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ON THE JONES POLYNOMIAL

SwiISS SEMINAR IN BERNE

by Pierre DE LA HARPE, Michel KERVAIRE and Claude WEBER

These notes are based on the talks given in the seminar mentionned in
the title, held at Berne University during the summer term 1986 and
organized by the Troisiéme Cycle Romand de Mathématiques. However,
we have made no attempt to follow faithfully the oral expositions. On the
contrary, we have tried to reorganize the material in a unified survey with
a streamlined point of view and (hopefully) coherent notations.

We thank all the participants who attended the seminar and above
all our invited speakers, Vaughan Jones, Louis Kauffman and Hugh Morton.
We have also included the results of Kunio Murasugi, although his talks
were given the year before at the University of Geneva, when his work had
just been completed.
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§ 1. INTRODUCTION AND HISTORICAL REMARKS

Knot theory was born around the year 1867 in Scotland from the
imagination of three physicists; two Scotsmen living in Edinburgh:
J.C. Maxwell and P.G. Tait and one Irishman living in Glasgow:
W. Thomson (Lord Kelvin). For more details, see [Kn].

The Transactions of the Royal Philosophical Society of Edinburgh
provide ample testimony of the dedication and enthusiasm of these pioneers,
trying to understand the structure of matter before quantum theory was
invented, and knot theory without topological invariants.

According to Thomson’s theory of vortex atoms, the chemical elements
are constituted by small knots formed by the vortex lines of ether. For
physical reasons, these knots have to be “kinetically stable”, as Thomson and
Tait said. In their opinion, this condition was going to prevent many knots
from giving rise to vortex atoms.

Having this in mind, Tait embarked on a quite formidable program:
(1) Try to classify knots in 3-space;

(2) Try to establish a hierarchy among knots, relying on some notion of
complexity ;

(3) Understand why many of the simple knots cannot occur in vortex
atoms (due to the stability condition).

In Tait’s paper, this last point is stated as one of the main problems
of the whole subject.

(4) Explain the position of the lines in the spectrum of a chemical
element from the shape of the corresponding knot.

From an epistemological point of view, this program is remarkable:
Thomson and Tait (T and T’ as their friends used to call them) are
looking for very complicated mathematical objects, in contrast with the
attitude of many scientists trying to find a simple mathematical model when
they attempt to explain a new area in the natural sciences.

If one reads between the lines in Tait’s paper, one can guess that he
started working on (1) and (2) full of the hope that it should not be too
difficult. However, he was aware of the fact that he was opening an entirely
new field and that surprises might well show up. Later on, he confessed
that the subject was harder than he had expected...

During the elaboration of Tait’s first paper, Maxwell told him about
the work on knots by C.F. Gauss and J. B. Listing who had somewhat
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anticipated Tait’s starting point: knot projections, alternating knots, chess-
board.

As to Maxwell, his interest for knots came from his theory of electro-
magnetism. For instance, he gave in [Ma] a lovely interpretation of Gauss
integral formula for the linking coefficient of two knots in 3-space: it is
(up to a factor) equal to the work required to move a magnet pole along
one knot while the other knot is run by an electric current. This interpreta-
tion is repeated by Tait in [Tai]. One can see, along the way, Seifert
surfaces being introduced by Tait via the following physical argument:
If one has an orientable surface ¥ in 3-space whose boundary is a given knot,
and if one “magnetizes the surface normally and constantly”, as Tait says,
then the work required to move a magnet pole on another knot will be
the same as if the boundary of ¥ were run by an electric current. Tait
thus uses the 2-chain given by T to compute linking coefficients.

Note. Today, G. de Rham himself says that he chose the terminology
“courant” for similar reasons. The “courants”, like homology, are dual to
cohomology and one can think of 1-dimensional cycles as electric currents.

Tait thought of a knot as being a rubber band in everyday 3-dimensional
space. Two positions of the band represent the same knot if one can deform
one position of the band into the other. In modern terms, this is non-
oriented ambient isotopy.

To measure the complexity of a knot, Tait introduced what he called
the (degree of) knottiness. This is called today the crossing number of the
knot. By definition, it is the minimal number of double points among all
projections of the knot. We shall use the notation c¢(K).

Tait also introduced the beknottedness, now called unknotting number.
He did not use it very much to measure knot complexity because he soon
realized that its determination was difficult. We shall not talk about this
invariant in this paper, although the second integer which appears in the
inductive proof of uniqueness of the polynomial Pg(l, m) in §3 is clearly
related to it.

Tait’s papers contain few proofs which are acceptable by the standards
of 20-th century topology. They rely on principles, not always very explicitly
stated, which seemed obvious to the author, but which are in fact unproved
statements. Nowadays, knot theorists have more or less agreed on the
meaning of these principles and have summarized them under the name of
B “Tait conjectures”. They are all related to the minimal crossing number
R of a knot. (See § 9 in this paper.)
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A paradox in the achievements of 3-dimensional topology between 1965
and 1985 is the following: Knot theory was gradually embodied in the more
general theory of 3-dimensional manifolds. Classifications were attempted,
and sometimes attained by using very refined geometrical tools such as the
Waldhausen-Jaco-Shalen-Johanson theory on the embeddings of Seifert
manifolds in a Haken manifold. And yet, these refined methods could not
cope with simple questions related to knot projections. In fact, during this
period, the old time point of view, using projections, was almost forgotten
(except by a few people, for instance John Conway).

Today, Jones polynomials and more precisely L. Kauffman’s very clever
and very elementary way of looking at the one-variable polynomial V (t)
have put again knot projections under the spot-light. The one-variable
polynomial is the main ingredient in the proofs of several of Tait’s con-
jectures which have remained unproved for more than a century.

This paper is devoted to a presentation of these recent achievements,
mainly due to V. Jones, L. Kauffman and K. Murasugi.

We shall give the definition and prove some of the properties of the
two-variable Laurent polynomial P(K)e Z[l, ™!, m, m~'] associated with
every oriented link K. The approach chosen here is that of V. Jones and
A. Ocneanu. Another approach which uses the notion of skein invariance
is due independently to many mathematicians: P. Freyd, D. Yetter, J. Hoste,
W. Lickorish, K. Millett, J. Prztycki and P. Traczyk. Although we do discuss
skein invariance in this paper, we do not go into the question of using it
to define the polynomial P(K).

As many mathematicians have worked simultaneously on various aspects
of the definition of the polynomial, it is difficult to give proper credit to
everyone. We apologize in advance for any missing ascription. We hope all
will agree that V. Jones has been the one pioneer who got the subject
started.

§ 2. LINK DIAGRAMS

A link K in S* (or R®) is a 1-dimensional compact smooth manifold
without boundary. We shall use r = r(K) for the number of components
of K. A knot is a link with one component.

Most of the time K will be oriented.

Two oriented links K, K’ are ambient isotopic if there exists a diffeo-
morphism h:S® — S of degree +1, such that W(K) = K’ and hig is also of
- degree +1 on each component.




JONES POLYNOMIAL 275

We will denote by & the set of ambient isotopy classes of oriented
links.

A link projection is a generic immersion of a (finite) disjoint u
circles into the plane. (No triple point, transverse crossings only.)

If K = R? is a link, an affine projection p of K on a plane V = R®
gives a link projection if pg is a generic immersion.

It is possible to recapture the isotopy class of K from the projection
by specifying at each crossing point a choice of one of the two branches,

singling out the branch which overcrosses the other.
A link diagram is a link projection together with such a choice of over/

under crossing at each crossing point:

Part of a link Part of a link
projection diagram

nion of

A link diagram gives rise to a well defined ambient isotopy class of
link in 3-space and every link isotopy class can be obtained in this way.

Of course many different link diagrams can give rise to isotopic links.
This ambiguity is resolved by the notion of Reidemeister move:

The Reidemeister moves on link diagrams are the moves shown in the
following pictures, for all possible orientations.
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(i1) :
\

(i)
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We shall take for granted without proof the classical

THEOREM. Two oriented link diagrams represent ambient isotopic oriented
| links if and only if one can pass from one to the other by a finite sequence

1

}of Reidemeister moves.
This theorem is the basis of combinatorial knot theory.
Another notion on link diagrams which will be of crucial importance

in the sequel is that of skein invariance, due to J. Conway.

t  We say that 3 oriented links L., L- and L, are skein related if
. they have diagrams which are identical except in the neighborhood of one
| crossing point where they look respectively as follows:

Now, let # be the set of ambient isotopy classes of oriented links in
; R3, and let A be a commutative ring. We say that a link invariant
P: % — Ais a linear skein invariant if
1(1) PO) = 1, where O denotes the 1-component unknot.

(2) There exist 3 invertible elements a,,a_,ao€ A such that whenever
L., L_, L, are skein related, then a, P(L,) + a_P(L_) + aoP(L,) = 0.

Our objective is to define a skein invariant P:. ¥ — Z[I, I mym™ 1]
t§ with values in the ring of Laurent polynomials in 2 variables I/, m. (Standing
B perhaps for Lickorish and Millett.) The elements a ., a_, a, will be respectively
Bo. =la_ =11a,=m

It will turn out that P is the universal linear skein invariant.
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§ 3. UNIQUENESS AND UNIVERSALITY THEOREMS
We prove:

THEOREM 3.1. If P:¥ — A is a skein invariant, it is uniquely deter- §
mined by the coefficients a,,a_ and a, of the skein invariance relation.

a,+a_

r—1
Proof. First note that P(O") = (— ) , where O" denotes the

4o
unlink with » components.

(r circles)

Starting from P(Q) = 1, and the skein related link diagrams

CO0

L, L_

we see that
a,P(O) + a_P(O) + a,P(O? =0,
and thus

POY = - 2%

Qo
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! Addingr —1 unknotted (and unlinked) disjoint components to each link
in the above picture gives the desired formula by induction on r.
| To prove the theorem, we shall use the following remark:

LEMMA 3.2. For every link projection, there is a choice of over/under
{ crossing at each crossing point which produces the unlink o

: Proof. The projection is a regular immersion of a disjoint union of
i circles. Order these circles arbitrarily. Now, running along the images of the
d circles, one after the other, declare that each new crossing is an underpass.
(This involves the choice of a starting point on each circle such that its
image is not a crossing point.)

: The link corresponding to this choice of crossings is QOr. Indeed, it is clear
' that the various components are stacked, one above the other, in their
I chosen order, and are thus unlinked. Furthermore, it is easy to see that
each component bounds a disk, and therefore is the unknot.

As a consequence of this lemma, if L is an arbitrary link diagram,
- there is a sequence of changes of over/under choices at the crossing points
which carries the diagram into a diagram of the unlink Or with the same
number r of components.

For each over/under change L,, L_, we get the first two terms of a
 skein relation (in a definite order). The third member L, of the skein
| related diagrams L., L_, Lo has one less crossing than L, and L_.
I Thus, if we define the complexity of a link diagram to be the pair
p (N, 9), where S is the number of crossing changes needed to get the unlink,
~and N is the number of crossings, and if we order the pairs by (N, S)
i <(N,S)if N<NorN=NandS < S’ (alphabetical order), then we see
1 by induction on the complexity that P(L) is completely determined by
I P(O) and the skein invariance a.P(L,) + a_P(L_) + aoP(Lo) = O.

: This proves theorem (3.1).

Example. Let T, be the right handed trefoil :
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Use the skein relation

C Q@

T, =L, L. =0 L,

We get
a,P(T,)+ a_ + a,P(L,) = 0.

Then, another use of a skein relation

@ @ @

L(;L:Lo LOZOZ L8=O

yields the formula

+a_
a+P(L0)+a_°(_a+a )+a0=0. *
0

Solving for P(T ) in the two equations gives the result:
P(T,) = —2a_a;' —a%ai*+ a;%as.

Of course, we do not know yet if P calculated in this way is well
defined. But if it is well defined, P(T,) must be given by the above
formula.
| Now, let A = Z[I,17*, m,m™ '] be the ring of Laurent polynomials in

2 variables I, m. Suppose P:% — Z[I, 171, m,m~1] is a skein invariant
satisfying
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IP(L.,) + ["1P(L_) + mP(Lo) = 0

| for any 3 skein related link diagrams L, , L_ and L.

THEOREM 3.3. If such a P exists it is universal in the following sense:

(1) P determines a unique skein invariant

T:% > Z[x,x" ', ¥ y Yzz ']

satisfying
xT(L,) + yT(L-) + zT(Lo) = 0

for every triple of skein related link diagrams L., L_ and L.

(2) Moreover,if P,: &% — A isany skein invariant with respect to three
invertible elements a.,a_,a,€ A as above, then s(T(K)) = P4K) for all
Ke%, where s:Z[x,x 4Ly,y 'z z 11— A is the obvious map deter-

mined by s(x) = ay,s(y) = a- and s(z) = ao.

i

For the proof of this theorem, the crucial fact is the following assertion.

LEMMA 3.4. Let P: % — Z[I, 1Y, m,m '] be a skein invariant as above,
ie. P(Q)=1, and IP(L,)+ I"'P(L_) + mP(Lo) = 0, if L,,L_ and
L, are skein related. Then, each monomial I“m® occuring (with non-zero
coefficient) in P(K) satisfies

a=bmod?2.
The proof of this lemma will actually show that
a=b=nrK)— 1mod?2

" for each monomial “m® of P(K), where HK) is the number of connected
components of K.

Proof of the lemma. True for the unknot, and more generally for the
unlink with r components, since

l l'—l r—1
e

' as we have seen earlier.
_ Now, suppose that L,, L_ and L, are 3 skein related link diagrams.
Then, we have
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P(L,) = —I"2P(L_) — I"'mP(L,).

Hence, the claim follows by induction on the complexity of the link
diagram, observing that r(L,) = r(L_) = r(L,) + 1.
This completes the proof of lemma 3.4.

Now, given the skein invariant P: % — Z[l,17!, m,m~ 1], define T: ¥
— Z[x,x 1, ¥,y 1,22z '] by replacing each monomial "m® of P(K) by

x'y/z* where

k=5,
i+j+ k=0,
I—j=a,

1e.i = 1/2(a—b),j = —1/2(a+b), k = b.

By the above assertion (a=bmod2), T is a Laurent polynomial in
X, ¥, 2.

Perhaps more explicitly, we have

T(x, y,z) = P((x/»)"? z - (xy)~17?).

Observe that T is homogeneous of degree 0. This certainly is a necessary
condition for T to be a skein invariant. (Exercise!)
It is clear that T((O) = 1. We have to verify that

xT(L,) + yT(L_) + zT(L,) = O,

if L,, L_ and L, are skein related.
Substituting (x/y)'/2 for [ and z - (xy)~ /2 for m in the relation

IP(L,) + I"'P(L_) + mP(L,) = 0,
- we obtain

(c/y)'?T(Ly) + /x)"*T(L-) + 2(xy)"*T(Lo) = 0

which yields the desired formula after multiplying by (xy)/2.

Further, if P,: ¥ — A i1s any skein invariant (with respect to invertible
elements a,, a_, a, of some commutative ring A) and if we define
s:Z[x,x 1 y,y Y, 22z7']> A4 by.s(x) = a,, s(y) = a_, s(z) = ay, then
S(T(L)) = P4(L) follows for all link diagrams L by uniqueness, since both
sT and P, satisfy the same skein invariance with respect to a., a_, a,.

The existence of P: ¥ — Z[I,17', m,m~1] will be proved in §6, after
some preliminaries on Hecke algebras in the next two paragraphs.
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§ 4. HECKE ALGEBRAS

In this section we isolate the classical facts about Hecke algebras which
we will need in the next two sections in order to prove the existence of P.
| The knowledgeable reader can thus skip this paragraph and proceed directly

{ to § 5.

Let K be a field and let g € K be some element of K.
~ The Hecke algebra H, over K corresponding to g is the associative
| K-algebra with unit 1, generated by Ty, ... Th-1 subject to the following

relations
5 T,T; = T;T; whenever li—j| =2,
T.T,,,T; = T;i+ TiTis,, and
T? = (q@—UDT: + 4
for all i,je {1, .,n—1}, with of course i < n—2 for the second family of

1 relations.
We see that there is a natural map H, —» H, ., of K-algebras which make

H,.,a(H,, H,)-bimodule. We think of g € K as being fixed once and for all.
Consider also the (H,, H,)-bimodule H, ® H, ®gq,_,H,-

PROPOSITION 4.1. There is a natural map of (H,, H,)-bimodules
®: Hn @ Hn ®Hn_1Hn - Hn+1
| given by o(a+Zb;®c;) = a+ Zb;T,c;.

Moreover, © is an isomorphism.

1 The proof of this proposition will occupy the remainder of this section.
§ We have divided it into seven claims.

CLamM 1. The map ¢ is well defined.
Proof. fue H,,_‘l , then
o(bu®c) = buT,c, and @bQuc) = bTuc. 3

—

A
| %But u is a K-linear combination of monomials in T,,.., T,-, which
commute with T, in H,.,. Hence, buT,c = bT,uc, and so ¢ is well

L defined.
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CLAM 2. The map ¢ is surjective.

We have to show that H,,, is generated as a vector space over K
by the monomials with at most one occurence of T,.

The proof will be by induction on n. Let M be a monomial in
T,,.., T, with two occurences of T, at least. Displaying two consecutive
occurences of T, in M, we write M = M, T,M,T,M;, where we can assume §
that M, is a monomial in T, .., T,,_; only. Assume by induction that M, _-‘7
contains T,_; at most once. If M, does not contain T,_, at all, then §

M = M1M2T3M3,= (q— 1M M, T M; + gM M,M;,

reducing the number of occurences of T, in each new monomial. If M, §
contains T,_, exactly once, we can write M, = M'T,_;M", with M’, M" §
monomials in T, .., T,_, and then,

M=MMT,T,_,T,M"M,,

using the fact that T,,.., T,_, commute with T,. But now, T,T, T,
= Tn—lTnTn—l YieldS

M=MMT, ,T,T,..M"M,,

reducing again the number of occurences of T,.
Hence, every element of H,,; is a sum a + X;b;T,c; with a, b;, ¢; coming }
from H, and it is now clear that ¢ is surjective. ;

CLAaM 3. Monomials in normal form generate H,,, over K.

We have actually proved a little more than was stated in Claim 2.
 Consider the following lists of monomials: 3

Sl - {1, Tl} N
Sz == {1, TZD Tle} 5
Ss = {L T3a T3T2: T3T2T1} 5

Si = {1, Ti? TiTi—15 ceey TiTi—l . Tl} )

Sn == {1, Tn, TnTn—l 9 seey TnTn—l vor Tl} .

Note the property that V; e S; implies T;,,V;€S;+;.
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| Consider the set of monomials M = U;.U,.... U, for all possible
" choices of U;eS;,i = 1,..,n. We shall say that these monomials are in

d rnormal form. There are (n+1)! of them.

3 } We claim that these monomials M generate H,.; as a K-space. Con-

I sequently, dimg H,,; < (n+1)! and also dimg{H, ® H, ® H,} < (n+1)!,

where the tensor product is over H,_; as above.

Proof. We may assume by induction that the claim holds for H,.
! As H,,, is generated over K by monomials M, and M = M,T M,
where My, M,, M, are monomials in Ty, .., T,—1, and as the induction
hypothesis makes the case of M, clear, we concentrate on M=M,T,M,.
: By induction, M, is a K-linear combination of monomials of the form
\ Vi Vyou Vo1, with VeS8, fori =1,.., n—1. We have

MlTnV1V2 e Vn—~1 — MllTnVn__l = MllUn,

with U, = T,V,_; €S,. By induction again, M is a K-linear combination
of monomials of the form U,.U,...U,_; with U;eS;. Thus M is a
K-linear combination of monomials U,.U,...U, as desired and
dimg H,+; < (n+1)!.

This shows also that H, ® _ H, is spanned over K by the subspaces
H,® U,_, with U,_, € S,_;. Therefore, its K-dimension is at most n!.n,
5o that the proof of claim 3 is complete.

B Remark. Let S,,, be the symmetric group on {1, ..,n+ 1}, and denote
| by s; the transposition (i, i+ 1). The same argument as above shows that any
! 1cS,., can be written as a product w; . w, ... . w,, Where

Wi € {1, 8;, $iSi— 1 s SiSi—q e S1} -

We shall use this remark presently in the proof of the following claim 4.

Exercise. Deduce from the remark that &,,,; has a presentation on
generators s, , ..., s, with the relations

s;5; = s;5, whenever |i—j|>2 with ij=1.,n,
SiSi+1Si = Si+15:iSi+1 for i = 1, aony n—1 5
s? =1 for i=1.,n.

CLAM 4. The monomials in normal form M = U,.U,...U,, with
U;eS; for i =1,..,n are K-linearly independent. Also, the map © is an
isomorphism.
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Proof. Denote by I: G, ; — N the word length in S, ,, relative to the
generators {8, S, , . S,}. For i € {1, .., n}, define L; € End(KS, ) by

R if  I(s;m) > I(m),
Lim) = {qs,—n +(g=Drn if Usm) < Um),

foreveryme S, .
The crucial fact is the following

ASSERTION. There is an algebramap L: H,,; - End((KS, ) such that
LT,)=1L; for i=1,.,n '

To prove the assertion, we have to check that the endomorphisms
L, € End(KS,, ) satisfy the defining relations of the Hecke algebra H,, ;.
For this, see the following three claims.

Assuming the assertion, consider a monomial in normal form
M = U,.U,...U,as above. Then, (M) maps 1 € K&, . {towy . Wy...W,,
where w; = s;8;_1 .. Si—; if Uy = T;T;—¢ ... Ti—j. The remark after claim 3
now shows that any of the (n+1)! elements of &, is of the form
Wy . W, ... . W,, SO that these elements are K-linearly independent in K&, ;.
But, as the map from H,,; to KS, which sends x to L(x) (1) is K-linear,
this implies that the elements M = U, . U, ... U, in normal form must also
be linearly independent. Hence, dimg H,,; = (n+1)!.

Now, a dimension count shows that the surjective map ¢ is an
isomorphism.

It remains to prove the above assertion: The L;s satisfy the defining
relations for H, . ;.

Cram 5. L? = (q—1)L;+ q for i=1,.,n
Proof. Letme S, . If l(s;m) > i), then
L¥r) = Lsm) = gsim + (g—Dsim

= (g— s + qn = (@—DLi+q) (M) .
If on the other hand, I(s;m) < I(m), set ' = s;u and observe that
I(s;x') > U='). Thus,
Lm) = L{gsm+(g—1)m) = L{gn'+(g—Dr)
= gsw' + (@—1)L{n) = (@—DL;+q) (m) .

The neXt claim will be used in proving the last two types of relations §
for the endomorphisms L;.




JONES POLYNOMIAL 287

CLAM 6. For j = 1,..,n define RjeEndK(KG,,H) by

Rim) = TS if  Uns;) > Un),
fm) = {qnsj + =D if lrs;) < Um).

Then, LiR; = R,L; forall ije {1, .., n}.

Proof. Choose i,je{l,..,n; and ne®,,,. The proof that L;R{m)
= R;L{(m) is by direct verification from the definitions of the operators
L;, R; and is divided into six cases.

| (©.1) (sms;) = lm) + 2,
| (6.2) I(s;ms;) = Um) — 2,
| (6.3)6.6) (sms;) = lm)  and

I(s;m) = lm) + &, where &= +1
I(rs;) = (m) + €, where ¢ = *1.

The first two cases are straightforward calculations.

Among the last four cases, two are also trivial, namely those with
¢ # ¢. There remain the two cases with ¢ = ¢ = £1. Then, the exchange
lemma applied to the symmetric group viewed as a Coxeter group (on the
| generators s, .., s,) implies that in these cases we have st = ms;. (If
I c=¢ = +1, this equality is given as property C in Bourbaki, Groupes et
Algébres de Lie, Chap. IV, n° 1.7. If e = ¢’ = —1, the same property yields
s{ms;) = (ms;)s;.) This is just what is needed to complete the verification of

Cramv 7. LL; = L;,L; whenever |i— jl =2,
LiLiy Li = LivyLilisy

B Proof. Let me@,,,. Write T = s;, . Sy, ... . 5;, in reduced form, i.e. with
§ r = l(n). We thus have © = R;R;__, .. R; (1).
| Setting R = R; .. R;,, we have
= R(s;s;) = R(s;s;) since |i—j| > 2, and thus
Since this holds for every m € S, , one has L;L; = L;L;.
| A similar calculation, based on the same principle, proves that L;L;,L;
= Li'l' lLiLi+1 fOI' i = 1, ooy n'—]..
This completes the proof of Proposition 4.1.

s S R B s e, S
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§ 5. THE TRACE

The fundamental idea of V. Jones which led him to the definition
of his original one-variable polynomial is the construction of the trace.
Originally, V. Jones used algebras which are quotients of the algebras H,.
The lifting of the trace to the Hecke algebras H, was observed by A. Ocneanu.

The trace will commute with the inclusion H, — H, ., and therefore yield
a trace on the direct limit of the H,’s. (Compare with the discussion
in § 12.)

TueoreM. Let K be a field and let gq,ze K be two elements of K.
Let H, be the Hecke algebra over K corresponding to q. There exists
a trace Tr:H, — K compatible with the inclusion H,— H,,,, 1ie. the
diagram

H | > Hn+1

commutes, and such that

() Tr(1) =1,
(2) Tr is K-linear and Tr(ab) = Tr(ba),
(3) If a,beH,, then Tr(aT,b) = zTr(ab) .

Notice that the last property enables us to calculate: Tr(x) for an
arbitrary x € H, by using the fact that monomials in normal form generate
H, over K. For.instance,

TI‘(Tl) = Z,
T«(T,T,) = Tr(Tle) = 22,
To(T,T,T;) = zT(T?) = z(g—1)z+q).

Proof. The K-linear map Tr: H,,; — K is defined by induction on n,
using the structure lemma of § 4 (Proposition 4.1):

(p:Hn @ Hn ®H,,_1 Hn :) Hn+1 4
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Starting with Tr: Hy = K — K the identity, one defines Tr: H,,; = K
by Tr(x) = Tr(a) + Z; zTr(bic;), if pa+X;h;Rc;) = x.
It is clear that if a, b € H,, then

Tr(aT,b) = zTr(ab),

since @(a®b) = aT,b.
The only statement to be proved is then:

Tr(xy) = Tr(yx) forall x,yeH,:;.

This is proved by induction on n.
We may assume that x and y are monomials containing T, at most once.

If y does not contain T, at all, then writing x = x'T,x", where X/, x"
are monomials in T, ..., T,,—, one has

Tr(xy) = zTr(x'x"y) = zTr(yx'x") = Tr(yx'T,x") = Tr(yx) .

If y contains T,, it suffices to check the case where x = aT,b and
y = T,, as is easily verified. (Here a,be H,.)

There are various cases depending on whether or not the elements
a and b actually contain T,_;. The worst case is the one in which
a=dT, ,a", b =bT, b with d,a",b', b" belonging to H,_;. We have
then

Tr(aT,bT,) = z((g— 1)Tr(ab)+qTr(ab'd"))
TH(T,aT,b) = z((g— 1)Tr(ab)+gTr(a'a"b)).

But
Tr(ab'b”) = Tr(@'T,-,a"b'b") = zTr(@'a"b'd"),
and
Tr(a'a’b) = Tr(@'a"b'T,-b") = zTr(a'a"b'b") .
Hence,

Tr(aT,bT,) = Tt(T,aT,b)

as desired.
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§ 6. EXISTENCE OF THE TWO-VARIABLE POLYNOMIAL
The polynomial will be defined as a braid invariant.

A braid o gives rise to a link K(a) by the “closing” operation, as shown
in the picture

HOXX

axe B K (o)

N

Closing a braid

Recall that every oriented link is ambient isotopic to a closed braid,
as was already known to Alexander [Al]. (See also [Mo].)
-~ Now, let K = (C(q, z) be the rational field in 2 variables q, z over the
complex numbers and let w = 1 — g + ze K.

With every braid o€ B, we will associate an element Vg, z) in the

quadratic extension K(,/q/zw) of K.

It is a quite remarkable fact that V (g, z) will depend only on the link
K(o) obtained from o by closing the braid as shown above, and not on o
itself.

Thus, we will be able to define Vi(q, z) = V (q, z), where o is any braid
such that K is ambient isotopic to K(a).

In order to define V (q,z) we now proceed to fix some notatlons

We use the following conventions regarding the generators o,, ..., 0,_; € B,
of the braid group on n strings B, .
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Recall that B, has a presentation on the generators Oy, .., On—1 with

relations
6.0, = oc0; if |i—jl=2,
and
G;0;+10i = 0;+10i0i+1

fori =1,.,n—2
Note that there is a well defined homomorphism e: B, — Z given by
e(c;) = 1,i = 1,..,n—1, on the generators. We call e the exponent sum.
There is also an obvious representation p:B, — H, determined by

p(o;) = T;.

1
Note that T; € H, isinvertiblein H,: T; ' = —(1—g+T;). Now, leta € B,.
q
The corresponding element V(g z) € K(\/q/zw) is defined by the formula
Vg 2) = (/)" @72 (g/w)ne@ D2 Tr(p(ar))

wherew = 1 — g + z, p: B, » H,, is as above, and e(e) is the exponent sum
of a.

: In order to show that V (g, z) depends only on the link K(a), we appeal
' to Markov’s theorem which gives necessary and sufficient conditions for
. 2 braids aeB,, BeB, to produce isotopic links K(a), K(B) by closing.
* Define a Markov move of type 1 to be the operation of replacing
a braid o € B, by a conjugate yoy~ ! € B, with y € B,.
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A Markov move of type 2 consists in replacing o€ B, by o.oc, or
.o, ' in B,,;. Or, replacing «.c,€B,,, resp. .6, '€ B,,, by a € B,
if « is a word in the generators ¢, .., 5,_; only.

THEOREM (Markov). Let a€B,, Be B, be two braids. Then, K(x)
and K(B) are ambient isotopic as oriented links iff there exists a finite
sequence of Markov moves carrying o to P.

For a proof, see [Mo].
Thus, we have to show that Vg, z) is unchanged by Markov moves

on a.
Let o€ B,, ye B, and B = yay~!. Then the string numbers of a and B

are the same. Also e() = e(B), and Tr(p(B)) = Tr(p(y)p()p(y)~*) = Tr(p(ev)).
Hence, V(q, 2) = V (g, 2).

IfaoeB,and p = a.0,€ B, 1, we have e(B) = e(0) + 1, n(B) = n + 1
(where n=n(a)). Thus,

Ve, 2) = (1/2)"+e@= D2 (g/w)re@= D12 (1/7)  Tr(p(a) \Q)
= Vg, z), as desired .
IfaeB,and p = ac,'eB,,;,thenef) = e(@) — 1, n(B) = n + 1 and
V(g 2) = (1/2)" @072 (gpw)n=e@= D2 (g/w). Tr{p(or) . T, *} .

Now,
., 1
p(d) Tn = ;p(a)(l_q+Tn)a

and

Tr{p(). T, *} = é(l—q+z) . Tr(p(a)) = (w/q) . Tr(p(&)) -

Hence, again V(q, z) = V. (q, 2).
Thus V (q, z) is well defined as an invariant of oriented links.

On the face of it, V (q, z) does not look much so far like a polynomial
with integral coefficients. However, as it turns out, a slick -change of
- variables will do the trick. We have:

PROPOSITION 6.1. There exists for each link K, a unique Laurent
polynomial Py (,m)ec Z[L, 1", m,m™1], such that :
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Py(iz/w)'?,i(q~ = q'"?) = Vda, 2),

o is a braid giving rise (up to ambient isotopy, of course) to

whenever
- the link K by closing.
Thus, V,(g, z) becomes the Laurent polynomial Py(l, m) in

Z[, 17 mm™ ']

after the change of variables
[ = izw)?, m=iq =g

The key to the proof of this fact is the skein invariance of V (g, 2)

which we now proceed to show.
Let B,ye€B, be two braids and let o, ,0_,x, be the three braids

o, = Boyy, o- =PBoy'v, % =B,

for some index k < n—1.
For any braid o € B,, with exponent sum e = e(a), define

1 Wq, 2) = (1/2)"Fe D2 (g/w)re" V2 p(a) e H,,

! where H, is now the Hecke algebra over K(/q/zw) with K = C(g, 2),
4. corresponding to g.

SKEIN INVARIANCE LEMMA. Set [ = i(z/w)'?* and m = i(g~ Y% —q'?).
Then, we have the relation

W, +17'W,_ +mW,, =0.

Taking the trace, we obtain from this lemma the skein invariance of
V (g, z): With the same notations as above

W, + 1"V, +mV, =0,
Proof of the lemma. Set e = e(0,), and observe that we have
W,, = (1/2)"(q/w)~2(1/2)" e~ D2(g/w)" =" D' p(B) Twp(Y) »
W, = (1/2)"Y(g/w)2(1/2)" eV (g/w)" =<7 V2 p(B) Ty *p(Y) -

An easy calculation now gives for IW,, + I7'W,_+ mW,, an expression
t of the form

i(1/2)"* ™ DI2(g/w)" eV p(B) . C . p(Y) ,

where

A O 5T M B 55V
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C — q—l/ZTk _ qI/ZT’;'I .3 q—1/2 . q1/2.
Recalling that T; ! = q~}(1—q+T,), it is easy to verify that C = 0.

Proof of proposition 6.1. Let K., K_ and K, be three skein related links.

It is an obvious consequence of the classical proof of Alexander’s theorem
that the three links can be presented as closed braids of the form

K, = K@), K_=K(@.), Ko= K(),

with o, = Poyy, a— = PBoy 'y, & = Py for some braids B, v € B, and some
index k < n—1.

 Writing V(K) for V, if K = K(a), it follows from the skein invariance
lemma above, that

W(K,) + I7V(K) + mV(Ky) =0, .

if K, , K_ and K, are skein related.

It follows now by induction on the link complexity, as in the proof
of uniqueness in §3, that V(K) is actually a Laurent polynomial with
integer coefficients in the variables  and m.

We change notation and set Pg(l, m) € Z[1, 1~ 1 m, m~1], where

PK(a)(i(Z/W)l/Za l(q_ 12 _ q1/2)) = Va(q9 Z)

Since it is obvious that Pi(l,m) = 1 if K is the' unknot O, we have
shown that P: & — Z[I, 17!, m, m™ '] exists as a skein invariant. It is universal
by what we saw before in § 3.
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§7. SOME PROPERTIES OF Py, m)

In this paragraph we gather some of the basic properties of the poly-
| nomial P(l, m), also denoted P(K) if the variables are understood.
Let K’ be the oriented link obtained from K by reversing the orienta-

{ tions of all the components. Then, we have

PropPERTY 7.1. P(K') = P(K).

i Proof. Let K,,K_,K, be three skein related links. We see that
| K, K’_ and K/, are also skein related. Hence,

IP(K',) + I"'P(K'_) + mP(K) = 0.

| By uniqueness, this implies P(K') = P(K) for all K. (Of course O'=0.)
| Property 7.1 can also be proved from the definition given in § 6 as
" follows. If K = K(a), then K’ = K(o), where &’ = 67 .. O} ifo = of .. oF.
Observe that the operation oo is a well defined antiautomorphism
of B,. There is an analogous antiautomorphism of H,, sending the monomial
M=T,.T, to M=T,. T, and it is easily checked that for all

.. - xeH,, Tr(x) = Tr(x').

Next, let K* be the mirror image of K. Then we have

PROPERTY 7.2. Pyg«(l, m) = Px(lI™ 1, m).

: Proof. Observe that if K., K_, and K, are skein related, then so are
| K* KX and K{§ in this order, i.e.

IPK*) + I"'P(K}) + mP(Kg) = 0.

The property follows by uniqueness applied to Pgx(l, m) = P71, m).
8 We shall skip the alternative proof of that property based on braid
{ presentations.

If K, and K, are two links and K, II K, their distant union (disjoint,
§ unlinked), then we have

’ -1
ProPERTY 7.3. P(K,II K;) = — i,

. P(K,). P(K,).

Proof. If K, = O, this follows from the skein invariance as shown in
the following picture

O 0P P i 58 I
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which yields
IP(K,) + I"'P(K,) + mP(K,I1O) = 0,
and therefore

|+ 171

PK,TIQ) = — .P(K,).

If K, is more complicated, use induction on the complexity of one
of its diagrams L,. If Ly ,L;,LS are skein related, so are L,II L},
LI L,,L,IILJ for any diagram L, of K, and Property 7.3 follows.

Second proof. If K, = K(o) with a € B,, and K, = K(P), with B e B,,
then K, 11 K, = K(a. s(B)) with o . s(B) € B,,+,, where s: B, — B,, ., shifts all
indices of the generators o, ..., 5,_; by m, i.e. s(o;) = ©,,4;. It follows that o
and s(B) commute in B,.,,, and it is easily verified that Tr(p(e.s(B))

= Tr(p(a)) . Tr(p(B)). Then,
Vas(B)(q: Z) = ((:Z/Zw)l/z . Va(qa Z) . Vﬁ(qs Z) .

With | = i(z/w)'’? and m = i(q~ }/*>—q"'?), we have

w
1 — —
[+ 171 (Z/w)l/2 — (z/w)_l/2 zq\ 1/? z
- - = = g 7 _ gl '=_W 1— g

 (z2a\"?z—(—q+2) (g’

B W 2(1—q)  \zw
Therefore,
I+ 171
Vas(B)(Q: Z) = - . Va(q’ Z) . VB(qs Z)

~ as required.
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If K,,K, are 2 links, denote by K, # K, a connected sum of K,
and K, performed from the unlinked union on any choice of components.

PrROPERTY 7.4. P(K,#K,) = P(K;). P(K5).

Proof. We use the skein relation

,/" ‘-\‘ ,f' -
{/ \ ) ! Y
{ } \
‘\ \--*l \\_/ -
# L

-

N

- -
\ ,/ AN
] ' \
} \ ]
7/ ~_ /’
- — o

-

L+:L1#L2 L_—_—Ll L():LIHLZ

2

, where L, and L, are diagrams of K; and K.
This gives the formula

IP(L,#L,) + I"'P(Ly#L,) + mP(L;11 L,) = 0.

Solving for P(L,#L,) and using property 7.3, the factor —([+I1"1)/m

cancels out and the result follows.
The proof using braid presentations is more complicated and will be

omitted.
Since P: % — Z[1, 17, m,m~ '] is the universal skein invariant, it must

| specialize to the Alexander polynomial and to the one-variable Jones
- polynomial.
Specifically, define

A(t) = Pxli, it~ %),

then we have

PROPERTY 7.5. A(t) satisfies the skein invariance
M) Ao =1,
Q) AK,) - AK-) + (Pt AK) = 0,

~ which characterizes the Alexander polynomial as normalized by J. Conway.
(See L. Kauffman, [Ka,].)

Recall from §3 that the exponent of m in each- monomial of Pg(l, m)
is congruent mod 2 to K) — 1, where r(K) is the number of components
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of K. Hence, for a knot, a link with a single component, the exponent of m
in Pg(l, m) is even and therefore Ay(r) = Pyfi, i(t}/?—¢~ /) is indeed a Laurent
polynomial in ¢. :

To obtain the one-variable Jones polynomial we use the substitution
| = it,m = i(t¥?—¢~1/2), Explicitly,

Vilt) = Pylit, ilt** —t~112))

Then we have

PROPERTY 7.6. V(t) satisfies the skein invariance
tV(Ky) — t™'W(K_) + (12—t Y)V(K,) = 0,

which (together with V(QO)=1) characterizes Jones one-variable polynomial,
with the sign conventions used in reference [Jo,].

Whereas Py(l, m) determines Ag(f) and V(t), it is known that there are
no other relations between these polynomials. More precisely :

(1) The Alexander polynomial Ag(f) does not determine Jones polynomial
Vi(t) because the trivial knot O and Conway’s eleven crossing knot

(2) Vk(?) does not determine A(z): The knots 4, and 11,4, have the
same V() but different A(¢).

(3) V() and A(t) together do not determine Pg(l, m): The knot 11 388
and its mirror image have the same V() and A(f) but different P(l, m).

For more details on these questions, see [L.-M.].

We now turn to L. Kauffman’s definition of the one-variable Jones
polynomial V(t) directly from the link diagram. .

§ 8. L. KAUFFMAN’S APPROACH TO V. JONES’ ONE-VARIABLE POLYNOMIAL

The importance of Kauffman’s approach [Ka,] is that it gives a new way
to define and compute Jones polynomial V(). It is by using this definition
that Kauffman and Murasugi prove their theorems about alternating links
(see § 10 and 11).

Let L be an unoriented link diagram. Look at a double point; with no
string orientation, they all look the same, up to a local homeomorphism :
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Locally, the plane R? is divided into four regions.

Look at the quarter turn the “over” line must make, in the positive
§i sense, in order to coincide with the “under” line. Call “A” the two regions
% which are swept by the over line during the trip. Call “B” the other two.

A

{ Definition. A marker for a double point is a choice of “4” or “B”
I for this double point. It is symbolised like that:

—®

Marker 4 Marker B
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Now, if a marker is chosen, one can split the link diagram by connecting
the two opposite regions whose name has been elected. Here are the pictures.

splitting if marker splitting if marker
A is chosen B is chosen

Definition. A state S for L is a choice of a marker at every double
point of L.

Suppose now that a state S for L is given. Make the correct splitting
at every double point of L. The underlying knot projection I is transformed
into a bunch I'y of disjoint simple closed curves in S%. Let | S| be the
number of curves in I'y.

Write a(S) for the number of markers A in the state S and write
b(S) for the number of B’s.

If ¢(L) denotes the number of crossings (double points) of L, one clearly
has 24D states.

L being given, Kauffman defines a polynomial <L> € Z[ A, B, d] in the
following way : ’

<L> =Y 4“5 B¥® gisi-1
S

the summation being taken over the 2°® states.

Notations. Write “(O” for an unoriented, connected, simple closed curve in
R? and write OII L for a disjoint union of such a diagram and an
unoriented link diagram L.

Property 1. <(O> = 1.
Property 2. <(OIIL> = d<L> if L is non empty.
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Property 3. Let L be an unoriented link diagram. Select a crossing X
and write L, for the diagram obtained from L by connecting the two
regions A at x, and write Lp for the diagram obtained by connecting
the two B’s. Then:

<L> = A<L,> + B<Lg>.

! PROPOSITION 8.1. < > is the unique function from the set of unoriented
 link diagrams to Z[A, B, d] which satisfies properties 1, 2 and 3.

The proof is straightforward.

| PROPOSITION 8.2. If one sets B = A" and d = —(A%+A7?%), one
* gets a function into Z[A*'] which is invariant under Reidemeister moves (ii)
- and (iii).

Notations. Following Kauffman, we shall still write < > for the function
into Z[A*']. From now on, only this function will be used.

We now recall briefly Kauffman’s proof of proposition 8.2.

First of all, we shall use Kauffman’s schematic way of writing property 3:

<XAX> = A<O(> + B<X>
Invariance under move (ii):

<Y >=A<F >+ B<A>

= A[B<ZT > + A<X>]
+B[B<XX> + A<)(>]
(ABd + A* +B*) <>+ AB <) (>

= <)(>,

" since we have set B = A" 'andd = —(42+47?).
Invariance under move (iii):

<N>=B<VWE(> + A<DN>

=B<oN> +A<IDN\=>
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by invariance under move (ii)

= <’_=.\'-> R
Q.E.D.

This seems to be as far as one can get without orienting link diagrams,
because < > is not invariant under Reidemeister move (i).
To remedy this state of affairs, Kauffman proceeds like this:

Let L be an oriented link diagram.

Recall now that, up to a rotation in R?, there are two types of double
points:

A X

Sign +1 Sign —1

Definition. The writhe number w(L) is the sum of the signs of the
double points of L.

This number is also called twist number. It was known to Tait and
much used by Little. See § 9 of these notes. )

Kauffman’s polynomial f;(4) € Z[A*'] is then defined in the following
way:

fi(4) = (4~ W<L>.
PROPOSITION 8.3. The polynomial f is invariant under Reidemeister
moves (i), (ii) and (iii).

Proof of proposition 8.3. The writhe number is unchanged by the moves (ii) |
and (iii). Hence proposition (8.2) implies the invariance of f under the
moves (ii) and (ii1). -
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We now prove the invariance under move ().
Let I be a link diagram with a portion looking like this:

o

/

and let L be the link diagram obtained from L by removing the loop.
It is immediate that

£A=> and f,B=>O

If we apply property 3 for < > we get
<> = A<L> + A" '<LUIO>.
By property 2
<[> = A<L> + A Y(—A4*—A"?%) <L>.

So <L> = (A—A"Y4*+47 %) <L> = (—4)7° <L>.

Now, for any orientation of the string, the sign of the double point
is — 1.

Hence w(L) = w(L) — 1.

Going back to the definition,

fi = (_A)—sw(i) <[> = (_A)—3W(L)+3 <I>
— (_A)—3w(L)+3 (_A)—-3 <L>
= (—A)" >V <L> = f;.

The proof for the other loop is similar. Q.E.D.

From proposition 8.3 we deduce that Kauffman’s polynomial induces a
map f: &% — Z[A*1].

; THEOREM 84. Themap f: % — Z[A*'] satisfies:
L. fO) =1

] 2. If L,,L_ and L, are skein related (see §3), then:
Atfy, — AT = (AT - A0)f,.
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From the universality of Jones polynomial, we obtain:

COROLLARY 8.5. Let K be an oriented link in R® and let L be
an oriented diagram of K. Then:

VK(t) = fL(t1/4)°

Recall that we use Jones definition in the Bulletin AMS [Jo;] for V.

If we were to use Jones definition in the Notices AMS [Jo,], we would
set A = t~ 14,

Proof of theorem 8.4. The pfoof of 1. is straightforward from the definition.
For 2., using Kauffman’s notations one has:

< N>=A<=>+A<)(>

and

<U>S=A<KX>+A<N>
Hence:

A<N>-A<¥> = (A-AH<=>

If we orient the strings and put the writhe number in the picture, we get
the formula 2. Q.E.D.

Using L. Kauffman’s definition of Jones polynomial, the following
properties are easily proved (enjoyable exercise left to the reader):

L

I. If K, and K, are two oriented links in S° let K,II K, denote their
distant union (one in each hemisphere). Then:

Vi, = H Vi, " Vi,

where p = —(tV2+¢7 13

II. Let K, # K, denote any connected sum of K; and K, as in §7
prop. 4. Then:

VK1 # Ky — VK1 ) VK2°
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IIL. Let K* denote the mirror image of K. Then:

Vix(t) = Vilt™) -
The first three formulas are rather straightforward from the definitions.
IV. (Jones reversing result). Let K be an oriented link in S* and let y
be a component of K. Let A be the linking coefficient of y with what is
left of K when we remove y. (We suppose that this is not empty ) Let K

be the oriented link obtained from K by changing the orientation of v,
while keeping the others fixed. Then:

Vi) = V(1) .

Proof. Of course, we have <K> = < K>, because, for the polynomial
< >, orientations do not matter.
Now: w(K) = w(y) + 2A.
So: w(K) = w(y) — 2.
Hence: w(K) = w(K) — 4\,
We substitute and get:

fo(d) = (—A) B <R> = (—A4)~ O <K>
= (_A)lzl(_A)—3w(K) <K> = (_A)12XfK(A) — AlZlfK(A) )
As one substitutes /4 for A to get Jones 1-variable polynomial, the

result follows.

To finish this paragraph, we illustrate quickly Kauffman’s definition by
computing Jones one variable polynomial for the right-handed trefoil T, .
(Compare § 3.)

There are 8 states associated to the standard knot diagram. One readily
sees that

<T,> = A% + 342Bd° + 34AB%*d + B%d*.
Substituting d = —(4%2+A4~ %) and B = A~! one gets
<T,>=—A>— A3+ 47"
As w(T ) = 3, one gets
fr ) = (—A)°<T,>=A"*"+4"12—-4A"1°.
Substituting t = A4'* one finally obtains

Ve, @) =t 1+t —t7* = t7H—=1+t+1%).
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Now, if one uses our computation in § 3

P(T,) = —2a_ai' —a*a3;? + a;?a?

-1

and substitutesa, = La_ = 1", a, = m one gets

Pr.(,m) = (=207 2—1"*m® + 1"2m?.

The last substitution [ = it; m = i(t'/2—t~1/2) gives (with relief!) the
" same result for Jones one variable polynomial. (Bulletin AMS definition.)

§9. TAIT CONJECTURES

Tait was primarily interested in the classification of knots (ie. one
component links). He organized the job in two steps.

Step 1. Classify generic immersions of the circle in S? (not R?!) modulo
homeomorphisms (possibly orientation reversing) of S2. This was mostly done
by the Rev. T. P. Kirkman (around 1880).

In this process, one has to remember that one is looking at knots in R3
and that one is trying to list knots according to their “knottiness”, i.e.
their minimal crossing number. So, Tait first reduced the number of double
points of a generic immersion by making one “local 180" rotation”.

Examples.
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ey

So, really, the problem was to list reduced generic immersion of S*.
Tait also recognised that is was sufficient to classify “prime” immersions, i.c.
immersions indecomposables with respect to connected sum.

Example of a connected sum:




308 P. DE LA HARPE, M. KERVAIRE ET C. WEBER

Step 2. Find how many knot types correspond to the same generic
immersion. Tait’s first observation was:

PropOSITION 9.1. A link projection being given, one can always choose
the heights at the double points in order that the corresponding link diagram be
alternating.

By definition, a link diagram is alternating if, when one follows any
string, the crossings are alternatively over and under.

We now reproduce Tait’s proof, because it will play its part in § 11.

Proof of proposition 9.1. Let L be a link projection in S? not passing
through the north pole N.

Call “region” a connected component of S? — L.

If PeS? — L, let I(P) be the intersection number mod 2 of L and a
generic 1-chain joining P to N.

Shade the regions for which I = 1 mod 2. §? is thus painted like a
chessboard, the region containing N being unshaded.

Example.

Let X be a double point of L. Near X, two opposite regions are shaded
and two aren’t.
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7

Choose a thread and travel along this thread toward the crossing point
and a little further. Call this thread “rl” if the shaded region is first
on your right and then on your left, while you travel. Notice that this does
not depend on the orientation you choose on the thread.
At each double point, one thread will be “rl” and the other will be “Ir”.
To construct an alternating link diagram from the link projection L
we make the following convention: A “rl” thread always passes over a “Ir”

thread.
ASSERTION. The link diagram thus obtained is alternating.

Proof. If one follows a string, after a double point a “rl” thread
becomes a “Ir” thread and conversely. Q.E.D.

ay

Suppose that L is a connected link projection. There are exactly two
ways to obtain an alternating link diagram from it. In this setting, the
question of amphicheirality is very natural: Are the two links ambient

Picture:

RS 4D U 5
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isotopic? If yes, they are amphicheiral (nowadays, one also says achiral).
If not, they are now called “chiral”.

Roughly speaking the chirality question arose more or less in these
terms in Tait. It is however obscured by considerations pertaining to knot
projections rather than to knots in R>.

In order to classify alternating knots, Tait used the following principles,
now called Tait conjectures:

CoNJECTURE A. Two reduced alternating diagrams of the same alter-
nating knot have the same number of crossing points. This number is
minimal among all diagrams.

A stronger form of conjecture A would be: The minimal diagrams of an
alternating knot are exactly the reduced alternating ones.

CoNJECTURE B. Two reduced alternating diagrams of the same knot are
“essentially unique”. More precisely one can pass from one to another by a
sequence of the following two operations:
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| (i) Another kind of “local 180" rotation” illustrated in the above picture,
and called “twisting” by Tait. (An analogous operation is called by him
“distortion”.)

(i) An inversion with respect to a 2-sphere X in S intersecting the projec-
tion “plane” in a circle, followed by a mirror through the projection plane

(in order that the composition be orientation preserving). For that, Tait
introduced the name “flype”, an old Scottish word meaning “to turn

outside in”.

.,

Example.
f
Intersection of X l
with the )

projection plane \

5 Remarks. 1. | If conjectures A and B were true, the classification of
@ alternating knots would mainly rely on listing generic immersions of 8t
& in S2.

2. If conjecture A is true, then an alternating reduced knot diagram with
 at least one crossing point represents a non trivial knot. This was first
| proved by C. Bankwitz, with a mistake corrected by R. Crowell. See [Ba],
and [Cr].
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3. Tait noticed that, from eight crossings on, there exist non alternating
knots. No actual proof was given. Tait had no “principles” to classify non
alternating knots.

4. Conjécture B is still open.

Let us now come back to the notion of writhe number of a knot
diagram L defined in § 8. Recall that, by definition, w(L) is the sum of the
signs of the crossing points.

A topological interpretation of w(L) is the following: take a small tubular
neighborhood of L and restrict the projection onto R? to the boundary
of this neighborhood. This restriction will have two curves of singularities:
the “contour apparent”. Choose one of them; it is a parallel of the knot.
The linking coefficient of this parallel with the knot is precisely w(L).
Notice that this parallel is defined only when a projection is chosen.

A careful reader of Tait [Tai] on p. 308 will remark that Tait knew that.
The Gaussian integral, interpreted via Maxwell theory, takes place of the
linking coefficient. In Tait’s point of view the parallel is turned 90" downward
on each fiber of the regular neighborhood of the knot.

C. N. Little also introduced the number w(L). He used it to classify
knots by making the following statement :

Little principle: Any two minimal diagrams of the same knot have the
same writhe number. (See [Li].)

This principle is known to be false; a counter-example is given by
Little’s duplication: the knot diagrams listed in Rolfsen’s book as 10,
and 10,4, have distinct writhe number, but represent the same knot as
discovered by K. Perko [Pe].

However, the following is still open:

CoNJECTURE C. Any two reduced and alternating diagrams of an
(alternating) knot have the same writhe number.

If L is a knot diagram, let L™ denote the mirror image of L. Clearly:
w(L) = —w(L™). So, if one believes some of the above conjectures, one is
ready to make the following conjecture, used by Tait as a fact:

'ConjEcTURE D. If K is an alternating and amphicheiral knot, then any
minimal projection of K has an even number of double points.

More daring people would conjecture that minimal diagrams of an
amphicheiral knot have Tait number zero (i.e. writhe number zero).
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Helped by these statements, Tait gave a list of twenty knots up to ten
crossings which are amphicheiral and believed that the list was complete

(which it is!).

We conclude this paragraph by recalling a few dates:
a First proof that knots do exist: H. Tietze in 1908 [Ti] proved that
the trefoil is knotted.

: b. First proof that non amphicheiral knots do exist: M. Dehn in 1914 [De]
proved that the left handed trefoil is not ambient isotopic to the right

 handed trefoil.

“¢. First proof that non alternating knots do exist: R. Crowell [Cr] and
K Murasugi [Mu,] proved in 1957 that the (3,4) torus knot is non
alternating. This result was already stated by C. Bankwitz.

§10. L. KAUrFMAN’S AND K. MURASUGI’S RESULTS
Definition. Let g(t) € Z[t*/*] be a non-zero element:
m : 1
g(t) = 2 ait', 1e§Z, a,#0, a,#0.

Define spang(t) = m — n.
. 1 : : .
In principle span g(t) € 3 Z. But, if g(¢) is the one variable Jones polynomial

" of an oriented link in S3, the span of g(f) will actually be an integer.
" To see that, use induction on complexity, like in § 3.

Definition. Let K be a link in S°.

| K is said to be splittable if there exists a 2-sphere X < S such that:

L ZnK = 0.

- 2. There is at least one component of K in each connected component

of $3 — X

TueoreM 10.1. Let K — S® be an oriented unsplittable link. Then:
span V(t) < c¢(K) .

: Comments. (i) One can define the number s(K) of split components
of K. Then, theorem 10.1 generalizes to:
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span Vi(t) < o(K) + s(K) — 1.

See [Mu,].

(i) At first sight, there is something disturbing in this inequality: the
polynomial V,(t) depends on the orientation of K, while the minimal
crossing number ¢(K) does not. But, in fact, span V(t) does not depend on
orientations, thanks mainly to Jones reversing result.

THEOREM 10.2. Let L be a connected and oriented link diagram. Suppose
L alternating and reduced. Then :

span V,(t) = c(L).

Recall that a link is prime if it cannot be decomposed (non trivially)
in a connected sum.

THEOREM 10.3. Let K be a prime oriented link. Then, for any non
alternating diagram L of K one has:

span Vi(t) < c(L) .

Comments. (1) We emphazise that the inequality is strict.
(i1) Primeness is necessary, as the following example shows:

Let K be the connected sum of a left-handed and a right-handed trefoil.
(This is the so called “square knot”.) It is easily proved, for instance by
using results of this paper, that ¢(K) = 6. Here are one alternating, and one
non-alternating minimal diagrams of K:
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As consequences one obtains:

TureoreM 10.4. Tait conjecture A is true for unsplittable links. (Not only
| for knots.) The stronger form of conjecture A is true for unsplittable prime
links. (For instance for prime knots.)

, This has the following extraordinary consequence concerning knot tabula-
tions, which we illustrate on an example: Suppose you want to prove that
the knots 8,0, 850 and 8, are non alternating. You may proceed like this:
1. Make the list of knot diagrams with at most 7 crossings (prime or not).
. Prove the list is exhaustive. (This has already been done by Tait!)

§ 7 Prove that the knots 8,4, 8,0 and 8,; are distinct from the preceding
ones. Alexander and Jones polynomials may help. Note that the spans of the
Jones polynomials for these three knots are strictly smaller than 8.

3. Observe that the knot diagrams 84, 820 and 8,, are non alternating.

Then you know that the knots 8, 8,, and 8,; are genuine non-

alternating knots!

Proceeding like this step by step (7 crossings, then 8 crossings, etc.),
and using computers, M. B. Thistlethwaite can go up to 13 crossings.
See [Thi].

By inspection among the 12695 prime knots with at most 13 crossings,
he proves that 6236 of them are non-alternating. This is a striking example
(among others) of the effectiveness of Jones polynomial for proving concrete

facts.

TueoreM 10.5. Conjecture D is true.
Proof. We know that, for a knot,
Vi) e Z[t*1] . (i.e. no “halves”) .

Moreover Vg(t) = Vg«(E™1).
So, if K is amphicheiral, the span of V' must be even.
But, for an _alternating knot, the span is equal to the minimal crossing

number. Q.ED.

Note. The two references for L. Kauffman and K. Murasugi’s results are
[Ka,] and [Mu,].
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§ 11. PROOF OF THE THEOREMS OF L. KAUFFMAN AND K. MURASUGI

Let I be an unoriented link projection in S2. We shall always suppose
that the image is connected, to avoid unnecessary complications. Observe
that all projections of an unsplittable link have this property.

We consider the chessboard associated to I'. To the shaded regions we
associate a graph £ < S? in the following way: In each shaded region we
select a point which will be a vertex of X. If two shaded regions meet at
a double point of I', we draw an edge joining the two vertices through
the double point. (If the two regions are not distinct, we will get a loop.)

We proceed in the same way with the unshaded (lightened) regions,
to obtain another graph A < S2.

Notice that, if ¢ is the number of double points of I' and if R is the
number of regions determined by I', one has R = ¢ + 2. This is an immediate
consequence of Fuler formula and the fact that the image of I' is a
quadrivalent graph.

Now, let L be an unoriented link diagram and write I for the underlying
link projection.

Let S be a state of L. We shall associate to S a subgraph Xg
of ¥ and a subgraph Ag of A in the following way:

(i) X5 contains all the vertices of X.
(i) Ag contains all the vertices of A.

(ii1) At each double point of I', one edge of A and one edge of X cross
each other. We keep the edge which joins the two regions which are
connected by the choice (marker) of S at the crossing point and we discard
the other edge.

LemMA 11.1. X5 is a deformation retract of S* — Ag and Ag is a
deformation retract of S*> — Zg. In other words, Xy and Ag are duals

in S? in the sense of J. H. C. Whitehead.

Let Iy be the configuration of disjoint simple closed curves in S?
obtained by cutting and glueing I" at each crossing point according to ‘the
indication given by S. By definition, | S| is the number of connected
components of I'.

LemmA 11.2. T’y is the boundary of a regular neighborhood of Xg
in S> |

As X5 and Ag are Whitehead duals, we can replace Zg by Ay if we wish.
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Proof of lemmas 11.1 and 11.2. Let us observe that we can recapture from
Y the union of the shaded regions in the chessboard by the following

procedure:
1) Choose a small disc D, around each vertex v of X.

2) For each edge e in X, choose a double apex A, like in the picture:

The union | ) D, u | J 4, is equal, up to an homeomorphism of S2, to

the union of the shaded regions of the chessboard. Its boundary (frontier)
is the link projection I'.

Of course, we could have replaced everywhere in the construction
“shaded” by “lightened ”.

Now, let S be a state for L. Let P be a double point of I'. The
cutting and glueing operation associated to § at P will remove the double
point P.

Near P, I' will be the boundary of the shaded surface newly obtained.
(And also the boundary of the lightened surface newly obtained.) Suppose,
for instance, that the state S chooses at P the marker corresponding to the
} shaded regions. Then, it is easy to see that, locally around P, the new
shaded surface deformation retracts to the edge of Xg going through P.
It is also easy to see that, locally around P, the new lightened region
deformation retracts on the two vertices of the edge of A which has been
. deleted to obtain As.

Picture:




what happens locally:

should help to see

The following pictures
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These small deformation retractions can be pieced together in order that
globally the newly shaded surface is a regular neighborhood N(Xg) of XZg.
In the same way, the newly lightened surface is a regular neighborhood N (Ay)
of Ag. The common boundary of N(Zg) and N(Ag) is I's.

These constructions are illustrated in the next two pictures. In the first
one, a knot projection is shown, with its chessboard, its graphs ¥ and A.
A state S is indicated. The second picture shows I'g, Zg, As.

This ends the proofs of lemmas 11.1 and 11.2.
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LemMA 113. Let G be a graph in S* and let N be a regular

neighborhood of G. Then the number of connected components of 0N
is equal to byo(G) + b(G).

Notation. b{G) denotes the i-th Betti number.
Proof of Lemma 11.3. By Alexander duality:
bo(ON) = by(N) + bo(S*—N) — 1
and by(N) = by(S?—N) — 1.
As N deformation retracts onto G, the result follows.

Recall that the number |S| of connected components of I's is an
important ingredient in Kauffman’s polynomial.

ProrosiTION 11.4. | S| = by(Zg) + bi(Ag) + 1.

Note. This proposition is the generalization to any state S of lemma 2
of K. Murasugi’s paper [Mu,].
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Proof of proposition 11.4. We know that| S| = bo(I's). Now I's = IN(Zs).
So, if we apply lemma 11.3 to G = X5, we get

bo(I's) = bo(Zs) + by(Zs) -
As X and Ag are S-duals, Alexander duality implies that
bo(zs) = bl(AS) + 1.

We substitute and the proof is finished.

LEMMA 11.5. Let G be a connected graph. Let G, and G, be two
subgraphs of G such that (1) G = G, U G,. Let Gy = G; NG, and
suppose that (2) G, contains no edge. Then

b1(Gy) + b1(G) < by(G).

Suppose moreover that (3) G, and G, have no isolated vertices. Then,
one has b(G;) + b(G,) = by(G) if and only if each vertex of G, is a
cut vertex (for the partition associated to G; and G,).

Consequence : Suppose that G; and G, have no isolated vertices and that
G has no cut vertex at all. Then, if b,(G;) + b;(G,) = b{(G) one has that
G, or G, is empty (and G,=G or G, =G).

Before proving lemma 11.5, we make some comments on the notion of
cut vertex.

Let v be a vertex of a graph H. Let E, be the set of edges of H
which have v in their boundary. Suppose given a partition of E, into two
non empty classes E; and E,. Then the chopping of H at v is constructed
in the following way:

Replace v by two vertices v; and v, and declare that the edges in E;
will have v; in their boundary instead of v (i=1, 2).

Definition. v is a cut vertex for the partition E, Il E, if the chopping
of H we just described produces a graph with one more connected component.
v is a cut vertex if there exists a partition such that... etc., etc.

Proof of lemma 11.5. The inequality is an immediate consequence of
Mayer-Vietoris, using that b,(G,) = O.

Now observe that conditions (1) and (2) amount to say that G, and G,
produce a (global) partition of the edges of G in two classes.

{
3§
El




. 322 P. DE LA HARPE, M. KERVAIRE ET C. WEBER

Suppose that moreover condition (3) is also satisfied. Let v be a vertex
of G,. Then G, and G, induce a partition of the set E in two non-empty
classes. Hence, the chopping of G at v is well defined.

Write G for the graph obtained by chopping G at all the vertices

of G,. Remark that G; and G, naturally embed in G. Their union is G
and their intersection is empty. So

b(Gy) + by(Gy) = by(G).

Now, let ©: G - G be the natural projection which identifies the pairs
of vertices created by the chopping. Remark that identifying two vertices
has homologically the same effect as adding a new edge between the two
vertices. This replaces m by an inclusion. If we write the end of the
homology exact sequence of this inclusion, we see immediately that =
induces a monomorphism

Hy(G) o Hy(G).

The same exact sequence shows that the monomorphism is an iso-
morphism if and only if each vertex of G, is a cut vertex for the partition
induced by G, and G,.

End of proof of lemma 11.5.

Notation. Let og be the subgraph of Xg obtained by removing the
isolated vertices of Xg. Let Ag be the .subgraph of Ag obtained in the

same way. |
Of course b,(Zs) = by(os) and by(As) = by(As). So, proposition 11.4 gives
| S| = bi(os) + bi(hs) + 1.

Definition. If S is a state, L. Kauffman calls S the dual state of S if,
at every double point of I, the choice opposite to S is made.
It is obvious from the definitions that:
(1) oguog =
(2) og N oy contains no edge.
(3) os and oy have no isolated vertices.
The same holds for Ag and A5 in A.

LeMMa 11.6. by(Z) + 1 = | = number of lightened region of the chess-
board. b,|A| + 1 = s = number of shaded region in the chessboard.

Proof. Obvious.
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PropoSITION 11.7. |S| 4+ |S| <Il+s= R = c+2.
Comment. This inequality is the “dual state lemma” of L. Kauffman.

Proof of proposition 11.7.
| S|+ 181 < by(os) + by(hs) + 1 + by(o3) + bi(hg) + 1
Recall that L is an unoriented link diagram and that I' is the underlying
link projection. Write A for the state defined by choosing “A” at every

double point of L. Write B for the state defined by choosing “B” every-
where. Of course, A and B are dual states.

Notation. If S is a state of L, write ¢g(A) for the contribution of the
state S to the polynomial <L>. @A) is an element of Z[4*1].

Write Dg for the maximal degree of the monomials in @g(A4) and write
dg for the minimal degree.

LeEMMA 11.8. For any state S one has:
Ds < D, and dg < dg.

Proof of lemma 11.8. We prove Dg < D,, the proof of dy < dg being
analogous. Write b = b(S) for the number of times “B” has been chosen
in the state S. There is a sequence of states:

A =5,8,..,8, = S where §; differs from S; ; in one double point
of L where the “ A” has been replaced by a “B”.

CLamM: Dg < Dy, _, .

Obviously the claim implies that Dg < D,. Come back to the definition of
< L>. The contribution of S; is

A%S) BbS) 18]~ 1 )
where B = A™! and d = —(A?+ A~ 2). The degree of A*S) B¥S) ig then
a(S;) — b(S;). |

- So (¥) a(S;) — b(S;) = a(S;—1) — b(S;—;) — 2.

Moreover: | S;_; | — 1 < |S;| <|S;_,| + 1.

- So (++) the maximal degree in A of (—A2—A~2)51~1 js at most two more
. than the one of (— 42— A4~ ?)ISi-11-1,

| Putting together (*) and () finishes the proof of lemma 11.8.
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An easy computation shows that:
Dy = ¢+ 2(Al-D),
dg = —[c+2(B|-1)].
Proof of theorem 10.1. Let L be any projection of an unsplittable link K
in R>. Then
Span f; = span <L> < D, — dg
and
Dy —dg =c+c+2Al + 2B —4 <2+ 2R-4
=2c+ 2c+4—4 = 4c.

As V(1) = f(t'*, this gives at once a proof of theorem 10.1.

We now proceed towards the proof of theorems 10.2 and 10.3.

LEMMA 119. Let L be a link diagram. Then L is alternating if
and only if either all the “A” are shaded or all the “B” are shaded.

Recall that we suppose that the image of the projection is connected.
Recall also that our convention to make a projection alternating was that
the “ A” should be shaded.

This lemma is essentially Tait’s theorem of § 9.

LEmMa 11.10. Let L be a link diagram, alternating according to the
convention. Suppose L without nugatory crossing, i.e. L reduced. Let S
be any state, distinct from A and B. Then

Dg < Dy and dg < dg .

Proof of lemma 11.10. The proof begins like the proof of lemma 11.8.
We assert that, because the link diagram is reduced, one has

l)s1 < DSO == DA‘

If the reader goes back to lemma 11.8, he will see that the assertion is
all that is needed to get lemma-11.10.
We prove the assertion:

As the link diagram alternates, according the convention the “A4” are
shaded. So | A| = [ = number of lightened regions.

We claim that | S; | = [—1, the reason being the following: At exactly
one double point P of T, the marker has passed from 4 = shade to




|
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B = light. By this operation, two different lightened regions have been
connected, and the newly shaded surface is still connected. (This immediately
implies | S, | = [—1.)

If not, the lightened spots in the neighborhood of P would belong to
the same lightened region. One could thus draw a circle entirely in the light,
joining the two spots:

This means that L would not be reduced, contrary to the hypotheses.
The same kind of argument proves dg < ds.
This finishes the proof of lemma 11.10.

Notation. Let S be the state obtained by choosing “shade” at every
double point and let L be the state obtained by choosing “light” at every
double point. Of course, S and L are dual states.

LemMma 11.11. |S| 4+ |L| = R.
Proof of lemma 11.11. One has

GS=2 )\‘S=®
and oL =Q A=A

oo . T L L ARS8 a-F pF

Then apply the proof of proposition 11.7. Q.E.D.
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Proof of theorem 10.2. First of all, we do not restrict the generality by
supposing that the diagram alternates according to the convention.

Now lemma 11.10 implies that the highest degree of the monomials
in <L> is D, and that the lowest degree is dy. The coefficients of these
monomials are different from zero.

Moreover A = Sand B = L.

So|A|+ |B| = R bylemma 11.11.

Hence:

Span <L> = D, —dg = 2c + 2|JA| + 2|B| —4 = 2¢c + 2R — 4
= 2c + 2(c+2)—4 = 4c.

1
As span V(t) = 2 span < L>, this finishes the proof.

ProrosITION 11.12.  Suppose that the graphs X~ and A have no cut
vertex. Suppose that for a state S we have

|S|+|S|=R.

Then S=S or S=0L.

Remark. X and A have no cut vertex if and only if I is not a non-trivial
connected sum. See also proof of prop. 11.7.

The proof of proposition 11.12 follows immediately from the consequence
of lemma 11.5.

Remark. There is an obvious generalisation of proposition 11.12 to the
case of a connected sum. Use the full lemma 11.5 instead of its consequence.

We now state an equivalent form of theorem 10.3.

THEOREM 10.3". Let L be a link diagram such that ¥ and A have
no cut vertex. (This will be fulfilled if the link is prime.) Suppose that
span V(t) = c(L). Then L isreduced and alternating.

Remark. There 1s a generalisation of theorem 10.3' to the case of a
connected sum: the only possible counter-examples to non-alternativity are
non-alternating connected sums of alternating links, as in the square knot.
We leave this to the reader. (Use generalisation of proposition 11.12)

Proof of theorem 10.3'. If L were not reduced, we could reduce it. But
this would contradict theorem 10.1.
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Now, the computation of D, — dg in the proof of theorem 10.1 shows
that, if span <L> = 4c, one has D, — dg = 4c¢ and so |A| +|B| =R
As T and A have no cut vertex, the proposition 11.12 implies that
A=SorA=L.

j’ By lemma 11.9, this means that L is alternating. Q.E.D.

§ 12. THE PATH FROM VON NEUMANN ALGEBRAS TO KNOT POLYNOMIALS

The discovery of the knot polynomials discussed here is due to Jones’
investigations on von Neumann algebras, and not to the flourishing activity
in low dimensional topology. In the light of previous work by J. Conway
on Alexander’s polynomial and of subsequent work by L. Kauffman (among
others) on Jones’ polynomial, such a genesis may seem unexpected. However
this cannot be challenged, and should indeed appear rather as a delight
of the subject than as any unpleasant awkwardness. With this point of view,
we offer some guidelines for (some of) the surprising relationships put into
light by V. Jones’ work.

FAcTORS OF TYPE Il

An involution on a complex algebra M is a conjugate linear transforma-
tion x+ x* of M such that (x*)* = x and (xy)* = y*x* for all x, y e M.
The algebra I(H) of all continuous operators on a Hilbert space H has a
canonical involution, with x* the adjoint of x, defined by <x*¢|n>
= <§&|xn> for all £, m e H. A representation of an involutive algebra M
on H is a morphism of algebras n: M — L(H) with n(x*) = (n(x))* for all
x € M. The algebra L(H) carries several useful topologies, and in particular
the weak topology, for which a sequence (x;),; of operators converges
to 0 iff the numerical sequences (<x;&|n>);; converge to 0 for all pairs
(€, ) of vectors in H.

A von Neumann algebra is an involutive algebra M with unit which has a
faithful representation m on H with (1) = id and with (M) a weakly
} closed self-adjoint subalgebra of L(H). (There are several equivalent defini-
i tions: see any textbook on the subject, for example one of [Di], [SZ],
[Tak].) A von Neumann algebra is defined to be a factor of type 11, if

(1) The center of M is reduced to scalar multiples of 1.

(2) There exists a normalized finite trace, namely a linear form tr: M — C
with tr(1) = 1 and tr(xy) = tr(yx) for all x, y € M.
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(3) The dimension of M over C is infinite.

Moreover, if M is a factor of type II, :
(4) There exists a unique normalized finite trace.

(5) For any real number d € [0, 1], there exists a self-adjoint idempotent
e € M with tr(e) = d.

(6) The trace is positive and faithful: tr(x*x) > 0 for all x e M, with
equality for x = 0 only.

(7) The algebra M is 81mple In particular, any representation of M is
faithful.

Let us add three comments. The notion of trace used in (2) may seem
slightly unusual in the context of operator algebras, but is the same as the
standard notion because we consider factors of type II, only; see [FH].
Because of (5), factors of type II, are also called finite and continuous.
Concerning (7), the following may be added under suitable separability
assumptions : Murray and von Neumann have defined for any representation
of M a multiplicity, which is a positive number (possibly infinite), and two
representations of M are unitarily equivalent iff they have the same
multiplicity.

A factor M of type II; is said to be hyperfinite if it has the following
property: for any integer n > 1, for any sequence x,, .., x, € M and for any
e > 0, there exists a finite dimensional self-adjoint subalgebra K of M such
that

dZ(ij K) < 8, j == 1, seey n

where d, is the distance associated to the norm x — tr(x*x)'/? on M. Murray
and von Neumann showed that two hyperfinite factors of type II; which can
be represented on a separable Hilbert space are *-isomorphic; the standard
notation for “the” hyperfinite factor of type I, is R. Moreover, they showed
that any factor of type II, contains a copy of R [MN]. Instead of
“hyperfinite ”, the factor R is also called “approximately finite dimensional”,
“injective ”, “semi-discrete” or “amenable”, and there is a good reason for
each of these words. A sub-factor of R is either finite dimensional or
isomorphic to R itself [Co 1] The importance of R in the theory cannot be
overemphasized.
Consider for example a countable group I', the Hilbert space [*T)

of complex functions &:T — C with ) |&(g)|? < oo, the right regular
gell

representation p: I' - L(I*(T')) defined by (p(g)€) (h) = &(hg), and the algebra
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W*[I') of operators x on 1) such that xp(g) = p(g)x for all geI'. It can

be shown that W*(I) is the von Neumann algebra generated by M9g)

for g e T, where (Mg)) (h) = &(g~ 'h). If all conjugacy classes (other than {1})

in T are infinite, then W*(I') is a factor of type II,; moreover it makes

sense to write any element in W*(I) as a (usually infinite) sum Y. z,M9),
g

and the normalised trace of such an element is z;. Assuming that T’
has infinite conjugacy classes and moreover that T contains an element a
of infinite order, we may formulate a nice exercise to illustrate property (5)
above: for any d € [0, 1], show that the infinite sum

d+ )

neZ
n¥F0

sin(dnm)

Ma")

defines in W*({I) a self-adjoint idempotent of normalized trace d (solution
in [Au}).

If T has infinite conjugacy classes and is moreover amenable, then
W*() is a model for the hyperfinite factor R, by [Co,]. Examples of
amenable groups: the group of permutations with finite supports of a
countable set, or any solvable group.

~ To cut a long story short, Murray and von Neumann knew of two non
isomorphic factors of type II;, namely R and W*T) for T the non abelian
free group on two generators [MN]. J. Schwartz established the existence of
a third one twenty years later [Sc], and D. McDuff showed there are
uncountably many [McD]. During the 1970’s, A. Connes made several
break-throughs in the knowledge of factors; for a review of the subject
before 1980, see [Co,]. By then, it was reasonable for V. Jones to embark
in the study of relative problems: understand subfactors (of type 1II,) in a
given factor of type II; .

THE INDEX

Let M, = M, be a pair of factors of type II,. It is natural to look
for invariants of these data, with respect to conjugacy of M, by (possibly
inner) automorphisms of M, . For the present discussion, the most successful
invariant is the index [M,:M,]e[l, co]. Its definition appears in [Jo,]
and [Jo,]; see also below.

Once the index is defined, the most obvious problem is to compute
exactly its possible values. If M, is the hyperfinite factor of type II,
then the set of possible values [M, : M,] consists of
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a continuous spectrum [4, 0] ,

a discrete spectrum {4 cos*(n/n)}, =3 4 s, ... -

This was quite a surprise at the time, as continuity is so often the rule
for objects defined by M, . (If the factor M, is not hyperfinite, our know-
ledge is fragmentary and the possible values for [M, : M,] may constitute a
proper subset of the spectrum just described. See [PP].)

Let us now define the index and indicate some steps in the proof of
Jones’ result about its spectrum. Given a pair M, ¢ M,, there exists a
conditional expectation e, : M; — M, which is a projection such that e,(axb)
= aey(x)b and tr(ey(x)) = tr(x) for a,be M, and xe M,. In fact both
e; and elements in M, may be looked at as operators on the Hilbert
space L?*(M,,tr) obtained by completion of M, for the scalar product
<x|y> = tr(x*y); then e; is the orthogonal projection of M, onto M,,
and xe M, acts on L*M,,tr) as the extension of the multiplication
V> Xy

Thus it makes sense to consider the von Neumann algebra M,
generated by e; and M. With one exception which is precisely the case in
which [M,:M,] = oo, the algebra M, is again a factor of type II,.
In the later case, the definition of the index is

1

[M,:M,] = tro(ey)

where tr, denotes the trace on M,.
As M; < M, is again a pair as above, the same construction may be
iterated, and one obtains a tower

MycMic..cM,cM,,, = <M,,e,> c ..

of factors of type II;. A basic fact is that the e;s satisfy three types of
relations

idempotence: e? = e;,
braiding : e; 16; = [M,:My] le;,
commutation: ee; = eje; if |i—j| > 2.
Also the traces on the M,’s induce a trace tr on the algebra generated
by the e;’s with

Markov property: tr(we;) = [M,:M,] *tr(w) for w in the algebra
generated by My, e, ..e;_;.
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] The invocation of Markov here refers to the property of the trace: its
= <M,,e,> is readily computable in terms of the

value on each step M, 4
There is moreover the crucial tool of

trace on the previous step M,.

positivity:  the algebra of operators generated by the /s has an involution
w — w* and tr(w*w) > 0 for any w # 0 in this algebra.

An analysis of these properties shows that, in case the index is smaller

than 4, then only the discrete spectrum.
[M;:My] e {4 cos*(T/n)}n>3

ed. (The reader will have some flavour of the analysis if he solves

is permitt
, in the usual

the following exercise: consider four unit vectors ej, .., €
3-space such that the scalar products satisfy

<e |e,> = <eyles> = <ezleg> = CosQ

<ej|es> = <eyle,> = <eyle> = 0

for some angle ¢; then cos ¢ = 1/2(\/3 —1) and ¢ can only be one of

two possible angles.)

Constructing pairs with [M;:M,] > 4 turns out to be easy (at least
when M, is hyperfinite). For the discrete spectrum, consider first a complex
number B # 0, an integer n > 1, and the algebra </, , abstractly defined

(as a complex associative algebra) by

generators: 1,81, s En—1>
2 _
& = &,
: . _ -1
relations: £81+1& = P&,
gg; = &g if |i—jl =2

If B > 0, the construction of a pair with [M, :M,] = P reduces to finding
a representation of &/ ,, = lim &/ , by operators on a Hilbert space with

n—> oo

each ¢, self-adjoint. Manipulations of linear algebra show that this can be
done precisely when P is in the spectrum of indices; see Jones’ papers,
as well as the expository [GHJ].

Note finally that the e’s and the g’s should not be confused: Given
some pair M, = M, of index B, it is of course obvious that /g , maps

onto the algebra generated by 1,e;,..e,—;. But for B in the discrete
spectrum, this map has a non trivial kernel when n is large enough.
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HECKE ALGEBRAS AND POLYNOMIALS

One of the main points to retain from above is the following: an
interesting problem with a surprising solution in the theory of von Neumann
algebras has motivated a serious study of the algebras ./ ,. Now </,
appears to be in close relationship with

(a) Artin’s braid group B, with generators oy, .., 0,_; and relations as
in § 6.
(b) The Hecke algebra of §4, that we denote from now on by H,,
to stress the dependence on ¢, where parameters fit well if
=2+qg+q "
To make this relationship transparent, we turn to another presentation of

oA, ,. Choose a complex number g with p =2 + g + g~ ' (observe that
qg# —1 as B#0) and set

T; = q5; — (1—¢g;) sothat g =

for i = 1,..,n—1. Then a straightforward computation shows that ./,
has a presentation with generators T, ..., T,,_; and relations

1) T? =@-DT:+ 4,

2 T.T;,T; = T 1 TiTiyy,

B) T.T;=T;,T;, i |[|i—j|=>2,

(S) TiTi+1Ti+ T;Tivy + TisiT; + Ty + Tiny +1=0.

The last relation was first pointed out by R. Steinberg. One has now more
precisely : ‘

(a) The assignment o;+ T; extends to a homomorphism p, from B,
to the invertible elements of &/, , (compare with § 6).

(b) £, is the quotient of the Hecke algebra H, , of § 4 by the relation (S).

For infinitely many values of g (namely g € R and g > 1, corresponding
to B > 4), Jones knew from his study of factors [Jo,] that </ , is given
with a faithful positive Markov trace tr. For each braid o€ B,, he set

1
Vg = — (2-11_,2> qe/ 2’Cr(pq(oc))

where e is the exponent sum of o as a word on the o;s. The first
theorem in [Jo,;] is that V, depends only on the link K(o) obtained by
closing o. Also V,(q) [respectively ¢q*/*V (g)] is a Laurent polynomial in g
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if K(o) has an odd [resp. even] number of components; in particular

| V,(q) can be defined for any g € C, not just for those corresponding to good
nd, most importantly for the early growth of the

| subject, a computation in the summer 1984 with the trefoil knot showed that
| v is not a mere variant of the Alexander polynomial. In fact, during a few
hours, this was thought to reveal a mistake in computations See end

of § 7 for more details on the independence of the polynomials.
One way to recover the two variable polynomial is to introduce a
family of traces on Hy o = lim H, ,, indexed by a complex parameter Zz.

Ocneanu, and exposed in §§ 5-6 above.

| traces on some &g .- A

This programme Wwas pursued by

Observe that

(1) Only one of Ocneanu’s traces
corresponding to z = q(q+ 1)~ 2.

(2) Ocneanu’s traces are positive for some values of the pair (g, z) only:

the picture appears in Wenzl’s thesis [We] and also in [J 04])-
studing knot

pass to the quotient A s, 0 namely that

(3) Tt does help to keep positivity considerations in mind when
polynomials: see § 14 in [Jos].

ADDED IN PROOF

| 1. V. Turaev has another and simpler proof of some of the geometric
| arguments given in § 11. See a next issue of this journal.

2. K. Murasugi has informed us that he has now proved conjecture C.
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