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§ 6. Existence of the two-variable polynomial

The polynomial will be defined as a braid invariant.
A braid a gives rise to a link K(ol) by the "closing" operation, as shown

in the picture

Recall that every oriented link is ambient isotopic to a closed braid,
as was already known to Alexander [Al]. (See also [Mo].)

Now, let K C(q, z) be the rational field in 2 variables q, z over the

complex numbers and let w 1 — q 4- z e K.
With every braid a g Bn we will associate an element Va(q, z) in the

quadratic extension K(<sfq]zw) of K.
It is a quite remarkable fact that Va(q, z) will depend only on the link

K(a) obtained from a by closing the braid as shown above, and not on a
itself.

Thus, we will be able to define VK(q, z) VJ^q, z), where a is any braid
such that K is ambient isotopic to K(cl).

In order to define Va(q, z) we now proceed to fix some notations.
We use the following conventions regarding the generators a„_1e5„

of the braid group on n strings Bn.

cue B2 K(a)

Closing a braid
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Recall that Bn has a presentation on the generators al9..., <z„-i with

relations

j if I i — j I > 2

and

aiai+lai ai+laiai+l

for i 1,..., n—2.

Note that there is a well defined homomorphism e :Bn Z given by

e(<j.) 1, i 1,n—1, on the generators. We call e the exponent sum.

There is also an obvious representation p : Bn Hn determined by

P(CTi) Tt.

Note that Tt e Hn is invertible in Hn : Tf1 - (1 — q + Tj). Now, let a e Bn.

The corresponding element Va{q,z)eKi-Jq/zw) is defined by the formula

Va(q, z) (l/z)("+e<<")_1)/2 • (g/w)("~e<a)_1)/2 Tr(p(a)),

where w 1 — q + z, p : Bn -> Hn is as above, and e(oc) is the exponent sum

of a.

In order to show that Va{q, z) depends only on the link K(a), we appeal

to Markov's theorem which gives necessary and sufficient conditions for
2 braids a eBm, fie Bn to produce isotopic links K(a), K(fi) by closing.

Define a Markov move of type 1 to be the operation of replacing

a braid a e Bn by a conjugate yay~1 e Bn with y e Bn.
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A Markov move of type 2 consists in replacing a g Bn by a. g„ or
a. a n_1 in Bn+1. Or, replacing a a„ g Bn+1, resp. a a„_1 g £„+1 by a g Bn

if a is a word in the generators <jx a,,-! only.

Theorem (Markov). Let a e Bm, ß e Bn be two braids. Then, K(a)
and I£(ß) «re ambient isotopic as oriented links iff there exists a finite
sequence of Markov moves carrying a to ß.

For a proof, see [Mo].

Thus, we have to show that Va(q, z) is unchanged by Markov moves
on a.

Let a eBn, y g Bn and ß yay-1. Then the string numbers of a and ß

are the same. Also e(a) e(ß), and Tr(p(ß)) Tr(p(y)p(a)p(y)~ *) — Tr(p(a)).
Hence, V^q, z) Vfq, z).

If a g Bn and ß a. an e Bn+1, we have e(ß) e(a) + 1, n(ß) n + 1

(where n n(a)). Thus,

Vfa z)(1 /Z)0.+ «<«)-D/2 (q/wf--)/2 (1/z) Tr(p(a)

Va(q, z), as desired

If a e Bn and ß aa„_1 g + 1 then e(ß) e(a) — 1, n(ß) n + 1 and

Kp(g, z) (i^)(» + e(«)-iï/2
^ (^/w)("~e(a)—1)/2 (q/w). Tr{p(a). T"1}

Now,

p(a). T„_1 1 p(a). (1
q

and

Tr{p(a). T"1} fl-q+ z). Tr(p(a)) (w/<j). Tr(p(a)).

Hence, again Vf(q, z) Va(q, z).

Thus Vfq, z) is well defined as an invariant of oriented links.

On the face of it, Vfq, z) does not look much so far like a polynomial
with integral coefficients. However, as it turns out, a slick change of
variables will do the trick. We have :

Proposition 6.1. There exists for each link K, a unique Laurent
polynomial PK(l, m) g Z[/, l~1, m, m~ *], such that
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PK(i(z/w)ll2,i{q 1/2-41/2))

whenever a is a braid, giving rise (up to ambient isotopy, of course) to

the link K by closing.

Thus, Va(q,z) becomes the Laurent polynomial PK(Jl, m) in

Z [I,r\m, m"1]

after the change of variables

I i(z/w)112 m

The key to the proof of this fact is the skein invariance of Va(q,z)

which we now proceed to show.

Let ß, y g Bn be two braids and let a+, a_, a0 be the three braids

a+ ßoyy, oc_ ßa^y, oc0 ßy,

for some index k ^ n— 1.

For any braid a eBn, with exponent sum e e(ct), define

Wa(q, z) (l/z)(" + e_1)/2 (q/w)in-e-1)/2 p(a) e Hn

where Hn is now the Hecke algebra over K{J~qJzw) with K C(q, z),

corresponding to q.

Skein invariance lemma. Set I i(z/wY^2 und m i(q — q )•

Then, we have the relation

iw.+ + r'Wa_ + mW.

Takingthe trace, we obtain from this lemma the skein invariance of

VJq, z) :With the same notations as above

lVa+ + r1 + mFao 0.

Proof of the lemma. Set e e(a0), and observe that we have

Wa+ (l/z)ll2{q/w)~ ll2{l/z)in+e~1)l2{q/wfn~e~1)12.p(ß)Tfcp(y),

Wa_ (l/z)~ll2{q/w)ll2(l/z)in+e'1)l2{q/w)(n'e'1)l2p(ß)Tfe-1p(Yj.

An easy calculation now gives for IW^ + + mWao an expression

of the form

Hl/zf+e-m{q/wf -e-1)/2 p(ß). C p(y),

where
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C q-^Tk-q^T^ + q-^-q"2.
Recalling that Tk1 q~\l-q+ Tk), it is easy to verify that 0.

Proof ofproposition 6.1. Let K+, Kand K0 be three skein related links.

It is an obvious consequence of the classical proof of Alexander's theorem

that the three links can be presented as closed braids of the form

with a+ ßcTfcy, a_ ßat 1y, a0 ßy for some braids ß, y e and some

index k < n—1.

Writing V(K)forVaif KK(a),it follows from the skein invariance

lemma above, that

if K+, K_ and K0 are skein related.

It follows now by induction on the link complexity, as in the proof

of uniqueness in §3, that V(K)isactually a Laurent polynomial with

integer coefficients in the variables I and m.

We change notation and set PK(l, m) e Z[l, T1, m, m"1], where

Since it is obvious that PK{1, m)1 if is the unknot O, we have

shown that P: £? -> Z [I,l~\ m, m"1] exists as a skein invariant. It is universal

by what we saw before in § 3.

K +

K+ K(a+), K_o_), K0 a0),

IV{K+) + r'ViK-.) + 0,

PkUK^M1'2, i(q 1/2=Vfq, z)
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