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288 P. DE LA HARPE, M. KERVAIRE ET C. WEBER

§ 5. THE TRACE

The fundamental idea of V. Jones which led him to the definition
of his original one-variable polynomial is the construction of the trace.
Originally, V. Jones used algebras which are quotients of the algebras H,.
The lifting of the trace to the Hecke algebras H, was observed by A. Ocneanu.

The trace will commute with the inclusion H, — H, ., and therefore yield
a trace on the direct limit of the H,’s. (Compare with the discussion
in § 12.)

TueoreM. Let K be a field and let gq,ze K be two elements of K.
Let H, be the Hecke algebra over K corresponding to q. There exists
a trace Tr:H, — K compatible with the inclusion H,— H,,,, 1ie. the
diagram

H | > Hn+1

commutes, and such that

() Tr(1) =1,
(2) Tr is K-linear and Tr(ab) = Tr(ba),
(3) If a,beH,, then Tr(aT,b) = zTr(ab) .

Notice that the last property enables us to calculate: Tr(x) for an
arbitrary x € H, by using the fact that monomials in normal form generate
H, over K. For.instance,

TI‘(Tl) = Z,
T«(T,T,) = Tr(Tle) = 22,
To(T,T,T;) = zT(T?) = z(g—1)z+q).

Proof. The K-linear map Tr: H,,; — K is defined by induction on n,
using the structure lemma of § 4 (Proposition 4.1):

(p:Hn @ Hn ®H,,_1 Hn :) Hn+1 4
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Starting with Tr: Hy = K — K the identity, one defines Tr: H,,; = K
by Tr(x) = Tr(a) + Z; zTr(bic;), if pa+X;h;Rc;) = x.
It is clear that if a, b € H,, then

Tr(aT,b) = zTr(ab),

since @(a®b) = aT,b.
The only statement to be proved is then:

Tr(xy) = Tr(yx) forall x,yeH,:;.

This is proved by induction on n.
We may assume that x and y are monomials containing T, at most once.

If y does not contain T, at all, then writing x = x'T,x", where X/, x"
are monomials in T, ..., T,,—, one has

Tr(xy) = zTr(x'x"y) = zTr(yx'x") = Tr(yx'T,x") = Tr(yx) .

If y contains T,, it suffices to check the case where x = aT,b and
y = T,, as is easily verified. (Here a,be H,.)

There are various cases depending on whether or not the elements
a and b actually contain T,_;. The worst case is the one in which
a=dT, ,a", b =bT, b with d,a",b', b" belonging to H,_;. We have
then

Tr(aT,bT,) = z((g— 1)Tr(ab)+qTr(ab'd"))
TH(T,aT,b) = z((g— 1)Tr(ab)+gTr(a'a"b)).

But
Tr(ab'b”) = Tr(@'T,-,a"b'b") = zTr(@'a"b'd"),
and
Tr(a'a’b) = Tr(@'a"b'T,-b") = zTr(a'a"b'b") .
Hence,

Tr(aT,bT,) = Tt(T,aT,b)

as desired.
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