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288 P. DE LA HARPE, M. KERVAIRE ET C. WEBER

§ 5. The trace

The fundamental idea of Y. Jones which led him to the definition

of his original one-variable polynomial is the construction of the trace.

Originally, Y. Jones used algebras which are quotients of the algebras Hn.

The lifting of the trace to the Hecke algebras Hn was observed by A. Ocneanu.

The trace will commute with the inclusion Hn -> Hn+1 and therefore yield

a trace on the direct limit of the ff„'s. (Compare with the discussion

in § 12.)

Theorem. Let K be a field and let q, z e K be two elements of K.

Let Hn be the Hecke algebra over K corresponding to q. There exists

a trace Tr :Hn^K compatible with the inclusion Hn-+Hn + 1, i.e. the

diagram

commutes, and such that

(1) Tr(l) 1,

(2) Tr is K-linear and Tr(ab) Tr(ba),

(3) If a, b e Hn, then Ti(aTnb) zTr{ab).

Notice that the last property enables us to calculate • Tr(x) for an

arbitrary xeHn by using the fact that monomials in normal form generate

Hn over K. For instance,

Proof The K-linear map Tr: Hn+1 - K is defined by induction on n,

using the structure lemma of § 4 (Proposition 4.1) :

H,

K

Tr(TJ z,
Ti(T1T2) Tr(TjTi) z2

Tr[T1T2T1) zTr(Tf) z((q-l)z + q).

(p: Hn© H„ ®Hn-iHnH„+i •
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Starting with Tr: H0K->Ktheidentity, one defines Tr: -»

by Tr(x) Tr(a) + zTrfoCj), if cp(a+ 2^00,) x.

It is clear that if a, beHn,then
Tr (aTnb)zTr(ab),

since <p(a0b) aT„b.
The only statement to be proved is then :

Tr(xy) Tr(yx) for all x, ye Hn + 1

This is proved by induction on n.

We may assume that x and y are monomials containing T„ at most once.

If y does not contain T„ at all, then writing x x'T„x", where x,x
are monomials in Tx,T„_ x, one has

Tr(xy) zTr(x'x"y) zTr(yx'x") Tr(yxT„x") Tr(yx).

If y contains T„, it suffices to check the case where x aTnb and

y T„,as is easily verified. (Here a, be Hn.)

There are various cases depending on whether or not the elements

a and b actually contain Tn.l.Theworst case is the one in which

a a'T^X, b b'Tn^1b"witha',a",b',b" belonging to H„_x. We have

then

Tr (aTnbTn)z((q-l)Tr(ab) + qTr(ab'b"))

Tr (TnaTnb)z((q-l)Tr(ab) + qTr(a'a"b)).

But

Tr (ab'b")Tr {a'Tn_ia"b'b")zTr

and

Tr(a'a"b) Tr(dd'b'T^^b") - zTx{a'a"b'b").

Hence,

Tr (aTnbTn)Tr

as desired.
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