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§7. SOME PROPERTIES OF Py, m)

In this paragraph we gather some of the basic properties of the poly-
| nomial P(l, m), also denoted P(K) if the variables are understood.
Let K’ be the oriented link obtained from K by reversing the orienta-

{ tions of all the components. Then, we have

PropPERTY 7.1. P(K') = P(K).

i Proof. Let K,,K_,K, be three skein related links. We see that
| K, K’_ and K/, are also skein related. Hence,

IP(K',) + I"'P(K'_) + mP(K) = 0.

| By uniqueness, this implies P(K') = P(K) for all K. (Of course O'=0.)
| Property 7.1 can also be proved from the definition given in § 6 as
" follows. If K = K(a), then K’ = K(o), where &’ = 67 .. O} ifo = of .. oF.
Observe that the operation oo is a well defined antiautomorphism
of B,. There is an analogous antiautomorphism of H,, sending the monomial
M=T,.T, to M=T,. T, and it is easily checked that for all

.. - xeH,, Tr(x) = Tr(x').

Next, let K* be the mirror image of K. Then we have

PROPERTY 7.2. Pyg«(l, m) = Px(lI™ 1, m).

: Proof. Observe that if K., K_, and K, are skein related, then so are
| K* KX and K{§ in this order, i.e.

IPK*) + I"'P(K}) + mP(Kg) = 0.

The property follows by uniqueness applied to Pgx(l, m) = P71, m).
8 We shall skip the alternative proof of that property based on braid
{ presentations.

If K, and K, are two links and K, II K, their distant union (disjoint,
§ unlinked), then we have

’ -1
ProPERTY 7.3. P(K,II K;) = — i,

. P(K,). P(K,).

Proof. If K, = O, this follows from the skein invariance as shown in
the following picture

O 0P P i 58 I
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which yields
IP(K,) + I"'P(K,) + mP(K,I1O) = 0,
and therefore

|+ 171

PK,TIQ) = — .P(K,).

If K, is more complicated, use induction on the complexity of one
of its diagrams L,. If Ly ,L;,LS are skein related, so are L,II L},
LI L,,L,IILJ for any diagram L, of K, and Property 7.3 follows.

Second proof. If K, = K(o) with a € B,, and K, = K(P), with B e B,,
then K, 11 K, = K(a. s(B)) with o . s(B) € B,,+,, where s: B, — B,, ., shifts all
indices of the generators o, ..., 5,_; by m, i.e. s(o;) = ©,,4;. It follows that o
and s(B) commute in B,.,,, and it is easily verified that Tr(p(e.s(B))

= Tr(p(a)) . Tr(p(B)). Then,
Vas(B)(q: Z) = ((:Z/Zw)l/z . Va(qa Z) . Vﬁ(qs Z) .

With | = i(z/w)'’? and m = i(q~ }/*>—q"'?), we have

w
1 — —
[+ 171 (Z/w)l/2 — (z/w)_l/2 zq\ 1/? z
- - = = g 7 _ gl '=_W 1— g

 (z2a\"?z—(—q+2) (g’

B W 2(1—q)  \zw
Therefore,
I+ 171
Vas(B)(Q: Z) = - . Va(q’ Z) . VB(qs Z)

~ as required.
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If K,,K, are 2 links, denote by K, # K, a connected sum of K,
and K, performed from the unlinked union on any choice of components.

PrROPERTY 7.4. P(K,#K,) = P(K;). P(K5).

Proof. We use the skein relation
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2

, where L, and L, are diagrams of K; and K.
This gives the formula

IP(L,#L,) + I"'P(Ly#L,) + mP(L;11 L,) = 0.

Solving for P(L,#L,) and using property 7.3, the factor —([+I1"1)/m

cancels out and the result follows.
The proof using braid presentations is more complicated and will be

omitted.
Since P: % — Z[1, 17, m,m~ '] is the universal skein invariant, it must

| specialize to the Alexander polynomial and to the one-variable Jones
- polynomial.
Specifically, define

A(t) = Pxli, it~ %),

then we have

PROPERTY 7.5. A(t) satisfies the skein invariance
M) Ao =1,
Q) AK,) - AK-) + (Pt AK) = 0,

~ which characterizes the Alexander polynomial as normalized by J. Conway.
(See L. Kauffman, [Ka,].)

Recall from §3 that the exponent of m in each- monomial of Pg(l, m)
is congruent mod 2 to K) — 1, where r(K) is the number of components
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of K. Hence, for a knot, a link with a single component, the exponent of m
in Pg(l, m) is even and therefore Ay(r) = Pyfi, i(t}/?—¢~ /) is indeed a Laurent
polynomial in ¢. :

To obtain the one-variable Jones polynomial we use the substitution
| = it,m = i(t¥?—¢~1/2), Explicitly,

Vilt) = Pylit, ilt** —t~112))

Then we have

PROPERTY 7.6. V(t) satisfies the skein invariance
tV(Ky) — t™'W(K_) + (12—t Y)V(K,) = 0,

which (together with V(QO)=1) characterizes Jones one-variable polynomial,
with the sign conventions used in reference [Jo,].

Whereas Py(l, m) determines Ag(f) and V(t), it is known that there are
no other relations between these polynomials. More precisely :

(1) The Alexander polynomial Ag(f) does not determine Jones polynomial
Vi(t) because the trivial knot O and Conway’s eleven crossing knot

(2) Vk(?) does not determine A(z): The knots 4, and 11,4, have the
same V() but different A(¢).

(3) V() and A(t) together do not determine Pg(l, m): The knot 11 388
and its mirror image have the same V() and A(f) but different P(l, m).

For more details on these questions, see [L.-M.].

We now turn to L. Kauffman’s definition of the one-variable Jones
polynomial V(t) directly from the link diagram. .

§ 8. L. KAUFFMAN’S APPROACH TO V. JONES’ ONE-VARIABLE POLYNOMIAL

The importance of Kauffman’s approach [Ka,] is that it gives a new way
to define and compute Jones polynomial V(). It is by using this definition
that Kauffman and Murasugi prove their theorems about alternating links
(see § 10 and 11).

Let L be an unoriented link diagram. Look at a double point; with no
string orientation, they all look the same, up to a local homeomorphism :
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