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TREES, TAIL WAGGING AND GROUP PRESENTATIONS

by M. A. ARMSTRONG

The Bass-Serre theorem gives a presentation for a group of automorphisms

" of a tree. Like all good theorems it has attracted considerable attention

and there are now several proofs available 4], [31, [1]. Our goal 1s a

natural elementary proof which makes maximal use of the geometry of

the tree.

1. GRAPHS

A graph X consists of two sets E (directed edges) and V (vertices)

g - and two functions
E—-E, e—é

EosV xV, e (i) te)

] which satisfy ¢ =e, &+ e and i(e) = ie) for each e € E. The vertices i(e),
. tle) are the initial and terminal vertices of the directed edge e, and € is
d  the reverse of e. Henceforth we refer to directed edges simply as edges.
A path in X joining vertex u to vertex v is an ordered string of

| cages eye, .. e, such that ile,) = u ilegsy) = Uex) for 1< k < n—1, and
4 fle,) = v. If v = u we have a circuit. A path of the form e¢ is a round trip
and a circuit which does not contain any round trips will be called a loop.
If any two distinct vertices may be joined by a path then the graph 1is
& connected. A tree is a connected graph which does not contain any loops.
Let X be a tree. A path in X is a geodesic if it does not contain
any round trips. Given distinct vertices u, v of X there is a unique geodesic
| uv which joins u to v.
An action of a group G on a graph X is an action of G on E and

on V such that gé = ge, i(ge) = gile), tge) = gt(e) and ge # € for each
¢ € E. Because group elements are not allowed to reverse edges we have a
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quotient graph X/G. When G acts on X we shall often say that G is a
group of automorphisms of X.

We adopt the usual notation whereby G, denotes the stabilizer of a
vertex x. If g e G happens to fix x we write g, for the element g thought
of as a member of G,. Of course G, denotes the stabilizer of the edge e.
If x is a vertex of e then G, is a subgroup of G,.

Suppose G acts on a tree X. If g € G fixes the vertices u, v then it must
fix the whole geodesic uv, since otherwise the image of wv under g would
be a second geodesic from u to v.

2. LIFTING EDGES

Let G be a group of automorphisms of a tree X. Choose a maximal
tree M in X/G and lift it [4, Proposition 1.14] to a subtree T of X.
The vertices of T form a set of representatives for the action of G on
the vertices of X. For each pair of edges f, f from X/G — M select
one, say f, and lift it to an edge e of X which has its initial vertex x
in T. Exactly one vertex z of T lies in the same orbit as #(e) and we
choose an element y, from G that maps z onto #(e). We can now lift f
to (y,)~'e This has its initial vertex z in T and y; = (y,)~' sends the
vertex x of T to its terminal vertex (Figure 1). Finally we extend the
correspondence f — 7y, over the edges of M by setting v, = 1 (the identity
‘element of G) whenever f € M.

The Bass-Serre theorem [4, Theorem 1.13] gives the following presenta-
tion for G.

(@) Generators. The elements of all the G, where w is a vertex of T
and the v, where f is an edge of X/G.

(b) Relations. The internal relations of each stabilizer G,, together with
v; = 11if f is an edge of M,
Y7 = (v;)~ " and
Y7 9xYs = (Y79 Ys). where e is the chosen lift of f and geG,. &

(If f is an edge of M then z = t(¢) and the final relation reduces to
dx = g, whenever g€ G,). . S
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