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K hi K h2 - K hsb"R

a*t ht ht a~h h hh h2 K h's

— axt ^"ft htcxi^-/i by22by* hs b"R

a*t ht(y-ftCJfthKlh2 Ks h's KR

a*t hhftcyfth Ki h2 - Ks h's KR

a*t ht KlKl h'2 -Ks h's KR

where a'X2 {y-flcyf)X2. If x2 happens to equal y2 then we simplify this
further to

axi ^/i ax2 by3 V3 - bys h/s bvR

where a"X2 is the product a'X2by2 in GX2. We now compare aX2 with
a'X2 if x2 y2, noting that y/2 1 in this case, or with a"X2 if x2 y2,
and repeat the process. Eventually we obtain

bxi ^/i by2 Xf2 bys bvR — aXl Xj-1 aX2 Xj-2... aXr Xj-r avR

As g aXl y/jL... aXr yfrav axi yfl... aXr yfra"v we see that a"v av. This

completes the proof that \|/ is well defined.

5. Nearest fixed points

To show \|/ is a homomorphism we shall verify

Mhg) Mh)Mg)

under the assumption that h either leaves some vertex of T fixed or is

one of the elements yf. This is sufficient because the elements of the

Gw (w a vertex of T) together with the yf (/ an edge of X/G — M)
form a set of generators for G.

Suppose h fixes the vertex w of T. Walk along the geodesic vw and let x
be the first vertex we meet which is left fixed by h. Then vx is contained

in T, and vx followed by h(xv) is the geodesic from v to hv. This quits T
for the first time at x and we see that

Mh) hxR.



GROUP PRESENTATIONS
267

hx x

Figure 3

Using the geodesic from v to gvwe have Md) axi i - 'Kfr avR in the

usual way. Therefore

\|/(h)\j/(g) K axi7./j... aXr attR

In order to compute i|,(hg)weneed Jhe geodesic from r to

We can construct this as follows, take vhv followed by the image o

v qv under h and remove any round trips. >

If bur does not contain all of FF (Figure 3) then leaves T

for the first time at x. A tail wag of v(hg)v using leads us to a

path which has the same tail as Vgv, then the process continues as for g.

Thus

\|/(%) hx aXl axr ^fr av& WOMfO •

Otherwise Tfî contains all of « (Figure 4) and we split the argument

into three cases.

Figure 4
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(a) v gv stays in T for at least one more edge after x. Then v(hg)v must
leave T at x. As above, a first choice of /i"1 leads to a path with
the same tail as v gv.

(b) v gv and v(hg)v both leave T at x. Then x1 x and we write ax
instead of aXl. A first tail wag of v(hg)v using 77^* u*)1 produces
the same path as a first tail wag of v gv using y-fl a~x. Thus

Mhg) hx ax Xfl aX2 Xf2... aXr Xfr avR

(c) v gv leaves T at x, but v(hg)v stays in T for at least one more
edge after x. Then xt x, yfl 1 and we may as well equate aXl
with h ~1. A first tail wag of v gv using hx gives a path with the

same tail as v(hg)v. Thus

Suppose finally that h yf for some edge / of X/G — M. As usual
e is the chosen lift of / into X with x i(e) e T and z t(yj e). Let y i(y~f e).

The geodesic from v to yfv is made up of Ux followed by e followed by
yf(zv). This leaves T for the first time at x and a single tail wag using

y-f produces zv. Therefore

To obtain the geodesic from v to (yfg)v we follow vyfv by yf(v gv)

and then remove any round trips (Figure 5). If v gv does not contain vy,
then v(yfg)v leaves T for the first time at x and a single tail wag using y-f

Mhg) aX2 Xf2... aXr avR

hxh;1 aX2 Xf2... aXr Xfr avR

Mh)Md)

Mjf) hR

y

V

Figure 5
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produces a path with the same tail as v The process then continues as

for g and

x|;(Y/g) xf aXi\fl...aXrXfravR

Otherwise v gvcontains vy. Then z, Y and we may as we^

take axi1. A first tail wag of Vgv using yf leaves a path with the

same tail as v(y fg)v. Thus

<|i(YfS) «X2 'kfl -a*rkfr UVR

"hf kf ^X2 kJ~2 ®Xr kfr

¥.yf)¥g)

This completes the proof that \)/ is a homomorphism.

Our construction of \|/ ensures that if v|/(gf) R then 1. So v|/

is injective. The cosets hwR (w a vertex of T and h(w) w) and XfR

(f an edge of X/G)togethergenerate [( * GW)*F]/,R. Now \|/(/i) hxR where x

is the nearest fixed point of h to v. But h fixes all of xw so

\|/(h) hxR hwR.

Also

Mr/) kfR

Therefore the image of v|/ is all of [( * GJ*F]/R and we have shown that i
is an isomorphism.

The author would like to thank the members of the Mathematics

Department of the University of Geneva for their hospitality during the

preparation of this article.
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