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L'Enseignement Mathématiquef. 32(1p.26i-27Q_

TREES, TAIL WAGGING AND GROUP PRESENTATIONS

by M. A. Armstrong

The Bass-Serre theorem gives a presentation for a group of automorphisms

of a tree. Like all good theorems it has attracted considerable attention

and there are now several proofs available [4], [3], [1]. ur goa is a

natural elementary proof which makes maximal use of the geometry

the tree.

1. Graphs

A graph X consists of two sets E (directed edges) and (vertices)

and two functions E-> E,et-^êE_Vx V,eI—> (i(e), t(e))

which satisfy I e, e A e and i(ê) for each e e The vertices

t(e) are the initial and terminal vertices of the directed edge e, and e is

the reverse of e. Henceforth we refer to directed edges simply as edges.

A path in X joining vertex u to vertex v is an ordered string of

edges e,e2 - en such that i(e1) u, i(ek+1) for 1 ^ ^
t(en) v. If v- u we have a circuit. A path of the form ee is a round trip

and a circuit which does not contain any round trips will be called a loop.

If any two distinct vertices may be joined by a path then the graph is

connected. A tree is a connected graph which does not contain any loops.

Let Xbea tree. A path in Xisa geodesic if it does not contain

any round trips. Given distinct vertices of there is a unique geodesic

uv which joins u to v.

An action of a group G on a graph X is an action of G on and

on V such that gë gë, i(ge) gi(e), t(ge) and ^ for each

e 6 E.Because group elements are not allowed to reverse edges we have a
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quotient graph X/G. When G acts on X we shall often say that G is a

group of automorphisms of X.
We adopt the usual notation whereby Gx denotes the stabilizer of a

vertex x. If g e G happens to fix x we write gx for the element g thought
of as a member of Gx. Of course Ge denotes the stabilizer of the edge e.

If x is a vertex of e then Ge is a subgroup of Gx.

Suppose G acts on a tree X. If g e G fixes the vertices u, v then it must
fix the whole geodesic uv, since otherwise the image of uv under g would
be a second geodesic from u to v.

2. Lifting edges

Let G be a group of automorphisms of a tree X. Choose a maximal
tree M in X/G and lift it [4, Proposition 1.14] to a subtree T of X.
The vertices of T form a set of representatives for the action of G on
the vertices of X. For each pair of edges f, J from X/G — M select

one, say /, and lift it to an edge e of X which has its initial vertex x
in T. Exactly one vertex z of T lies in the same orbit as t(e) and we
choose an element yf from G that maps z onto t(e). We can now lift /
to This has its initial vertex z in T and yj (Y/)-1 sends the

vertex x of T to its terminal vertex (Figure 1). Finally we extend the

correspondence / - yf over the edges of M by setting yf 1 (the identity
element of G) whenever f e M.

The Bass-Serre theorem [4, Theorem 1.13] gives the following presentation

for G.

(a) Generators. The elements of all the Gw where w is a vertex of T
and the yf where / is an edge of X/G.

(b) Relations. The internal relations of each stabilizer Gw together with

yf 1 if / is an edge of M,

Vf (Y/)"1 and

JfdxJf (Y/0Y/)z where e is the chosen lift of / and geGe.

(If / is an edge of M then z t(e) and the final relation reduces to

gx gz whenever g e Ge).
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