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ON THE JONES POLYNOMIAL

Swiss Seminar in Berne

by Pierre de la Harpe, Michel Kervaire and Claude Weber

These notes are based on the talks given in the seminar mentionned in

the title, held at Berne University during the summer term 1986 and

organized by the Troisième Cycle Romand de Mathématiques. However,

we have made no attempt to follow faithfully the oral expositions. On the

contrary, we have tried to reorganize the material in a unified survey with

a streamlined point of view and (hopefully) coherent notations.

We thank all the participants who attended the seminar and above

all our invited speakers, Vaughan Jones, Louis Kauffman and Hugh Morton.
We have also included the results of Kunio Murasugi, although his talks

were given the year before at the University of Geneva, when his work had

just been completed.
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§ 1. Introduction and historical remarks

Knot theory was born around the year 1867 in Scotland from the
imagination of three physicists ; two Scotsmen living in Edinburgh :

J. C. Maxwell and P. G. Tait and one Irishman living in Glasgow:
W. Thomson (Lord Kelvin). For more details, see [Kn].

The Transactions of the Royal Philosophical Society of Edinburgh
provide ample testimony of the dedication and enthusiasm of these pioneers,

trying to understand the structure of matter before quantum theory was

invented, and knot theory without topological invariants.

According to Thomson's theory of vortex atoms, the chemical elements

are constituted by small knots formed by the vortex lines of ether. For
physical reasons, these knots have to be "kinetically stable", as Thomson and
Tait said. In their opinion, this condition was going to prevent many knots
from giving rise to vortex atoms.

Having this in mind, Tait embarked on a quite formidable program:

(1) Try to classify knots in 3-space;

(2) Try to establish a hierarchy among knots, relying on some notion of
complexity ;

(3) Understand why many of the simple knots cannot occur in vortex
atoms (due to the stability condition).

In Tait's paper, this last point is stated as one of the main problems
of the whole subject.

(4) Explain the position of the lines in the spectrum of a chemical

element from the shape of the corresponding knot.

From an epistemological point of view, this program is remarkable :

Thomson and Tait (T and T as their friends used to call them) are

looking for very complicated mathematical objects, in contrast with the

attitude of many scientists trying to find a simple mathematical model when

they attempt to explain a new area in the natural sciences.

If one reads between the lines in Tait's paper, one can guess that he

started working on (1) and (2) full of the hope that it should not be too
difficult. However, he was aware of the fact that he was opening an entirely
new field and that surprises might well show up. Later on, he confessed

that the subject was harder than he had expected...

During the elaboration of Tait's first paper, Maxwell told him about
the work on knots by C. F. Gauss and J. B. Listing who had somewhat
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anticipated Tait's starting point: knot projections, alternating knots,

chessboard.

As to Maxwell, his interest for knots came from his theory of electro-

magnetism. For instance, he gave in [Ma] a lovely interpretation of Gauss

integral formula for the linking coefficient of two knots in 3-space: it is

(up to a factor) equal to the work required to move a magnet pole along

one knot while the other knot is run by an electric current. This interpretation

is repeated by Tait in [Tai]. One can see, along the way, Seifert

surfaces being introduced by Tait via the following physical argument.

If one has an orientable surface E in 3-space whose boundary is a given knot,

and if one "magnetizes the surface normally and constantly", as Tait says,

then the work required to move a magnet pole on another knot will be

the same as if the boundary of E were run by an electric current. Tait

thus uses the 2-chain given by E to compute linking coefficients.

Note. Today, G. de Rham himself says that he chose the terminology

"courant" for similar reasons. The "courants", like homology, are dual to

cohomology and one can think of 1-dimensional cycles as electric currents.

Tait thought of a knot as being a rubber band in everyday 3-dimensional

space. Two positions of the band represent the same knot if one can deform

one position of the band into the other. In modern terms, this is non-
oriented ambient isotopy.

To measure the complexity of a knot, Tait introduced what he called

the (degree of) knottiness. This is called today the crossing number of the

knot. By definition, it is the minimal number of double points among all

projections of the knot. We shall use the notation c(K).

Tait also introduced the beknottedness, now called unknotting number.

He did not use it very much to measure knot complexity because he soon
realized that its determination was difficult. We shall not talk about this
invariant in this paper, although the second integer which appears in the
inductive proof of uniqueness of the polynomial PK(l, m) in § 3 is clearly
related to it.

Tait's papers contain few proofs which are acceptable by the standards
of 20-th century topology. They rely on principles, not always very explicitly
stated, which seemed obvious to the author, but which are in fact unproved
statements. Nowadays, knot theorists have more or less agreed on the

meaning of these principles and have summarized them under the name of
"Tait conjectures". They are all related to the minimal crossing number
of a knot. (See § 9 in this paper.)
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A paradox in the achievements of 3-dimensional topology between 1965
and 1985 is the following: Knot theory was gradually embodied in the more
general theory of 3-dimensional manifolds. Classifications were attempted,
and sometimes attained by using very refined geometrical tools such as the
Waldhausen-Jaco-Shalen-Johanson theory on the embeddings of Seifert
manifolds in a Haken manifold. And yet, these refined methods could not
cope with simple questions related to knot projections. In fact, during this
period, the old time point of view, using projections, was almost forgotten
(except by a few people, for instance John Conway).

Today, Jones polynomials and more precisely L. Kauffman's very clever
and very elementary way of looking at the one-variable polynomial VK(t)
have put again knot projections under the spot-light. The one-variable
polynomial is the main ingredient in the proofs of several of Tait's
conjectures which have remained unproved for more than a century.

This paper is devoted to a presentation of these recent achievements,
mainly due to V. Jones, L. Kauffman and K. Murasugi.

We shall give the definition and prove some of the properties of the
two-variable Laurent polynomial P{K) e Z[/, Z"1, m, m"1] associated with
every oriented link K. The approach chosen here is that of V. Jones and
A. Ocneanu. Another approach which uses the notion of skein invariance
is due independently to many mathematicians : P. Freyd, D. Yetter, J. Hoste,
W. Lickorish, K. Millett, J. Prztycki and P. Traczyk. Although we do discuss
skein invariance in this paper, we do not go into the question of using it
to define the polynomial P(K).

As many mathematicians have worked simultaneously on various aspects
of the definition of the polynomial, it is difficult to give proper credit to
everyone. We apologize in advance for any missing ascription. We hope all
will agree that V. Jones has been the one pioneer who got the subject
started.

§2. Link diagrams

A link K in S3 (or R3) is a 1-dimensional compact smooth manifold
without boundary. We shall use r r(K) for the number of components
of K. A knot is a link with one component.

Most of the time K will be oriented.
Two oriented links K, K! are ambient isotopic if there exists a diffeo-

morphism h : S3 -> S3 of degree +1, such that h(K) K' and h\K is also of
degree +1 on each component.
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We will denote by S the set of ambient isotopy classes of onented

A link projection is a generic immersion of a (finite) disjoint union of

circles into the plane. (No triple point, transverse crossings only.)
^

If K<= R3is a link, an affine projection of on a plane c
gives a link projection if plK is a generic immersion.

It is possible to recapture the isotopy class of from the projection

by specifying at each crossing point a choice of one of the two branches,

singling out the branch which overcrosses the other.

A link diagram is a link projection together with such a choice of over/

under crossing at each crossing point :

A link diagram gives rise to a well defined ambient isotopy class of

link in 3-space and every link isotopy class can be obtained in this way.

Of course many different link diagrams can give rise to isotopic links.

This ambiguity is resolved by the notion of Reidemeister move :

The Reidemeister moves on link diagrams are the moves shown in the

following pictures, for all possible orientations.

links.

Part of a link
projection

Part of a link
diagram
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We shall take for granted without proof the classical

Theorem. Twooriented link diagrams represent ambient isotopic oriented

links if and only if one can pass from one to the other by a finite sequence

of Reidemeister moves.

This theorem is the basis of combinatorial knot theory.

Another notion on link diagrams which will be of crucial importance

in the sequel is that of skein invariance, due to J. Conway.

We say that 3 oriented links L+, and L0 are skein related if

they have diagrams which are identical except in the neighborhood of one

crossing point where they look respectively as follows :

1 Now, let ST be the set of ambient isotopy classes of oriented links in
Iß3, and let Abe a commutative ring. We say that a link invariant
1 P : T£-> A is a linear skein invariant if

(2) There exist 3 invertible elements a +, a_,a0 e A such that whenever

L+, L_ L0 are skein related, then + a_P(L_) + a0P(L0) 0.

Our objective is to define a skein invariant -» Z[/, T1, m, m"1]
with values in the ring of Laurent polynomials in 2 variables I, m. (Standing

perhaps for Lickorish and Millett.) The elements a+, a_, a0 will be respectively

a+ I,a_ l~1,a0 =.m.
It will turn out that P is the universal linear skein invariant.

(1) P(O) lp where O denotes the 1-component unknot.
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§ 3. Uniqueness and universality theorems

We prove :

Theorem 3.1. If P : <£ -* A is a skein invariant, it is uniquely
determined by the coefficients a+ ,a_ and a0 of the skein invariance relation.

a+
1

Proof First note that P(Or) where Or denotes the

unlink with r components.

(r circles)

Starting from P(O) 1, and the skein related link diagrams

oocooo
L+ L _ Lq

we see that

a+P(O) + a,P(O) + a0P(O2) 0,

and thus

P(o2)-a+ +
a0
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Adding r - 1 unknotted (and unlinked) disjoint components to each link

in the above picture gives the desired formula by induction on

To prove the theorem, we shall use the following remark.

Lemma 3.2. Forevery link projection, there is a choice of over/under

crossing at each crossing point which produces the unlink O •

Proof. The projection is a regular immersion of a disjoint union of

circles. Order these circles arbitrarily. Now, running along the images of the

circles, one after the other, declare that each new crossing is an underpass.

(This involves the choice of a starting point on each circle such that its

image is not a crossing point.)
The link corresponding to this choice of crossings is Or- Indeed, it is clear

: that the various components are stacked, one above the other, in their

chosen order, and are thus unlinked. Furthermore, it is easy to see that

each component bounds a disk, and therefore is the unknot.

As a consequence of this lemma, if L is an arbitrary link diagram,

there is a sequence of changes of over/under choices at the crossing points

which carries the diagram into a diagram of the unlink Or with the same

number r of components.
For each over/under change L+,L_,we get the first two terms of a

skein relation (in a definite order). The third member L0 of the skein

related diagrams L+, L_, L0 has one less crossing than L+ and L_.
Thus, if we define the complexity of a link diagram to be the pair

(N, S), where S is the number of crossing changes needed to get the unlink,

and Nisthe number of crossings, and if we order the pairs by S)

< (AT, Sj if N <N'or NIV' and SS"(alphabetical order), then we see

by induction on the complexity that P(L) is completely determined by

; P(O) and the skein invariance a+P{L+) + a_P(L_) + a0P(L0) 0.

This proves theorem (3.1).

Example. Let T+ be the right handed trefoil:
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Use the skein relation

T+L+ L_ O L0

We get

a+P(T+) + a_ + a0P(L0 0.

Then, another use of a skein relation

OD GO (0
LqL0 LQO2

yields the formula

a++a-\
a+P(L0) + *_•(- 1 + a0 0

Solving for P(T+) in the two equations gives the result:

P(T+) — 2u_a +
1

— a2-a+2 + a+2al.

Of course, we do not know yet if P calculated in this way is well

defined. But if it is well defined, P(T+) must be given by the above

formula.
Now, let A Z[/,/-1, m, m"1] be the ring of Laurent polynomials in

2 variables /, m. Suppose P: if -> Z[/, Z"1, m, m"1] is a skein invariant

satisfying
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IP(L+) + rxP(L_) + 0

for any 3 skein related link diagrams L+, L_ and L0.

Theorem 3.3. If such a P exists it is universal in the following sense :

(1) P determines a unique skein invariant

T\£e-> Zlx,x-\y,y-

for every triple of skein related link diagrams L+ L- and L0

(2) Moreover, if PA :L£-»• Ais any skein invariant with respect to three

invertibleelements a+,a_,a0 e Aas above, then — for all

K e SP, where s : Z[x, x'1, y, y'1, z, z'1] -> Ais the obvious map determined

by s(x) a+,s(y)a_ and s(z) a0.

For the proof of this theorem, the crucial fact is the following assertion.

Lemma 3.4. Let P :-»• Z [I,l~\ m, m~x] be a skein invariant as above,

i.e. P(O) 1. and /P(L+) + Z-1P(L_) + mP{L0)0, if L+, L_ and

L0 are skein related. Then, each monomial lamb occuring (with non-zero

coefficient) in P(K) satisfies

for each monomial l"mb of P(K), where r[K) is the number of connected

components of K.

Proof of the lemma. True for the unknot, and more generally for the

unlink with r components, since

as we have seen earlier.

Now, suppose that L+, L_ and L0 are 3 skein related link diagrams.

Then, we have

satisfying

xT(L+) + yT(L_) + zT(L0) — 0

a b mod 2

The proof of this lemma will actually show that

a b r{K)- 1 mod 2
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P(L+) -l~2P(L_) - l~1mP(L0).

Hence, the claim follows by induction on the complexity of the link
diagram, observing that r(L+) r(L_) r(L0) ± 1.

This completes the proof of lemma 3.4.

Now, given the skein invariant P: j£f Z[Z, Z"1, m, m-1], define T: J£f

- Z[x, x-1, y, y~\ z, z"1] by replacing each monomial lamb of P(K) by
xy'z*, where

k b,

i j k — 0,
i -j a,

i.e. i l/2(a—b\j -l/2(a + b), k b.

By the above assertion (a frmod2), T is a Laurent polynomial in
x, y, z.

Perhaps more explicitly, we have

T(x,3>,Z)

Observe that T is homogeneous of degree 0. This certainly is a necessary
condition for T to be a skein invariant. (Exercise

It is clear that T(O) 1. We have to verify that

xT(L+) + yT(L.) + zT(L0) 0,

if L+ L_ and L0 are skein related.

Substituting (x/y)1/2 for I and z • (xy)~1/2 for m in the relation

IP(L+) + /_1P(L_) + mP(L0 0,

we obtain

(:x/y)1/2T(L+) + (y/x)1/2T(LJ> + z(xy)~^2T(L0) 0

which yields the desired formula after multiplying by (xy)1/2.

Further, if : if -> A is any skein invariant (with respect to invertible
elements a+, a_, a0 of some commutative ring A) and if we define

s: Z[x, x"1, y, y~1? z, z-1] - ^4 by, s(x) a+, s(y) a_, s(z) a0, then

s(T(L)) Pa(L) follows for all link diagrams L by uniqueness, since both
sT and PA satisfy the same skein invariance with respect to a+, a_, a0.

The existence of P: J£f - Z[Z, Z"1, m, m"1] will be proved in §6, after

some preliminaries on Hecke algebras in the next two paragraphs.
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§4. Hecke algebras

In this section we isolate the classical facts about Hecke algebras which

we will need in the next two sections in order to prove the existence of

The knowledgeable reader can thus skip this paragraph and proceed directly

to § 5.

Let Kbea field and let qeKbesome element of

The Hecke algebra Hn over K corresponding to q is the associative

K-algebra with unit 1, generated by TTn^ subject to the following

relations

TtTjTjTt whenever | i —j I >2,
TtTi+1TiTi+1T;Ti + 1, and

Tf (q- l)T,+ q

for all i,je{1,n—1}, with of course i sS 2 for the second family of

relations.
We see that there is a natural map Hof K-algebras which make

Hn+1 a (Hn, HJ-bimodule. We think of q e K as being fixed once and for all.

Consider also the (Hn, Hn)-bimodule Hn © Hn

Proposition 4.1. There is a natural map of (Hn, Hn)-bimodules

(pi Hn © Hn Hn+1

given by (p(a + £^(g)Cj) a +
Moreover, (p is an isomorphism.

The proof of this proposition will occupy the remainder of this section,

j We have divided it into seven claims.

Claim 1. The map (p is well defined.

Proof. If then

j cp(bu®c) buTnc and cp{b®uc) bTnuc

j But m is a K-linear combination of monomials in T1,...?T„_2 which

commute with Tn in Hn+1. Hence, buTnc bTnuc, and so cp is well

defined.
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Claim 2. The map (p is surjective.

We have to show that Hn+1 is generated as a vector space over K
by the monomials with at most one occurence of Tn.

The proof will be by induction on n. Let M be a monomial in

T1,Tn with two occurences of Tn at least. Displaying two consecutive

occurences of Tn in M, we write M M1TnM2TnM3, where we can assume

that M2 is a monomial in 7\,Tn-1 only. Assume by induction that M2
contains Tn_1 at most once. If M2 does not contain T„_x at all, then

M M1M2T2nM3.= (q-l)M1M2TnM3 + qM1M2M39

reducing the number of occurences of Tn in each new monomial. If M2
contains Tn_1 exactly once, we can write M2 with M', M"
monomials in 7\,..., Tn_2 and then,

M M1M'TnTn_1TnM"M3,

using the fact that T1,..., T„_2 commute with Tn. But now, TnTn^{Tn
Tn_1TnTn_1 yields

M M1M'Tn_1TnTn_1M"M3

reducing again the number of occurences of Tn.

Hence, every element of Hn+1 is a sum a + with a, bt, ct coming
from Hn and it is now clear that cp is surjective.

Claim 3. Monomials in normal form generate Hn+1 over K.

We have actually proved a little more than was stated in Claim 2.

Consider the following lists of monomials :

^ {1, TJ
S2 { \,T2,T2Tx),

S3{1, t3,t3t2,t3 t2t,

St - {1, Tt,TiT;_
Sn {l,Tn,TnTn.

Note the property that e S,- implies
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Consider the set of monomials M U1.U2 U„ for all possible

choices of 17, e S„i 1,n. We shall say that these monomials are in

normal form. There are n+1) of them.

We claim that these monomials M generate Hn+1 as a K-space.

Consequently, dim KHn+1< (n+1)! and also dim © <g> < (n+1)!,

where the tensor product is over Hn^1 as above.

Proof. We may assume by induction that the claim holds for Hn.

As Hn+1 is generated over K by monomials M0 and M M1TnM2,

where M0,Ml5M2 are monomials in 7/,..., T„_1? and as the induction

hypothesis makes the case of M0 clear, we concentrate on M MxTnM2.

By induction, M2 is a K-linear combination of monomials of the form

V1.V2 Vn-1, with Vt e St for i 1,..., n-1. We have

M1TnV1V2... M'1TnVn-1 M\Un,

with Un TnVn-1 e Sn. By induction again, M\ is a K-linear combination

of monomials of the form U1. U2.... Un^t with U^eSi. Thus M is a

K-linear combination of monomials U1.U2....Un as desired and

dimK Hn +1 ^ (n +1)
This shows also that Hn ®JBrn_1HII is spanned over K by the subspaces

Hn ® Un-1 with Un - e Sn -1. Therefore, its K-dimension is at most n \ n,

so that the proof of claim 3 is complete.

Remark. Let S„ + i be the symmetric group on {1,..., n+1}, and denote

by st the transposition (i, i+1). The same argument as above shows that any

n e 6„+1 can be written as a product w1 w2 w„, where

wte{ 1, sisi_1 sj
We shall use this remark presently in the proof of the following claim 4.

Exercise. Deduce from the remark that 6„ + 1 has a presentation on

generators s1,..., sn with the relations

SiSj SjSi whenever | i — j \ ^ 2 with ij 1,..., n

SiSi+1Si si + 1SiSi + 1 for i 1,..., n-1,
sf 1 for i 1,..., n

Claim 4. The monomials in normal form M U1. U2 Un, with

Ui g iSf /or i 1,..., n are K-linearly independent. Also, the map cp is an

isomorphism.



286 P. DE LA HARPE, M. KERVAIRE ET C. WEBER

Proof. Denote by I:S„+1->• JV the word length in ®B + 1, relative to the

generators {sx, s2, -,s„}.For i e {1,n}, define Lf e EndK(KS„+1) by

for every neS„+1.
The crucial fact is the following

Assertion. There is an algebra map -» End^KS,,^) suchthat

IfT,) Lf for i 1,n.
To prove the assertion, we have to check that the endomorphisms

LteEndK(KS„+1) satisfy the defining relations of the Hecke algebra Hn+l.

For this, see the following three claims.

Assuming the assertion, consider a monomial in normal form

M Uj_.ll2 • Un as above. Then, L(M) maps 1 e KS„+1 to w2 w„,

where wt S;S;_ j... st-jif Ut TfTj-1... T;_j. The remark after claim 3

now shows that any of the (n+1)! elements of ©„+1 is of the form

Wj. w2 w„, so that these elements are L-linearly independent in

But, as the map from H„+x to K<Zn + 1 which sends x to L(x) (1) is K-linear,

this implies that the elements M U1.in normal form must also

be linearly independent. Hence, dimK Hn+1 (n+1)

Now, a dimension count shows that the surjective map 9 is an

isomorphism.
It remains to prove the above assertion: The s satisfy the defining

relations for Hn+l.

Claim 5. Lf (q— l)Li + q for 1,...,

Proof. Let ne S„+1. If Z(s;rc) > l(n), then

Lf(n Lispt)qsfn +

(q—l)Sj7r + qn((q— l)Lt + q) (rr).

If on the other hand, /(s;7t) < l{n), set n' spi and observe that

Z(SjJt') > l(n'). Thus,

Lf(n) LlqSitt +iq-l)n)Ufpi + l)n)

qspi' + (q—l)Li(n) 1)L; + (rc).

The next claimwill be used in proving the last two types of relations

for the endomorphisms L,.
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Claim 6. Forj define Rj e EndK(KS„+ j by

j if > /(it),

:S] + (q-l)n if l(KSj)<l(n).

Then, LtRj RjL, for all i,je{1,

Proof Choose ij e {1,n) and ite©„ + 1.The proof that LtRfin)

RjLfiit)is by direct verification from the definitions of the operators

Rj and is divided into six cases.

The first two cases are straightforward calculations.

Among the last four cases, two are also trivial, namely those with

s + e'. There remain the two cases with e e' ±1. Then, the exchange

lemma applied to the symmetric group viewed as a Coxeter group (on the

generators Si,...,s„)implies that in these cases we have S;it it (If

g _ e' _ i
9

this equality is given as property C in Bourbaki, Groupes et

Algèbres de Lie, Chap. IV, n° 1.7. If s e' -1, the same property yields

sfitsj) (its j)Sj.)Thisis just what is needed to complete the verification of

L,R}(n) RjLfit).

Claim 7. LtLj LjLi whenever | i-j \ > 2,

Proof. Let it e <3„+1. Write n sit. sh sir in reduced form, i.e. with

r /(tc). We thus have it RirRir_1/?;,(!).

Setting R Rir... Rh, we have

LiLfin)LiLjR(l) RL,Lf1) by claim 6,

R{stSj) R(SjSt)since | > 2, and thus

LiLffi)LjLiiit)•

Since this holds for every it eS„+one has L,/= LjLt.
A similar calculation, based on the same principle, proves that LjL. + jL;
Lj + 1L;Li+1 for i — 1,..., n 1.

This completes the proof of Proposition 4.1.

(6.1)

(6.2)

(6.3M6.6)

/(SjitSj) /(it) + 2,

/(sjitSj) /(it) - 2,

Z(Sjits;-) /(it) and

/(s;it) /(it) + e, where s ± 1,

l(nSj) /(it) + e', where s' ± 1.

TjLi+1L; — Li+1LjLj
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§ 5. The trace

The fundamental idea of Y. Jones which led him to the definition

of his original one-variable polynomial is the construction of the trace.

Originally, Y. Jones used algebras which are quotients of the algebras Hn.

The lifting of the trace to the Hecke algebras Hn was observed by A. Ocneanu.

The trace will commute with the inclusion Hn -> Hn+1 and therefore yield

a trace on the direct limit of the ff„'s. (Compare with the discussion

in § 12.)

Theorem. Let K be a field and let q, z e K be two elements of K.

Let Hn be the Hecke algebra over K corresponding to q. There exists

a trace Tr :Hn^K compatible with the inclusion Hn-+Hn + 1, i.e. the

diagram

commutes, and such that

(1) Tr(l) 1,

(2) Tr is K-linear and Tr(ab) Tr(ba),

(3) If a, b e Hn, then Ti(aTnb) zTr{ab).

Notice that the last property enables us to calculate • Tr(x) for an

arbitrary xeHn by using the fact that monomials in normal form generate

Hn over K. For instance,

Proof The K-linear map Tr: Hn+1 - K is defined by induction on n,

using the structure lemma of § 4 (Proposition 4.1) :

H,

K

Tr(TJ z,
Ti(T1T2) Tr(TjTi) z2

Tr[T1T2T1) zTr(Tf) z((q-l)z + q).

(p: Hn© H„ ®Hn-iHnH„+i •
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Starting with Tr: H0K->Ktheidentity, one defines Tr: -»

by Tr(x) Tr(a) + zTrfoCj), if cp(a+ 2^00,) x.

It is clear that if a, beHn,then
Tr (aTnb)zTr(ab),

since <p(a0b) aT„b.
The only statement to be proved is then :

Tr(xy) Tr(yx) for all x, ye Hn + 1

This is proved by induction on n.

We may assume that x and y are monomials containing T„ at most once.

If y does not contain T„ at all, then writing x x'T„x", where x,x
are monomials in Tx,T„_ x, one has

Tr(xy) zTr(x'x"y) zTr(yx'x") Tr(yxT„x") Tr(yx).

If y contains T„, it suffices to check the case where x aTnb and

y T„,as is easily verified. (Here a, be Hn.)

There are various cases depending on whether or not the elements

a and b actually contain Tn.l.Theworst case is the one in which

a a'T^X, b b'Tn^1b"witha',a",b',b" belonging to H„_x. We have

then

Tr (aTnbTn)z((q-l)Tr(ab) + qTr(ab'b"))

Tr (TnaTnb)z((q-l)Tr(ab) + qTr(a'a"b)).

But

Tr (ab'b")Tr {a'Tn_ia"b'b")zTr

and

Tr(a'a"b) Tr(dd'b'T^^b") - zTx{a'a"b'b").

Hence,

Tr (aTnbTn)Tr

as desired.
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§ 6. Existence of the two-variable polynomial

The polynomial will be defined as a braid invariant.
A braid a gives rise to a link K(ol) by the "closing" operation, as shown

in the picture

Recall that every oriented link is ambient isotopic to a closed braid,
as was already known to Alexander [Al]. (See also [Mo].)

Now, let K C(q, z) be the rational field in 2 variables q, z over the

complex numbers and let w 1 — q 4- z e K.
With every braid a g Bn we will associate an element Va(q, z) in the

quadratic extension K(<sfq]zw) of K.
It is a quite remarkable fact that Va(q, z) will depend only on the link

K(a) obtained from a by closing the braid as shown above, and not on a
itself.

Thus, we will be able to define VK(q, z) VJ^q, z), where a is any braid
such that K is ambient isotopic to K(cl).

In order to define Va(q, z) we now proceed to fix some notations.
We use the following conventions regarding the generators a„_1e5„

of the braid group on n strings Bn.

cue B2 K(a)

Closing a braid
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i i +1

x
CT/

1

Recall that Bn has a presentation on the generators al9..., <z„-i with

relations

j if I i — j I > 2

and

aiai+lai ai+laiai+l

for i 1,..., n—2.

Note that there is a well defined homomorphism e :Bn Z given by

e(<j.) 1, i 1,n—1, on the generators. We call e the exponent sum.

There is also an obvious representation p : Bn Hn determined by

P(CTi) Tt.

Note that Tt e Hn is invertible in Hn : Tf1 - (1 — q + Tj). Now, let a e Bn.

The corresponding element Va{q,z)eKi-Jq/zw) is defined by the formula

Va(q, z) (l/z)("+e<<")_1)/2 • (g/w)("~e<a)_1)/2 Tr(p(a)),

where w 1 — q + z, p : Bn -> Hn is as above, and e(oc) is the exponent sum

of a.

In order to show that Va{q, z) depends only on the link K(a), we appeal

to Markov's theorem which gives necessary and sufficient conditions for
2 braids a eBm, fie Bn to produce isotopic links K(a), K(fi) by closing.

Define a Markov move of type 1 to be the operation of replacing

a braid a e Bn by a conjugate yay~1 e Bn with y e Bn.
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A Markov move of type 2 consists in replacing a g Bn by a. g„ or
a. a n_1 in Bn+1. Or, replacing a a„ g Bn+1, resp. a a„_1 g £„+1 by a g Bn

if a is a word in the generators <jx a,,-! only.

Theorem (Markov). Let a e Bm, ß e Bn be two braids. Then, K(a)
and I£(ß) «re ambient isotopic as oriented links iff there exists a finite
sequence of Markov moves carrying a to ß.

For a proof, see [Mo].

Thus, we have to show that Va(q, z) is unchanged by Markov moves
on a.

Let a eBn, y g Bn and ß yay-1. Then the string numbers of a and ß

are the same. Also e(a) e(ß), and Tr(p(ß)) Tr(p(y)p(a)p(y)~ *) — Tr(p(a)).
Hence, V^q, z) Vfq, z).

If a g Bn and ß a. an e Bn+1, we have e(ß) e(a) + 1, n(ß) n + 1

(where n n(a)). Thus,

Vfa z)(1 /Z)0.+ «<«)-D/2 (q/wf--)/2 (1/z) Tr(p(a)

Va(q, z), as desired

If a e Bn and ß aa„_1 g + 1 then e(ß) e(a) — 1, n(ß) n + 1 and

Kp(g, z) (i^)(» + e(«)-iï/2
^ (^/w)("~e(a)—1)/2 (q/w). Tr{p(a). T"1}

Now,

p(a). T„_1 1 p(a). (1
q

and

Tr{p(a). T"1} fl-q+ z). Tr(p(a)) (w/<j). Tr(p(a)).

Hence, again Vf(q, z) Va(q, z).

Thus Vfq, z) is well defined as an invariant of oriented links.

On the face of it, Vfq, z) does not look much so far like a polynomial
with integral coefficients. However, as it turns out, a slick change of
variables will do the trick. We have :

Proposition 6.1. There exists for each link K, a unique Laurent
polynomial PK(l, m) g Z[/, l~1, m, m~ *], such that
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PK(i(z/w)ll2,i{q 1/2-41/2))

whenever a is a braid, giving rise (up to ambient isotopy, of course) to

the link K by closing.

Thus, Va(q,z) becomes the Laurent polynomial PK(Jl, m) in

Z [I,r\m, m"1]

after the change of variables

I i(z/w)112 m

The key to the proof of this fact is the skein invariance of Va(q,z)

which we now proceed to show.

Let ß, y g Bn be two braids and let a+, a_, a0 be the three braids

a+ ßoyy, oc_ ßa^y, oc0 ßy,

for some index k ^ n— 1.

For any braid a eBn, with exponent sum e e(ct), define

Wa(q, z) (l/z)(" + e_1)/2 (q/w)in-e-1)/2 p(a) e Hn

where Hn is now the Hecke algebra over K{J~qJzw) with K C(q, z),

corresponding to q.

Skein invariance lemma. Set I i(z/wY^2 und m i(q — q )•

Then, we have the relation

iw.+ + r'Wa_ + mW.

Takingthe trace, we obtain from this lemma the skein invariance of

VJq, z) :With the same notations as above

lVa+ + r1 + mFao 0.

Proof of the lemma. Set e e(a0), and observe that we have

Wa+ (l/z)ll2{q/w)~ ll2{l/z)in+e~1)l2{q/wfn~e~1)12.p(ß)Tfcp(y),

Wa_ (l/z)~ll2{q/w)ll2(l/z)in+e'1)l2{q/w)(n'e'1)l2p(ß)Tfe-1p(Yj.

An easy calculation now gives for IW^ + + mWao an expression

of the form

Hl/zf+e-m{q/wf -e-1)/2 p(ß). C p(y),

where
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C q-^Tk-q^T^ + q-^-q"2.
Recalling that Tk1 q~\l-q+ Tk), it is easy to verify that 0.

Proof ofproposition 6.1. Let K+, Kand K0 be three skein related links.

It is an obvious consequence of the classical proof of Alexander's theorem

that the three links can be presented as closed braids of the form

with a+ ßcTfcy, a_ ßat 1y, a0 ßy for some braids ß, y e and some

index k < n—1.

Writing V(K)forVaif KK(a),it follows from the skein invariance

lemma above, that

if K+, K_ and K0 are skein related.

It follows now by induction on the link complexity, as in the proof

of uniqueness in §3, that V(K)isactually a Laurent polynomial with

integer coefficients in the variables I and m.

We change notation and set PK(l, m) e Z[l, T1, m, m"1], where

Since it is obvious that PK{1, m)1 if is the unknot O, we have

shown that P: £? -> Z [I,l~\ m, m"1] exists as a skein invariant. It is universal

by what we saw before in § 3.

K +

K+ K(a+), K_o_), K0 a0),

IV{K+) + r'ViK-.) + 0,

PkUK^M1'2, i(q 1/2=Vfq, z)
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§ 7. Some properties of PK(l, m)

In this paragraph we gather some of the basic properties of the

polynomial PK(l, m), also denoted P(K) if the variables are understood.

Let K' be the oriented link obtained from K by reversing the orientations

of all the components. Then, we have

Property 7.1. P(K') P(K).

Proof. Let K+,K-,K0 be three skein related links. We see that

K'+,K'- and K'0 are also skein related. Hence,

IP{K\) + + Ô) 0.

By uniqueness, this implies P(K') P(K) for all K. (Of course 0' 0.)
Property 7.1 can also be proved from the definition given in § 6 as

follows. If K K(rjf then K' K(a'), where a' of;... afj if a erf;... <r|;.

Observe that the operation on-» a' is a well defined antiautomorphism

of Bn.There is an analogous antiautomorphism of H„, sending the monomial

M Tt... Tj to M' Tir...Titandit is easily checked that for all

xeHn,Tr(x) Tr(x').

Next, let Kx be the mirror image of K. Then we have

Property 7.2. PK*(hm) PrQ l>)•

Proof. Observe that if K+, and K0 are skein related, then so are

K1, KIand Ko(n order, i.e.

IP(K1) + r'PiKl)+ o 0.

The property follows by uniqueness applied to PK*(l,m) PK{1 S m).

We shall skip the alternative proof of that property based on braid

presentations.

If K1 and K2 are two links and LiII K2 their distant union (disjoint,

unlinked), then we have

i + r1
Property 7.3. P(K1\1K2) P(Kj). P(K2).

m

Proof. If K2 O, this follows from the skein invariance as shown in
the following picture
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CX> OOO

If K2 is more complicated, use induction on the complexity of one
of its diagrams L2. If L2 L2 L2 are skein related, so are L1II L2

L1II L2 L1II L2 for any diagram L1 of Kx and Property 7.3 follows.
Second proof. If K1 K(a) with a e Bm and K2 with ßeBn,

then Kx II X2 K(a. s(ß)) with a s(ß) g Pm+„, where s: Bn -> Pw+n shifts all
indices of the generators a1,..., an_x by m, i.e. s(af) om+i. It follows that a
and s(ß) commute in Bm+n, and it is easily verified that Tr(p(oc. s(ß)))

Tr(p(oc)).Tr(p(ß)).Then,

L, L_ L0 L, U O

which yields

+ l-iPiK,) + mPf^jU O) 0,

and therefore

PiK.UO)
m

Kz) (q/zw)112 z) Vp(q, z).

With I i(z/w)1/2 and m i(q~1/2 — q1,2\ we have

I + r1 (z/w)1/2 — (z/w) 1/2

q-^-q1'2
1/2 z - (1 — g + z)

1 — —
Z<A1/2_ z

m w J 1 — q

Therefore,

as required.
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If KltK2 are 2 links, denote by a connected sum of Kl

and K2performed from the unlinked union on any choice of components.

Property 7.4. P(K1#K2) P{K 1) • P(&2)-

Proof. We use the skein relation

» where L1 and L2 are diagrams of and K2.
This gives the formula

IPiL^LJ + l~1P{L1#L2) + mP^Lfil L2) 0.

Solving for P(L!#L2) and using property 7.3, the factor -(/ + /_1)/m

cancels out and the result follows.

The proof using braid presentations is more complicated and will be

omitted.
Since P : $£ Z[Z, P1, m, m_1] is the universal skein invariant, it must

specialize to the Alexander polynomial and to the one-variable Jones

polynomial.
Specifically, define

Ajrft) Px(i, i(£1/2-r1/2)),

then we have

Property 7.5. AK{t) satisfies the skein invariance

(1) A0(t) 1,

(2) A (K+)-A(K_) + (t1/2-t"1/2)A(K0) 0,

which characterizes the Alexander polynomial as normalized by J. Conway.

(See L. Kauflman, [Ka,].)

Recall from § 3 that the exponent of m in each monomial of P^l, m)

is congruent mod 2 to r(K) - 1, where r(K) is the number of components
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of K. Hence, for a knot, a link with a single component, the exponent of m
in PK(/, m) is even and therefore AK(t) PK(i, -1~1/2)) is indeed a Laurent
polynomial in t.

To obtain the one-variable Jones polynomial we use the substitution
I it, m i(tll2-t~1/2). Explicitly,

VK(t) PK(it, i(tll2-r112))

Then we have

Property 7.6. VK(t) satisfies the skein invariance

tV(K+) - r1^-) + (t1/2-rll2)v(K0) o,

which (together with F(0) 1) characterizes Jones one-variable polynomial,
with the sign conventions used in reference [Jo3].

Whereas PK(l, m) determines AK{t) and VK(t), it is known that there are
no other relations between these polynomials. More precisely :

(1) The Alexander polynomial AK(t) does not determine Jones polynomial
VK(t) because the trivial knot O and Conway's eleven crossing knot
11471 have A(t) 1, but VK(t) ^ 1 for K 11471.

(2) VM does not determine AK(t): The knots 4X and 11388 have the
same V(t) but dilferent A(t).

(3) VK(t) and AK(t) together do not determine PK(l, m): The knot 11388
and its mirror image have the same V(t) and A(t) but different P(l, m).

For more details on these questions, see [L.-M.].

We now turn to L. Kauffman's definition of the one-variable Jones
polynomial VK(t) directly from the link diagram.

§ 8. L. Kauffman's approach to V. Jones' one-variable polynomial

The importance of Kauffman's approach [Ka3] is that it gives a new way
to define and compute Jones polynomial VK(t). It is by using this definition
that Kauffman and Murasugi prove their theorems about alternating links
(see § 10 and 11).

Let L be an unoriented link diagram. Look at a double point; with no
string orientation, they all look the same, up to a local homeomorphism :
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Locally, the plane R2 is divided into four regions.

Look at the quarter turn the "over" line must make, in the positive

sense, in order to coincide with the "under" line. Call "A the two regions

which are swept by the over line during the trip. Call "J5" the other two.

Definition. A marker for a double point is a choice of "A" or "B"
for this double point. It is symbolised like that :

Marker A Marker B
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Now, if a marker is chosen, one can split the link diagram by connecting
the two opposite regions whose name has been elected. Here are the pictures.

Definition. A state S for L is a choice of a marker at every double
point of L.

Suppose now that a state S for L is given. Make the correct splitting
at every double point of L. The underlying knot projection T is transformed
into a bunch Ts of disjoint simple closed curves in S2. Let | S | be the
number of curves in Fs.

Write a(S) for the number of markers A in the state S and write
b(S) for the number of B's.

If c(L) denotes the number of crossings (double points) of L, one clearly
has 2C(L) states.

L being given, Kauffman defines a polynomial <L> e Z[A, B, d~\ in the

following way :

<L> £ Afl(S) Bb(S) d|s|_1
s

the summation being taken over the 2C(L) states.

Notations. Write "O" for an unoriented, connected, simple closed curve in
R2 and write O II L for a disjoint union of such a diagram and an
unoriented link diagram L.

Property 1. <0> 1.

Property 2. <OLIL> d<L> if L is non empty.
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Property 3. Let L be an unoriented link diagram. Select a crossing x

and write LA for the diagram obtained from L by connecting the two

regions i at x, and write LB for the diagram obtained by connecting

the two JB's. Then :

<L> A<La> + B<Lb>

Proposition 8.1. <> is the unique function from the set of unoriented

link diagrams to Z[yl, B, d] which satisfies properties 1, 2 and 3.

The proof is straightforward.

Proposition 8.2. If one sets B A 1 and d —(A + A one

gets a function into Z[yl± x] which is invariant under Reidemeister moves ii)
and (Hi).

Notations. Following Kauffman, we shall still write < > for the function

into Z[^[±1]. From now on, only this function will be used.

We now recall briefly Kauffman's proof of proposition 8.2.

First of all, we shall use Kauffman's schematic way of writing property 3 :

<X> AO<> + B<X>
Invariance under move (ii) :

<<)^> — ^ ^ X ^
A[B <X > + A<X>]

+B[B<X> + AO >]
{AB d + A* + B2) <X > + AB <) C>

<)<>,
< since we have set B A'1 and d — (A2 + A~2).

# Invariance under move (iii) :

<-y-> B <-> <> + a<^\<>
B <?c\"_> +A <0\->
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by invariance under move (ii)

=<-\-> •

Q.E.D.

This seems to be as far as one can get without orienting link diagrams,

because < > is not invariant under Reidemeister move (i).

To remedy this state of affairs, Kauffman proceeds like this:

Let L be an oriented link diagram.

Recall now that, up to a rotation in R2, there are two types of double

points :

Sign +1 Sign -1

Definition. The writhe number w(L) is the sum of the signs of the

double points of L.
This number is also called twist number. It was known to Tait and

much used by Little. See § 9 of these notes.

Kauffman's polynomial fL(A)eZlA±1^ is then defined in the following

way:

fL(A) (-T)~3w(L)<L>

Proposition 8.3. The polynomial f is invariant under Reidemeister

moves (i), (ii) and (iii).

Proofofproposition 8.3. The writhe number is unchanged by the moves (ii)

and (iii). Hence proposition (8.2) implies the invariance of / under the

moves (ii) and (iii).
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We now prove the invariance under move (i).

Let L be a link diagram with a portion looking like this :

and let L be the link diagram obtained from L by removing the loop.

It is immediate that

If we apply property 3 for < > we get

<L> A<L> + A'1 <LIIO> •

By property 2

<L> A<L> + A-\-A2-A~2) <L>

So <L> (A-A-^AA'2)) <L> {-Ay3 <L>
Now, for any orientation of the string, the sign of the double point

is —1.

Hence w(L) w(L) — 1.

Going back to the definition,

fL {-A)~3ML) <L> (~Ay3w{L) + 3 <L>

From proposition 8.3 we deduce that Kauffman's polynomial induces a

map /:«£?- Z[^4±1].

Theorem 8.4. The map / : Jâf Z[^4±1] satisfies :

and

(—y4)~3w(L) + 3 —^4)-3 <L>
{-A)~3^L) <L> =fL.

The proof for the other loop is similar. Q.E.D.

1. /(0) i.

2. If L+, L_ and L0 are skein related (see § 3), then:

A4fL+-A~*fL_ (A~2-A2)fLo.
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From the universality of Jones polynomial, we obtain:

Corollary 8.5. Let K be an oriented link in R3 and let L be

an oriented diagram of K. Then :

VK(t)fL(tm).

Recall that we use Jones definition in the Bulletin AMS [Jo3] for VK.

If we were to use Jones definition in the Notices AMS [Jo4], we would

set A r1/4.

Proofof theorem 8.4. The proof of 1. is straightforward from the definition.

For 2., using Kauffman's notations one has:

< X> ^4<X> + A'l<K>
and

<X> A_1<X>

Hence :

A<X>-A"1<X> =(A2-Ä1)<^>

If we orient the strings and put the writhe number in the picture, we get

the formula 2. Q.E.D.

Using L. Kauffman's definition of Jones polynomial, the following

properties are easily proved (enjoyable exercise left to the reader) :

I. If Kx and K2 are two oriented links in S3, let Kill K2 denote their

distant union (one in each hemisphere). Then :

K2 t1 VKI ' VK2

where \x -(t1/2 + r1/2).

II. Let K1 # K2 denote any connected sum of K1 and K2 as in § 7

prop. 4. Then :

# K2 Vki ' VK2 -
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III. Let Kxdenote the mirror image of K. Then :

vK.{t)

The first three formulas are rather straightforward from the definitions.

IV. (Jones reversing result). Let K be an oriented link in S and let

be a component of K. Let Xbe the linking coefficient of y with what is

left of K when we remove y.(Wesuppose that this is not empty!) Let K

be the oriented link obtained from K by changing the orientation of y,

while keeping the others fixed. Then :

Vk{t)

Proof. Of course, we have <K> <K>, because, for the polynomial

< >, orientations do not matter.

Now : w(K) w(y) + 2X.

So: w{K) w(y) - 2X.

Hence : w(K) w{K) — 4X.

We substitute and get :

fk(A) (-^)"3w® <K> (-4)"3w<x> + 12x

(-^)12X(-^)-3w(K) <K> A'21fK(A)

As one substitutes f1'4 for A to get Jones 1-variable polynomial, the

result follows.

To finish this paragraph, we illustrate quickly Kauffman's definition by

computing Jones one variable polynomial for the right-handed trefoil T +.
(Compare § 3.)

There are 8 states associated to the standard knot diagram. One readily

sees that

< T+ > A3d+ 3 A2Bd°+ + B3d2

Substituting d -(A2 + A~2) and B one gets

< T+ >—A5-A~3 +

As w(T+) 3, one gets

fTJA) -Ar9 <T+>+ A'12 - A'16.

Substituting t A1/4 one finally obtains

VTft)t'1 + t"3 - r4 t_4(-l + t + t3).
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Now, if one uses our computation in § 3

P{T+) —2fl_fl +
1

— a2ia+2 + a+2al

and substitutes a+ /, a_ Z-1, a0 m one gets

PT+(l,m) (-2r2-r4)m° + l~2m2

The last substitution I it; m i(t1/2 — t~1/2) gives (with relief!) the

same result for Jones one variable polynomial. (Bulletin AMS definition.)

§9. Tait conjectures

Tait was primarily interested in the classification of knots (i.e. one

component links). He organized the job in two steps.

Step 1. Classify generic immersions of the circle in S2 (not R2 modulo
homeomorphisms (possibly orientation reversing) of S2. This was mostly done

by the Rev. T. P. Kirkman (around 1880).

In this process, one has to remember that one is looking at knots in R3

and that one is trying to list knots according to their "knottiness", i.e.

their minimal crossing number. So, Tait first reduced the number of double

points of a generic immersion by making one "local 180° rotation".

Examples.
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So, really, the problem was to list reduced generic immersion of S1.

Tait also recognised that is was sufficient to classify "prime" immersions, i.e.

immersions indécomposables with respect to connected sum.

Example of a connected sum :
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Step 2. Find how many knot types correspond to the same generic
immersion. Tait's first observation was:

Proposition 9.1. A link projection being given, one can always choose

the heights at the double points in order that the corresponding link diagram be

alternating.

By definition, a link diagram is alternating if, when one follows any
string, the crossings are alternatively over and under.

We now reproduce Tait's proof, because it will play its part in § 11.

Proof of proposition 9.1. Let L be a link projection in S2, not passing

through the north pole N.

Call "region" a connected component of S2 — L.

If P e S2 — L, let I(P) be the intersection number mod 2 of L and a

generic 1-chain joining P to N.
Shade the regions for which 7=1 mod 2. S2 is thus painted like a

chessboard, the region containing N being unshaded.

Example.

Let X be a double point of L. Near X, two opposite regions are shaded

and two aren't.
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Choose a thread and travel along this thread toward the crossing point

and a little further. Call this thread "rZ" if the shaded region is first

on your right and then on your left, while you travel. Notice that this does

not depend on the orientation you choose on the thread.

At each double point, one thread will be "rZ" and the other will be "Zr".

To construct an alternating link diagram from the link projection L

we make the following convention : A "rZ" thread always passes over a "Zr"

thread.

Assertion. The link diagram thus obtained is alternating.

Proof. If one follows a string, after a double point a "rZ" thread

becomes a "Zr" thread and conversely. Q.E.D.

Suppose that L is a connected link projection. There are exactly two

ways to obtain an alternating link diagram from it. In this setting, the

question of amphicheirality is very natural: Are the two links ambient

Picture :
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isotopic? If yes, they are amphicheiral (nowadays, one also says achiral).

If not, they are now called "chiral".
Roughly speaking the chirality question arose more or less in these

terms in Tait. It is however obscured by considerations pertaining to knot

projections rather than to knots in R3.

In order to classify alternating knots, Tait used the following principles,

now called Tait conjectures :

Conjecture A. Two reduced alternating diagrams of the same

alternating knot have the same number of crossing points. This number is

minimal among all diagrams.

A stronger form of conjecture A would be : The minimal diagrams of an

alternating knot are exactly the reduced alternating ones.

Conjecture B. Two reduced alternating diagrams of the same knot are

"essentially unique". More precisely one can pass from one to another by a

sequence of the following two operations :
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(i) Another kind of "local 180° rotation" illustrated in the above picture,

and called "twisting" by Tait. (An analogous operation is called by him

"distortion".)

(ii) An inversion with respect to a 2-sphere 2 in S3 intersecting the projection

"plane" in a circle, followed by a mirror through the projection plane

(in order that the composition be orientation preserving). For that, ait

introduced the name "flype", an old Scottish word meaning "to turn

outside in".

Example.

Remarks. 1. If conjectures A and B were true, the classification of

alternating knots would mainly rely on listing generic immersions of S

in S2.

2. If conjecture A is true, then an alternating reduced knot diagram with

at least one crossing point represents a non trivial knot. This was first

proved by C. Bankwitz, with a mistake corrected by R. Crowell. See [Ba],
and [Cr].
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3. Tait noticed that, from eight crossings on, there exist non alternating
knots. No actual proof was given. Tait had no "principles" to classify non
alternating knots.

4. Conjecture B is still open.

Let us now come back to the notion of writhe number of a knot
diagram L defined in § 8. Recall that, by definition, w(L) is the sum of the
signs of the crossing points.

A topological interpretation of w(L) is the following : take a small tubular
neighborhood of L and restrict the projection onto R2 to the boundary
of this neighborhood. This restriction will have two curves of singularities:
the "contour apparent". Choose one of them; it is a parallel of the knot.
The linking coefficient of this parallel with the knot is precisely w(L).
Notice that this parallel is defined only when a projection is chosen.

A careful reader of Tait [Tai] on p. 308 will remark that Tait knew that.
The Gaussian integral, interpreted via Maxwell theory, takes place of the

linking coefficient. In Tait's point of view the parallel is turned 90° downward
on each fiber of the regular neighborhood of the knot.

C. N. Little also introduced the number w(L). He used it to classify
knots by making the following statement :

Little principle : Any two minimal diagrams of the same knot have the

same writhe number. (See [Li].)
This principle is known to be false; a counter-example is given by

Little's duplication: the knot diagrams listed in Rolfsen's book as 10161

and 10162 have distinct writhe number, but represent the same knot as

discovered by K. Perko [Pe].
However, the following is still open :

Conjecture C. Any two reduced and alternating diagrams of an

(alternating) knot have the same writhe number.

If L is a knot diagram, let Lx denote the mirror image of L. Clearly:
w(L) — w(Lx). So, if one believes some of the above conjectures, one is

ready to make the following conjecture, used by Tait as a fact:

Conjecture D. If K is an alternating and amphicheiral knot, then any
minimal projection of K has an even number of double points.

More daring people would conjecture that minimal diagrams of an

amphicheiral knot have Tait number zero (i.e. writhe number zero).
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Helped by these statements, Tait gave a list of twenty knots up to ten

crossings which are amphicheiral and believed that the list was complete

(which it is

We conclude this paragraph by recalling a few dates :

a. First proof that knots do exist: H. Tietze in 1908 [Ti] proved that

the trefoil is knotted.

b. First proof that non amphicheiral knots do exist: M. Dehn in 1914 [De]

proved that the left handed trefoil is not ambient isotopic to the right

handed trefoil.

c. First proof that non alternating knots do exist: R. Crowell [Cr] and

K. Murasugi [MuJ proved in 1957 that the (3,4) torus knot is non

alternating. This result was already stated by C. Bankwitz.

§ 10. L. Kauffman's and K. Murasugi's results

Definition. Let g{t) e Z[t±1/2] be a non-zero element :

m I
git) £ flit1» »e-Z, 0, 0.

i n ^

Define span g(t) m — n.

In principle span g{t) e^Z. But, if g(t) is the one variable Jones polynomial

of an oriented link in S3, the span of g(t) will actually be an integer.

To see that, use induction on complexity, like in § 3.

Definition. Let K be a link in S3.

K is said to be splittable if there exists a 2-sphere S c S3 such that:

1. ZnK 0.
2. There is at least one component of K in each connected component

of S3 - X.

Theorem 10.1. Let K a S3 be an oriented unsplittable link. Then :

span VK(t) < c(K).

Comments, (i) One can define the number s(K) of split components
of K. Then, theorem 10.1 generalizes to:
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span VK(t) ^ c(K) + s(K) - 1.

See [Mu2].

(ii) At first sight, there is something disturbing in this inequality: the

polynomial VK(t) depends on the orientation of K, while the minimal
crossing number c(K) does not. But, in fact, span VK(t) does not depend on
orientations, thanks mainly to Jones reversing result.

Theorem 10.2. Let L be a connected and oriented link diagram. Suppose

L alternating and reduced. Then :

span VL(t) c(L).

Recall that a link is prime if it cannot be decomposed (non trivially)
in a connected sum.

Theorem 10.3. Let K be a prime oriented link. Then, for any non

alternating diagram L of K one has:

span VK(t) < c(L).

Comments, (i) We emphazise that the inequality is strict.

(ii) Primeness is necessary, as the following example shows :

Let K be the connected sum of a left-handed and a right-handed trefoil, j

(This is the so called "square knot".) It is easily proved, for instance by ji

using results of this paper, that c(K) 6. Here are one alternating, and one |
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As consequences one obtains :

THEOREM 10.4. Taitconjecture A is true for unsplittable links. (Not only

for knots.) The stronger form of conjecture A is true for unsplittable prime

links. (For instance for prime knots.)

This has the following extraordinary consequence concerning knot tabulations,

which we illustrate on an example: Suppose you want to prove that

the knots 819, 820 and 821 are non alternating. You may proceed like this.

1. Make the list of knot diagrams with at most 7 crossings (prime or not).

Prove the list is exhaustive. (This has already been done by Tait

2. Prove that the knots 819, 820 and 821 are distinct from the preceding

ones. Alexander and Jones polynomials may help. Note that the spans of the

Jones polynomials for these three knots are strictly smaller than 8.

3. Observe that the knot diagrams 819, 820 and 821 are non alternating.

Then you know that the knots 819, 820 and 821 are genuine non-

alternating knots
Proceeding like this step by step (7 crossings, then 8 crossings, etc.),

and using computers, M. B. Thistlethwaite can go up to 13 crossings.

See [Thi].
By inspection among the 12 695 prime knots with at most 13 crossings,

he proves that 6 236 of them are non-alternating. This is a striking example

(among others) of the effectiveness of Jones polynomial for proving concrete

facts.

Theorem 10.5. Conjecture D is true.

Proof. We know that, for a knot,

VK(t)eZ[_t±l]. (i.e. no "halves") •

j Moreover VK(t) VK At~ *).

So, if K is amphicheiral, the span of VK must be even.

But, for an alternating knot, the span is equal to the minimal crossing

number. Q.E.D.

Note. The two references for L. Kauffman and K. Murasugi s results are

[Ka3] and [Mu2].
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§ 11. Proof of the theorems of L. Kauffman and K. Murasugi

Let r be an unoriented link projection in S2. We shall always suppose
that the image is connected, to avoid unnecessary complications. Observe
that all projections of an unsplittable link have this property.

We consider the chessboard associated to T. To the shaded regions we
associate a graph £ c= S2 in the following way: In each shaded region we
select a point which will be a vertex of £. If two shaded regions meet at
a double point of T, we draw an edge joining the two vertices through
the double point. (If the two regions are not distinct, we will get a loop.)

We proceed in the same way with the unshaded (lightened) regions,
to obtain another graph A c= S2.

Notice that, if c is the number of double points of T and if R is the
number of regions determined by T, one has R c -\- 2. This is an immediate

consequence of Euler formula and the fact that the image of T is a

quadrivalent graph.
Now, let L be an unoriented link diagram and write T for the underlying

link projection.
Let S be a state of L. We shall associate to S a subgraph £s

of £ and a subgraph As of A in the following way :

(i) £s contains all the vertices of £.

(ii) As contains all the vertices of A.

(iii) At each double point of T, one edge of A and one edge of £ cross
each other. We keep the edge which joins the two regions which are
connected by the choice (marker) of S at the crossing point and we discard
the other edge.

Lemma 11.1. £s is a deformation retract of S2 — As arid As is a

deformation retract of S2 — £s. In other words, £s and As are duals

in S2 in the sense of J. H. C. Whitehead.

Let Ts be the configuration of disjoint simple closed curves in S2

obtained by cutting and glueing T at each crossing point according to the
indication given by S. By definition, | S | is the number of connected

components of Fs.

Lemma 11.2. Ts is the boundary of a regular neighborhood of £s
in S2.

As £s and As are Whitehead duals, we can replace £s by As if we wish.
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Proof of lemmas 11.1 and 11.2. Let us observe that we can recapture from

Z the union of the shaded regions in the chessboard by the following

procedure :

1) Choose a small disc Dv around each vertex v of Z.

2) For each edge e in E, choose a double apex Ae like in the picture.

The union [jDvuIJ Ae is equal, up to an homeomorphism of Sz, to
v e

the union of the shaded regions of the chessboard. Its boundary (frontier)

is the link projection T.

Of course, we could have replaced everywhere in the construction

"shaded" by "lightened ".

Now, let S be a state for L. Let F be a double point of T. The

cutting and glueing operation associated to S at F will remove the double

point F.

Near F, Ts will be the boundary of the shaded surface newly obtained.

(And also the boundary of the lightened surface newly obtained.) Suppose,

for instance, that the state Schooses at F the marker corresponding to the

shaded regions. Then, it is easy to see that, locally around F, the new

shaded surface deformation retracts to the edge of Es going through F.

It is also easy to see that, locally around F, the new lightened region

deformation retracts on the two vertices of the edge of A which has been

deleted to obtain As.

Picture :

/ î \ \
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The following pictures should help to see what happens locally
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These small deformation retractions can be pieced together in order that

globally the newly shaded surface is a regular neighborhood N(LS) of £s.

In the same way, the newly lightened surface is a regular neighborhood N(AS)

of As. The common boundary of NÇLS) and N(AS) is Ts.
These constructions are illustrated in the next two pictures. In the first

one, a knot projection is shown, with its chessboard, its graphs £ and A.

A state S is indicated. The second picture shows Ts, £s, As.
This ends the proofs of lemmas 11.1 and 11.2.
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Lemma 11.3. Let G be a graph in S2 and let N be a regular
neighborhood of G. Then the number of connected components of dN
is equal to b0(G) + bfG).

Notation. b^G) denotes the i-th Betti number.

Proof of Lemma 11.3. By Alexander duality :

b0(ÔN) b0(N) + b0(S2-N) - 1

and b^N) b0(S2-N) - 1.

As N deformation retracts onto G, the result follows.

Recall that the number \S\ of connected components of Ts is an

important ingredient in Kauffman's polynomial.

Proposition 11.4. | S | + MAS) + 1.

Note. This proposition is the generalization to any state S of lemma 2

of K. Murasugi's paper [Mu2].
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Proofofproposition 11.4. We know that | S ] b0(Fs). Now Fs — 3N(LS).

So, if we apply lemma 11.3 to G we get

b0(Fs) b0(Ls) + biÇEs).

As and As are S-duals, Alexander duality implies that

b0(Xs) bfAs) + 1.

We substitute and the proof is finished.

Lemma 11.5. Let G be a connected graph. Let G1 and G2 be two

subgraphs of G such that (1) G Gx u G2. Let G0 Gx n G2 and

suppose that (2) G0 contains no edge. Then

bfGJ + bfG2) ^ bi(G).

Suppose moreover that (3) G± and G2 have no isolated vertices. Then,

one has è1(G1) + bfGfj bt{G) if and only if each vertex of G0 is a

cut vertex (for the partition associated to G± and G2).

Consequence : Suppose that G± and G2 have no isolated vertices and that
G has no cut vertex at all. Then, if bfG^ + è1(G2) è1(G) one has that
G1 or G2 is empty (and G2 G or G).

Before proving lemma 11.5, we make some comments on the notion of
cut vertex.

Let v be a vertex of a graph H. Let Ev be the set of edges of H
which have v in their boundary. Suppose given a partition of Ev into two
non empty classes E1 and E2. Then the chopping of H at v is constructed
in the following way :

Replace v by two vertices v1 and v2 and declare that the edges in Et
will have vt in their boundary instead of v (i 1, 2).

Definition, v is a cut vertex for the partition Ex II E2 if the chopping
of H we just described produces a graph with one more connected component.
v is a cut vertex if there exists a partition such that... etc., etc.

Proof of lemma 11.5. The inequality is an immediate consequence of
Mayer-Vietoris, using that h1(G0) 0.

Now observe that conditions (1) and (2) amount to say that G± and G2
produce a (global) partition of the edges of G in two classes.
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Suppose that moreover condition (3) is also satisfied. Let v be a vertex

of G0. Then Gx and G2 induce a partition of the set E in two non-empty
classes. Hence, the chopping of G at v is well defined.

Write G for the graph obtained by chopping G at all the vertices

of G0. Remark that Gx and G2 naturally embed in G. Their union is G

and their intersection is empty. So

b,(GJ+ b1(G2) M<?) •

Now, let 71 : G -> G be the natural projection which identifies the pairs

of vertices created by the chopping. Remark that identifying two vertices

has homologically the same effect as adding a new edge between the two

vertices. This replaces n by an inclusion. If we write the end of the

homology exact sequence of this inclusion, we see immediately that n

induces a monomorphism

H,(6) C, HAG).

The same exact sequence shows that the monomorphism is an

isomorphism if and only if each vertex of G0 is a cut vertex for the partition
induced by Gx and G2.

End of proof of lemma 11.5.

Notation. Let as be the subgraph of obtained by removing the

isolated vertices of Es. Let Xs be the subgraph of As obtained in the

same way.
Of course b^g) bi(as) and b^Ag) bfilg). So, proposition 11.4 gives

I S I b^Gg) + b^Xg) + 1.

Definition. If S is a state, L. Kauffman calls S the dual state of S if,

at every double point of T, the choice opposite to S is made.

It is obvious from the definitions that :

(1) dsuas
(2) as n <Js contains no edge.

(3) as and cr^ have no isolated vertices.

The same holds for Xs and Xg in A.

Lemma 11.6. b±(L) + 1 / number of lightened region of the

chessboard. bx I A I + 1 s number of shaded region in the chessboard.

Proof. Obvious.
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Proposition 11.7. | S | + | S | ^ l + s R c + 2.

Comment. This inequality is the "dual state lemma" of L. Kauffman.

Proof of proposition 11.7.

I S I + I 5 I < bfGs) + bfXs) + 1 + bfcJs) + bfXs) + 1

^ 61(S) + MA) + 2 l + s. Q.E.D.

Recall that L is an unoriented link diagram and that T is the underlying
link projection. Write A for the state defined by choosing "A" at every
double point of L. Write B for the state defined by choosing "B"
everywhere. Of course, A and B are dual states.

Notation. If S is a state of L, write cps(^4) for the contribution of the

state S to the polynomial <L>. cps(^4) is an element of Ziyi11].
Write Ds for the maximal degree of the monomials in cps(v4) and write

ds for the minimal degree.

Lemma 11.8. For any state S one has:

Ds ^ Dx and dB ^ d$

Proof of lemma 11.8. We prove Ds < DA, the proof of dB ^ ds being
analogous. Write b b(S) for the number of times has been chosen

in the state S. There is a sequence of states :

A S0, Sl9..., Sb S where St differs from Si_1 in one double point
of L where the " A " has been replaced by a " £ ".

Claim: DS. < Ds._1.

Obviously the claim implies that Ds ^ DA. Come back to the definition of
<L>. The contribution of St is

Äa(Si) ßb(Si) d\S\-l

; where B A'1 and d ~(A2 + A~2). The degree of Aa(Si) Bb(Si) is then

j
a(Si) — b(Si).

\ So (*) a(S-) - b(Si) aiSt-J - 6(5, _,) - 2.

I Moreover: | Si_1 | - 1 < | | .< | | + 1.
I So (**) the maximal degree in A of is at most two more
j than the one of (—A2—A~2)^Si-^~1.

Putting together (*) and (**) finishes the proof of lemma 11.8.
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An easy computation shows that :

Da c +2(|A|-1),
dB— [c + 2(|B| —1)]

Proof of theorem 10.1. Let L be any projection of an unsplittable link K
in R3. Then

Span fL span <L> <

and

DA - dB c + c + 2|A| + 2|B| - 4 < 2c + 2R-4
2c + 2c +4—4 4c.

As VK{t) fL(tm\ this gives at once a proof of theorem 10.1.

We now proceed towards the proof of theorems 10.2 and 10.3.

Lemma 11.9. Let L be a link diagram. Then L is alternating if
and only if either all the "A" are shaded or all the " are shaded.

Recall that we suppose that the image of the projection is connected.

Recall also that our convention to make a projection alternating was that

the " A " should be shaded.

This lemma is essentially Tait's theorem of § 9.

Lemma 11.10. Let L be a link diagram, alternating according to the

convention. Suppose L without nugatory crossing, i.e. L reduced. Let S

be any state, distinct from A and B. Then

Ds < I)A and dB < ds.

Proof of lemma 11.10. The proof begins like the proof of lemma 11.8.

We assert that, because the link diagram is reduced, one has

DSl<DSo Da

If the reader goes back to lemma 11.8, he will see that the assertion is

all that is needed to get lemma 11.10.

We prove the assertion :

As the link diagram alternates, according the convention the are

shaded. So | A | Inumber of lightened regions.

We claim that | Sx | I—1, the reason being the following: At exactly

one double point P of T, the marker has passed from shade to
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B light. By this operation, two different lightened regions have been

connected, and the newly shaded surface is still connected. (This immediately

implies | S1 \ I— 1.)

If not, the lightened spots in the neighborhood of P would belong to

the same lightened region. One could thus draw a circle entirely in the light,

joining the two spots :

This means that L would not be reduced, contrary to the hypotheses.
The same kind of argument proves dB < ds.

This finishes the proof of lemma 11.10.

Notation. Let S be the state obtained by choosing "shade" at every
double point and let L be the state obtained by choosing "light" at every
double point. Of course, S and L are dual states.

LEMMA 11.11. | S | + | L | — R.

Proof of lemma 11.11. One has

eis L xs 0
and aL 0 A.

Then apply the proof of proposition 11.7. Q.E.D.
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Proof of theorem 10.2. First of all, we do not restrict the generality by
supposing that the diagram alternates according to the convention.

Now lemma 11.10 implies that the highest degree of the monomials
in <L> is Da and that the lowest degree is dB. The coefficients of these
monomials are different from zero.

Moreover A S and B L.
So I A I + I B I R by lemma 11.11.

Hence :

Span <L> Da - dB 2c + 2|A| + 2|B| - 4 2c + 2R - 4

2c + 2(c -f 2) — 4 4c.

As span VK(t) - span <L>, this finishes the proof.

Proposition 11.12. Suppose that the graphs E and A have no cut
vertex. Suppose that for a state S we have

m + m r-
Then S S or S L.

Remark. X and A have no cut vertex if and only if T is not a non-trivial
connected sum. See also proof of prop. 11.7.

The proof of proposition 11.12 follows immediately from the consequence
of lemma 11.5.

Remark. There is an obvious generalisation of proposition 11.12 to the
case of a connected sum. Use the full lemma 11.5 instead of its consequence.

We now state an equivalent form of theorem 10.3.

Theorem 10.3'. Let L be a link diagram such that X and A have

no cut vertex. (This will be fulfilled if the link is prime.) Suppose that
span VK(t) c(L). Then L is reduced and alternating.

Remark. There is a generalisation of theorem 10.3' to the case of a
connected sum: the only possible counter-examples to non-alternativity are
non-alternating connected sums of alternating links, as in the square knot.
We leave this to the reader. (Use generalisation of proposition 11.12.)

Proof of theorem 10.3'. If L were not reduced, we could reduce it. But
this would contradict theorem 10.1.
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Now, the computation of DA - dB in the proof of theorem 10.1 shows

that, if span <L> 4c, one has DA — dB 4c and so | A | + | B | R.

As S and A have no cut vertex, the proposition 11.12 implies that

A S or A L.

By lemma 11.9, this means that L is alternating. Q.E.D.

§ 12. The path from von Neumann algebras to knot polynomials

The discovery of the knot polynomials discussed here is due to Jones'

investigations on von Neumann algebras, and not to the flourishing activity

in low dimensional topology. In the light of previous work by J. Conway

on Alexander's polynomial and of subsequent work by L. Kauffman (among

others) on Jones' polynomial, such a genesis may seem unexpected. However

this cannot be challenged, and should indeed appear rather as a delight

of the subject than as any unpleasant awkwardness. With this point of view,

we offer some guidelines for (some of) the surprising relationships put into

light by Y. Jones' work.

Factors of type II x

An involution on a complex algebra M is a conjugate linear transformation

XKX* of M such that (x*)* x and (xy)* y*x* for all xjeM.
The algebra IfH) of all continuous operators on a Hilbert space H has a

canonical involution, with x* the adjoint of x, defined by <x*^|r|>
< £ I xr| > for all Ç, T| g H. A representation of an involutive algebra M

on H is a morphism of algebras n : M -» L(H) with 7u(x*) (rc(x))* for all

x g M. The algebra IfH) carries several useful topologies, and in particular
the weak topology, for which a sequence (x£)feJ of operators converges

to 0 iff the numerical sequences (<x^|r|>)fej converge to 0 for all pairs

(^, ri) of vectors in H.
A von Neumann algebra is an involutive algebra M with unit which has a

faithful representation n on H with 7t(l) id and with n(M) a weakly
closed self-adjoint subalgebra of L(H). (There are several equivalent definitions:

see any textbook on the subject, for example one of [Di], [SZ],
[Tak].) A von Neumann algebra is defined to be a factor of type II± if
(1) The center of M is reduced to scalar multiples of 1.

(2) There exists a normalized finite trace, namely a linear form tr : M -> C
with tr(l) 1 and tr(xy) tr(yx) for all x, y e M.



328 P. DE LA HARPE, M. KERVAIRE ET C. WEBER

(3) The dimension of M over C is infinite.

Moreover, if M is a factor of type II x :

(4) There exists a unique normalized finite trace.

(5) For any real number d e [0,1], there exists a self-adjoint idempotent
e e M with tv(e) d.

(6) The trace is positive and faithful : tr(x*x) ^ 0 for all xe M, with
equality for x 0 only.

(7) The algebra M is simple. In particular, any representation of M is
faithful.

Let us add three comments. The notion of trace used in (2) may seem

slightly unusual in the context of operator algebras, but is the same as the
standard notion because we consider factors of type IIx only; see [FH].
Because of (5), factors of type II1 are also called finite and continuous.
Concerning (7), the following may be added under suitable separability
assumptions : Murray and von Neumann have defined for any representation
of M a multiplicity, which is a positive number (possibly infinite), and two
representations of M are unitarily equivalent iff they have the same

multiplicity.
A factor M of type II1 is said to be hyperfinite if it has the following

property: for any integer n ^ 1, for any sequence xt,..., xne M and for any
s > 0, there exists a finite dimensional self-adjoint subalgebra K of M such
that

d2(xj,K) <s, j 1,..., n

where d2 is the distance associated to the norm x i— tr(x*x)1/2 on M. Murray
and von Neumann showed that two hyperfinite factors of type II t which can
be represented on a separable Hilbert space are *-isomorphic ; the standard
notation for "the" hyperfinite factor of type II± is R. Moreover, they showed
that any factor of type II1 contains a copy of R [MN]. Instead of
" hyperfinite ", the factor R is also called " approximately finite dimensional ",
"injective", "semi-discrete" or "amenable", and there is a good reason for
each of these words. A sub-factor of R is either finite dimensional or
isomorphic to R itself [CoJ. The importance of R in the theory cannot be

overemphasized.
Consider for example a countable group T, the Hilbert space /2(r)

of complex functions fi: T -> C with £ | ^(g) \
2 < co, the right regular

geT

representation p : F - L(l2(Tj) defined by (p(g)fy (h) £>(hg), and the algebra
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VK*(T) of operators x on Z2(F) such that xp(<?) p for all It can

be shown that W*(r) is the von Neumann algebra generated by Mg)

for ge T,where {UgYc,) (h) If ah conjugacy classes (other than {1})

in r are infinite, then W*{T)is a factor of type II, ; moreover it makes

sense to write any element in kk*(r) as a (usually infinite) mm £ zgHg),

and the normafised trace of such an element is z^ Assuming that T

has infinite conjugacy classes and moreover that T contains an element a

of infinite order, we may formulate a nice exercise to illustrate property (5)

above : for any d g [0,1], show that the infinite sum

i+ E
neZ nn
nf 0

defines in JT*(T) a self-adjoint idempotent of normalized trace à (solution

in [Au]).
If T has infinite conjugacy classes and is moreover amenable, then

VF*(T) is a model for the hyperfinite factor R, by [CoJ. Examples of

amenable groups: the group of permutations with finite supports of a

countable set, or any solvable group.
To cut a long story short, Murray and von Neumann knew of two non

isomorphic factors of type II,, namely R and W*{Y) for T the non abelian

free group on two generators [MN]. J. Schwartz established the existence of

a third one twenty years later [Sc], and D. McDuff showed there are

uncountably many [McD]. During the 1970's, A. Connes made several

break-throughs in the knowledge of factors; for a review of the subject

before 1980, see [Co2]. By then, it was reasonable for V. Jones to embark

in the study of relative problems : understand subfactors (of type nx) in a

given factor of type IIx.

The index

Let M0 a M1 be a pair of factors of type ll1. It is natural to look
for invariants of these data, with respect to conjugacy of M0 by (possibly

inner) automorphisms of M1. For the present discussion, the most successful

invariant is the index [M1:M0]e[1, oo]. Its definition appears in [Jot]
and [Jo2] ; see also below.

Once the index is defined, the most obvious problem is to compute

exactly its possible values. If M1 is the hyperfinite factor of type II l5
then the set of possible values [M\ : M0] consists of
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a continuous spectrum [4, oo]

a discrete spectrum {4 cos2(iz/ri)}n=3f4.f 5f_

This was quite a surprise at the time, as continuity is so often the rule
for objects defined by M1. (If the factor M1 is not hyperfinite, our knowledge

is fragmentary and the possible values for [M1 : M0] may constitute a

proper subset of the spectrum just described. See [PP].)
Let us now define the index and indicate some steps in the proof of

Jones' result about its spectrum. Given a pair M0 c= Ml9 there exists a
conditional expectation e1 : M1 M0 which is a projection such that e^axb)

ae±(x)b and tr(^1(x)) tr(x) for a, b e M0 and x e M1. In fact both
e1 and elements in M1 may be looked at as operators on the Hilbert
space L2(M1, tr) obtained by completion of M1 for the scalar product
<x|y> tr(x*y); then ex is the orthogonal projection of M1 onto M0,
and x g M1 acts on L2(M1, tr) as the extension of the multiplication
y I—> xy.

Thus it makes sense to consider the von Neumann algebra M2
generated by e1 and M1. With one exception which is precisely the case in
which [M1 : M0] oo, the algebra M2 is again a factor of type II1.
In the later case, the definition of the index is

[M ]. : M0]
1

tr2(ei)

where tr2 denotes the trace on M2.
As M± cz M2 is again a pair as above, the same construction may be

iterated, and one obtains a tower

M0 cz M1 a ci Mn ci Mn+1 <M„, en> c
of factors of type I^. A basic fact is that the e/s satisfy three types of
relations

idempotence: ef e{,

braiding : e^±1et [M 1 : M0]~1ei,

commutation: e^j efi if \i—j\ ^ 2.

Also the traces on the M„'s induce a trace tr on the algebra generated

by the e-s with

Markov property : tr(wet) [Mx : M0] xtr(w) for w in the algebra
generated by M0, el9ei^.1.
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The invocation of Markov here refers to the property of the trace its

value on each step M„+1 <M„, en> is readily computable m terms of the

trace on the previous step M„. There is moreover the crucial tool of

positivity : the algebra of operators generated by the e/s has an involution

and tr(w*w) > 0 for any w # 0 in this algebra.

An analysis of these properties shows that, in case the index is smaller

than 4, then only the discrete spectrum.

[Mi : Mq] e {4 cos2{n/n)}„>3

is permitted. (The reader will have some flavour of the analysis if he solves

the following exercise : consider four unit vectors ex,..., e4 in the usual

3-space such that the scalar products satisfy

<e1|e2> <Ê2le3> < e31 e4- > cos 9

<e1\e3><ei|e4> <e2|e4> =0

for some angle <p; then cos ip 1/2(^5-1) and cp can only be one of

two possible angles.)

Constructing pairs with IM1:M0] ^ 4 turns out to be easy (at least

when is hyperfinite). For the discrete spectrum, consider first a complex

number ß ^ 0, an integer n > 1, and the algebra sé^n abstractly defined

(as a complex associative algebra) by

generators : 1, e„-i,
£?

relations: < 8^+1% ß-1£i>

EiSj eft if I i~j I > 2

If ß > 0, the construction of a pair with [Mt :M0] ß reduces to finding

a representation of j/ß>00 lim „ by operators on a Hilbert space with
!!-» 00

each sf self-adjoint. Manipulations of linear algebra show that this can be

done precisely when ß is in the spectrum of indices ; see Jones papers,

as well as the expository [GHJ].

Note finally that the e/s and the e/s should not be confused: Given

some pair M0 <= Mx of index ß, it is of course obvious that maps

onto the algebra generated by 1, e1;..., ®ut f°r ß 'n discrete

spectrum, this map has a non trivial kernel when n is large enough.
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Hecke algebras and polynomials

One of the main points to retain from above is the following: an

interesting problem with a surprising solution in the theory of von Neumann

algebras has motivated a serious study of the algebras sé^n. Now

appears to be in close relationship with

(a) Artin's braid group Bn with generators g1?..., Gn-1 and relations as

in §6.

(b) The Hecke algebra of §4, that we denote from now on by Hqn
to stress the dependence on q, where parameters fit well if
ß 2 + q + q'1.

To make this relationship transparent, we turn to another presentation of

ß5n. Choose a complex number q with ß 2 + q + q_1 (observe that

q#= —1 as ß^O) and set

Ti + 1

Ti qSi ~ (1-Si) so that ef ——

for i 1,n— 1. Then a straightforward computation shows that sé^n
has a presentation with generators Tl9..., T„_x and relations

(1) Tf (q — l)Ti + q,
(2) TiTi+1Ti — +

(3) TiTj=TjTi if \i—j\ ^ 2,

(S) TiTi + 1Ti + TiTi + 1 + Ti+1Tt + T{ + TJ + 1 + 1 0.

The last relation was first pointed out by R. Steinberg. One has now more

precisely :

(a) The assignment Tt extends to a homomorphism pq from Bn

to the invertible elements of sé(compare with § 6).

(b) sé ß,n is the quotient of the Hecke algebra Hq n of § 4 by the relation (S).

For infinitely many values of q (namely q e R and q ^ 1, corresponding

to ß ^ 4), Jones knew from his study of factors [Jo2] that sé^n is given

with a faithful positive Markov trace tr. For each braid oceR„, he set

VM - (^Jr) 4e/2tr(p3(a))

where e is the exponent sum of a as a word on the a/s. The first

theorem in [Jo3] is that Va depends only on the link K(a) obtained by

closing a. Also Va(q) [respectively qll2Va(q)'] is a Laurent polynomial in q
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if K(a) has an odd [resp. even] number of components; in particular

Vfe) can be defined for any 4 e C, not just for those correspon

traces on some And, most importantly for the early growth of the

subject a computation in the summer 1984 with the trefoil knot showed that

Vis not a mere variant of the Alexander polynomial. In fach^during;
a e

hours, this was thought to reveal a mistake in computations.

Of 8 7 for more details on the independence of the polynomia s*

One way to recover the two variable polynomial is to introduce

family of traces on Hq,„ lim H„„, indexed by a complex parameter z.

This programme was pursued by Ocneanu, and exposed in §§5-6 above.

Observe that

(1) Only one of Ocneanu's traces pass to the quotient namely that

corresponding to z q(q+1) 2
•

(2) Ocneanu's traces are positive for some values of the pair (q,z) only:

the picture appears in Wenzl's thesis [We] and also in [Jo4].

(3) It does help to keep positivity considerations in mind when studing knot

polynomials: see § 14 in [Jo5].

Added in proof

1. Y. Turaev has another and simpler proof of some of the geometric

arguments given in § 11. See a next issue of this journal.

2. K. Murasugi has informed us that he has now proved conjecture C.
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