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where a}, = (Y7,¢Ys)x,- If x, happens to equal y, then we simplify this
further to

ay, Ap ay, hp, by, kf’3 . by, Kf’s b,R

!

where aj, is the product a,b,, in G,,. We now compare a,, with '

a,, if x, # y,, noting that y,, = 1-in this case, or with aj, if x, = y,, |

X2

and repeat the process. Eventually we obtain
bx1 }"fl byz 7\.]',2 v bJ’s }\‘f; va = axl )\‘fl axz }sz e axr )\,f'_ a:,' R .

As g = ay, Yy, o Gy Yy, Gy = Gy, Yy, - Gy, Yy, Ay We see that aj = a,. This |
completes the proof that  is well defined. 1

5. NEAREST FIXED POINTS

To show V is a homomorphism we shall verify

U(hg) = W(h)V(9)

under the assumption that h either leaves some vertex of T fixed or is |
one of the elements y,. This is sufficient because the elements of the |
G, (w a vertex of T) together with the vs (f an edge of X/G—M)
form a set of generators for G.

Suppose h fixes the vertex w of T. Walk along the geodesic vw and let x
be the first vertex we meet which is left fixed by h. Then vx is contained §
in T, and vx followed by h(xv) is the geodesic from v to hv. This quits T
for the first time at x and we see that

W(h) = h.R.
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FIGURE 3

Using the geodesic from v to gv we have Y(g) = ax,
usual way. Therefore

U(h(g) = hy Gx, Mgy o O, As, a,R .

he geodesic from v to (hg)v.

In order to compute (hg) we need t
llowed by the image of

. We can construct this as follows, take v hv fo

B, 5u under h and remove any round trips.
If vgv does not contain all of vx (Figure 3) then v(hgv leaves T

B (or the first time at x. A tail wag of v(hg)v using h;!' leads us to a
path which has the same tail as v gv, then the process continues as for g.

Thus
U(hg) = hy Gy, Ay, o G Mg, @R = W(RW(9) -
Otherwise v gv contains all of vx (Figure 4) and we split the argument

into three cases.

FIGURE 4 -
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(@) vgv stays in T for at least one more edge after x. Then v(hg)v must
leave T at x. As above, a first choice of h ! leads to a path with
the same tail as v gv.

(b) v_g_ﬁ; and v(hg)v both leave T at x. Then x; = x and we write a,
instead of a,, . A first tail wag of v(hg)v using yfl(h a,)” ! produces

—_—

the same path as a first tail wag of v gv using y7, a; *. Thus

U(hg) = hya. Ay, ax, Ay, .. ax, Ay a,R = \I!(h)\ll(g).

() vgv leaves T at x, but v(hg)v stays in T for at least one more
edge after x. Then x, = x, Yr, = 1 and we may as well equate a,,
with Ao . A first tail wag of vgv using h, gives a path with the
same tail as v(hg)v. Thus
VY(hg) = a,, Ay, ... a,, s, a,R

=h.h ta, N, ..a, A; a,R
= Y(h(g) .

Suppose finally that h = y, for some edge f of X/G—M. As usual
e is the chosen lift of f into X withx = i(e)e Tandz = t(y; e). Let y = i(y7 e).
The geodesic from v to y,v is made up of vx followed by e followed by
yf(z_v3. This leaves T for the first time at x and a single tail wag using
Y7 produces 0. Therefore

‘l’(Yf) = fo-

To obtain the geodesic from v to (y.g)v we follow vyfv by v, (v qv)
and then remove any round trips (Figure 5). If v gv does not contain vy,
then v(y,g)v leaves T for the first time at x and a single tail wag using y;

(hglv

FIGURE 5
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: produc;es a path with the same tail as v gv. The process then continues as
for g and |
U(yrg) = Agay, Mgy oo Gy, As, a,R = V(yV(9) -

—_

Otherwise v gv contains ;; Then Xy =5 Y, = y;7 and we may as well
take a,, = 1. A first tail wag of vgv using y, leaves a path with the

same tall as (Y rg)v. Thus

U(Yrg) = Gy, Apy oo Oy, A, a,R
= }\41‘ )\;‘7‘ axz ?\‘fz son axr }\ofr avR

= Yy W(g) -

This completes the proof that Y is a homomorphism.

Our construction of { ensures that if y(g) = R then g = 1. So V¥
is injective. The cosets h,R (w a vertex of T and h(w) = w) and A R
(f an edge of X/G) together generate [(* G,)*F 1/R. Now y(h) = h,R where x
is the nearest fixed point of h to v. But h fixes all of XW SO

V(h) = h,R = h,R.
1 Also
‘l’(Yf) = )\'fR~

| Therefore the image of  is all of [(* G,)*F]/R and we have shown that
| is an isomorphism.

,. The author would like to thank the members of the Mathematics
| Department of the University of Geneva for their hospitality during the
preparation of this article.
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