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Z 12 P. DE LA HARPE, M. KERVAIRE ET C. WEBER
§ 1. INTRODUCTION AND HISTORICAL REMARKS

Knot theory was born around the year 1867 in Scotland from the
imagination of three physicists; two Scotsmen living in Edinburgh:
J.C. Maxwell and P.G. Tait and one Irishman living in Glasgow:
W. Thomson (Lord Kelvin). For more details, see [Kn].

The Transactions of the Royal Philosophical Society of Edinburgh
provide ample testimony of the dedication and enthusiasm of these pioneers,
trying to understand the structure of matter before quantum theory was
invented, and knot theory without topological invariants.

According to Thomson’s theory of vortex atoms, the chemical elements
are constituted by small knots formed by the vortex lines of ether. For
physical reasons, these knots have to be “kinetically stable”, as Thomson and
Tait said. In their opinion, this condition was going to prevent many knots
from giving rise to vortex atoms.

Having this in mind, Tait embarked on a quite formidable program:
(1) Try to classify knots in 3-space;

(2) Try to establish a hierarchy among knots, relying on some notion of
complexity ;

(3) Understand why many of the simple knots cannot occur in vortex
atoms (due to the stability condition).

In Tait’s paper, this last point is stated as one of the main problems
of the whole subject.

(4) Explain the position of the lines in the spectrum of a chemical
element from the shape of the corresponding knot.

From an epistemological point of view, this program is remarkable:
Thomson and Tait (T and T’ as their friends used to call them) are
looking for very complicated mathematical objects, in contrast with the
attitude of many scientists trying to find a simple mathematical model when
they attempt to explain a new area in the natural sciences.

If one reads between the lines in Tait’s paper, one can guess that he
started working on (1) and (2) full of the hope that it should not be too
difficult. However, he was aware of the fact that he was opening an entirely
new field and that surprises might well show up. Later on, he confessed
that the subject was harder than he had expected...

During the elaboration of Tait’s first paper, Maxwell told him about
the work on knots by C.F. Gauss and J. B. Listing who had somewhat
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anticipated Tait’s starting point: knot projections, alternating knots, chess-
board.

As to Maxwell, his interest for knots came from his theory of electro-
magnetism. For instance, he gave in [Ma] a lovely interpretation of Gauss
integral formula for the linking coefficient of two knots in 3-space: it is
(up to a factor) equal to the work required to move a magnet pole along
one knot while the other knot is run by an electric current. This interpreta-
tion is repeated by Tait in [Tai]. One can see, along the way, Seifert
surfaces being introduced by Tait via the following physical argument:
If one has an orientable surface ¥ in 3-space whose boundary is a given knot,
and if one “magnetizes the surface normally and constantly”, as Tait says,
then the work required to move a magnet pole on another knot will be
the same as if the boundary of ¥ were run by an electric current. Tait
thus uses the 2-chain given by T to compute linking coefficients.

Note. Today, G. de Rham himself says that he chose the terminology
“courant” for similar reasons. The “courants”, like homology, are dual to
cohomology and one can think of 1-dimensional cycles as electric currents.

Tait thought of a knot as being a rubber band in everyday 3-dimensional
space. Two positions of the band represent the same knot if one can deform
one position of the band into the other. In modern terms, this is non-
oriented ambient isotopy.

To measure the complexity of a knot, Tait introduced what he called
the (degree of) knottiness. This is called today the crossing number of the
knot. By definition, it is the minimal number of double points among all
projections of the knot. We shall use the notation c¢(K).

Tait also introduced the beknottedness, now called unknotting number.
He did not use it very much to measure knot complexity because he soon
realized that its determination was difficult. We shall not talk about this
invariant in this paper, although the second integer which appears in the
inductive proof of uniqueness of the polynomial Pg(l, m) in §3 is clearly
related to it.

Tait’s papers contain few proofs which are acceptable by the standards
of 20-th century topology. They rely on principles, not always very explicitly
stated, which seemed obvious to the author, but which are in fact unproved
statements. Nowadays, knot theorists have more or less agreed on the
meaning of these principles and have summarized them under the name of
B “Tait conjectures”. They are all related to the minimal crossing number
R of a knot. (See § 9 in this paper.)
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A paradox in the achievements of 3-dimensional topology between 1965
and 1985 is the following: Knot theory was gradually embodied in the more
general theory of 3-dimensional manifolds. Classifications were attempted,
and sometimes attained by using very refined geometrical tools such as the
Waldhausen-Jaco-Shalen-Johanson theory on the embeddings of Seifert
manifolds in a Haken manifold. And yet, these refined methods could not
cope with simple questions related to knot projections. In fact, during this
period, the old time point of view, using projections, was almost forgotten
(except by a few people, for instance John Conway).

Today, Jones polynomials and more precisely L. Kauffman’s very clever
and very elementary way of looking at the one-variable polynomial V (t)
have put again knot projections under the spot-light. The one-variable
polynomial is the main ingredient in the proofs of several of Tait’s con-
jectures which have remained unproved for more than a century.

This paper is devoted to a presentation of these recent achievements,
mainly due to V. Jones, L. Kauffman and K. Murasugi.

We shall give the definition and prove some of the properties of the
two-variable Laurent polynomial P(K)e Z[l, ™!, m, m~'] associated with
every oriented link K. The approach chosen here is that of V. Jones and
A. Ocneanu. Another approach which uses the notion of skein invariance
is due independently to many mathematicians: P. Freyd, D. Yetter, J. Hoste,
W. Lickorish, K. Millett, J. Prztycki and P. Traczyk. Although we do discuss
skein invariance in this paper, we do not go into the question of using it
to define the polynomial P(K).

As many mathematicians have worked simultaneously on various aspects
of the definition of the polynomial, it is difficult to give proper credit to
everyone. We apologize in advance for any missing ascription. We hope all
will agree that V. Jones has been the one pioneer who got the subject
started.

§ 2. LINK DIAGRAMS

A link K in S* (or R®) is a 1-dimensional compact smooth manifold
without boundary. We shall use r = r(K) for the number of components
of K. A knot is a link with one component.

Most of the time K will be oriented.

Two oriented links K, K’ are ambient isotopic if there exists a diffeo-
morphism h:S® — S of degree +1, such that W(K) = K’ and hig is also of
- degree +1 on each component.
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