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GROUP PRESENTATIONS 265

‘ procedure. Since we shorten the tail at each step we eventually obtain

a path which lies entirely in T and ends at say
(47, @5 Vs G’ V72 G 9V

_ _ ~ o
g Then v7 ai'..Y7 @ ¢ must fix v, say V7, a5t V7Gx 9 = @ € Gy

B We now have

g = axl ,yfl . axr Yfr av
and we somewhat optimistically define

\Il(g) = Ay, >\‘f1 woe Oy, }‘fr a, R.

4. AN INEFFICIENT CHOICE

Is ¢ well defined? The geodesic from v to gv is certainly unique, as
is the first point x, where it leaves T and its first edge e, outside T.
Both the edge ¢! and the group element v, are now determined by our
original construction. The only ambiguity at this stage is the choice of the
element a,, € G,, which maps e to e,. A different choice b,, will give a
path from z; to (y7, b;.! gv which leaves T for the first time at say y,.
The first edge outside T will project to an edge f, of X/G and so on
until eventually we have g expressed as

g = bxl 'Yfl byz ’Yflz oo b)’s Yf; bv .

We must show that a,, Ay, a,, Mg, .. a5, Ay, a, and by, Ay by, Ag, by, Ayl b,
determine the same left coset of R in (k G,,)*F.

Agree to select a,, from G,, so that the tail of the resulting path is as
long as possible. Continue in this way selecting a,,, a,, ... S0 as to maximise
the length of the tail at each stage. We shall compare any other set of
choices with this rather inefficient selection.

Both a,, and b, map e to e,, so ¢ = a,’ b, must fix el. Also,
due to our particular selection of a,,, the geodesic from z; to x, is
left fixed by v3, ¢ vy, . Therefore
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by My, by Mg, o by, Ayl by R
= 4, M Mgy a5 by Ag by Ay by A bR
= Gy, A, M, Gy Mg, by, Ay o by, A bR
= Gy, M, (Y7,CY 1)z By, Agy o by, Mg DR
= Gy, M (V71CY s by Mg, o by, Ay B,R
= ay, Ay, ak, by, Ay by Mg bR

X2 “y2

where a}, = (Y7,¢Ys)x,- If x, happens to equal y, then we simplify this
further to

ay, Ap ay, hp, by, kf’3 . by, Kf’s b,R

!

where aj, is the product a,b,, in G,,. We now compare a,, with '

a,, if x, # y,, noting that y,, = 1-in this case, or with aj, if x, = y,, |

X2

and repeat the process. Eventually we obtain
bx1 }"fl byz 7\.]',2 v bJ’s }\‘f; va = axl )\‘fl axz }sz e axr )\,f'_ a:,' R .

As g = ay, Yy, o Gy Yy, Gy = Gy, Yy, - Gy, Yy, Ay We see that aj = a,. This |
completes the proof that  is well defined. 1

5. NEAREST FIXED POINTS

To show V is a homomorphism we shall verify

U(hg) = W(h)V(9)

under the assumption that h either leaves some vertex of T fixed or is |
one of the elements y,. This is sufficient because the elements of the |
G, (w a vertex of T) together with the vs (f an edge of X/G—M)
form a set of generators for G.

Suppose h fixes the vertex w of T. Walk along the geodesic vw and let x
be the first vertex we meet which is left fixed by h. Then vx is contained §
in T, and vx followed by h(xv) is the geodesic from v to hv. This quits T
for the first time at x and we see that

W(h) = h.R.
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