » répondu a
la question posée; nous avons cependant écarté trois problémes marginaux
qui feront I'objet des chapitres suivants: au chapitre 4, nous étudierons
sur un modele la situation lorsque rg ¥ < 2 mais que les hypothéses
« techniques » ne sont pas vérifiées; au chapitre 5, nous étudierons le pro-
bléme caractéristique; au chapitre 6 enfin, nous étudierons l'influence du
terme d’ordre zéro, c,.

1.5. CHOIX DES COORDONNEES POUR LES PROBLEMES NON CARACTERISTIQUES

Dans ce paragraphe, nous donnons pour les problémes non caractéris-
tiques (étudiés aux chapitres 2, 3 et 4) un choix de coordonnées permettant
d’ecrire sous une forme canonique lopérateur a étudier.

LEMME 1.3. Supposons que le probléme soit non caractéristique; alors il
existe prés de x, un systéme de coordonnées (»,)eR" ! x R tel que:

1. x, = (0,0)

2. 9(x) — @(xg) =t

3. L+ co=alyt)[o,+iby,1)- 0,+c(y, )]

ou a:R">C b:R">R"' et c:R"—>C sont des fonctions C® au

voisinage de (0,0) et a(y,t) # 0 au voisinage de (0, 0).

Démonstration. Commengons par choisir des coordonnées X1, . X, telles
que xo = (0,...,0) et x, = @(x) — @(x,); comme le probléme est non carac-
teristique, nous savons que a,(0, ..., 0) # 0; on peut donc écrire

L+ ¢y = a,x) [6,, + nil (0 (x)+iB;(x)) 8; + cl(x):,
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