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TREES, TAIL WAGGING AND GROUP PRESENTATIONS

by M. A. ARMSTRONG

The Bass-Serre theorem gives a presentation for a group of automorphisms

" of a tree. Like all good theorems it has attracted considerable attention

and there are now several proofs available 4], [31, [1]. Our goal 1s a

natural elementary proof which makes maximal use of the geometry of

the tree.

1. GRAPHS

A graph X consists of two sets E (directed edges) and V (vertices)

g - and two functions
E—-E, e—é

EosV xV, e (i) te)

] which satisfy ¢ =e, &+ e and i(e) = ie) for each e € E. The vertices i(e),
. tle) are the initial and terminal vertices of the directed edge e, and € is
d  the reverse of e. Henceforth we refer to directed edges simply as edges.
A path in X joining vertex u to vertex v is an ordered string of

| cages eye, .. e, such that ile,) = u ilegsy) = Uex) for 1< k < n—1, and
4 fle,) = v. If v = u we have a circuit. A path of the form e¢ is a round trip
and a circuit which does not contain any round trips will be called a loop.
If any two distinct vertices may be joined by a path then the graph 1is
& connected. A tree is a connected graph which does not contain any loops.
Let X be a tree. A path in X is a geodesic if it does not contain
any round trips. Given distinct vertices u, v of X there is a unique geodesic
| uv which joins u to v.
An action of a group G on a graph X is an action of G on E and

on V such that gé = ge, i(ge) = gile), tge) = gt(e) and ge # € for each
¢ € E. Because group elements are not allowed to reverse edges we have a
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quotient graph X/G. When G acts on X we shall often say that G is a
group of automorphisms of X.

We adopt the usual notation whereby G, denotes the stabilizer of a
vertex x. If g e G happens to fix x we write g, for the element g thought
of as a member of G,. Of course G, denotes the stabilizer of the edge e.
If x is a vertex of e then G, is a subgroup of G,.

Suppose G acts on a tree X. If g € G fixes the vertices u, v then it must
fix the whole geodesic uv, since otherwise the image of wv under g would
be a second geodesic from u to v.

2. LIFTING EDGES

Let G be a group of automorphisms of a tree X. Choose a maximal
tree M in X/G and lift it [4, Proposition 1.14] to a subtree T of X.
The vertices of T form a set of representatives for the action of G on
the vertices of X. For each pair of edges f, f from X/G — M select
one, say f, and lift it to an edge e of X which has its initial vertex x
in T. Exactly one vertex z of T lies in the same orbit as #(e) and we
choose an element y, from G that maps z onto #(e). We can now lift f
to (y,)~'e This has its initial vertex z in T and y; = (y,)~' sends the
vertex x of T to its terminal vertex (Figure 1). Finally we extend the
correspondence f — 7y, over the edges of M by setting v, = 1 (the identity
‘element of G) whenever f € M.

The Bass-Serre theorem [4, Theorem 1.13] gives the following presenta-
tion for G.

(@) Generators. The elements of all the G, where w is a vertex of T
and the v, where f is an edge of X/G.

(b) Relations. The internal relations of each stabilizer G,, together with
v; = 11if f is an edge of M,
Y7 = (v;)~ " and
Y7 9xYs = (Y79 Ys). where e is the chosen lift of f and geG,. &

(If f is an edge of M then z = t(¢) and the final relation reduces to
dx = g, whenever g€ G,). . S
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FIGURE 1

3. TAIL WAGGING

With the notation established above let % G,, denote the free product of
the stablizers of the vertices of T, and F the free group generated by
symbols A, one for each edge f of X /G. Let R be the normal consequence

in ( G,,)xF of the words

A; (f anedge of M),
A7 A; and
A7g:h (Y797 )

We shall produce an isomorphism
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V:G - [(%G,)*F]/R.

Choose a vertex v of T as base point. If g € G fixes v set

V(g) = g,R

where as usual g, is the element g interpreted as a member of G,. If g
moves v then it sends it outside T because no two vertices of T lie in
the same orbit. Let e, e, ... e, be the geodesic which joins v to gv and
suppose ¢, is the first edge that is not in T. The path e,e,.; ..eé, r;:
will be called the tail of v_gv> Let x; be the initial vertex of e,. Project
e, into X/G to give an edge f;. The canonical lift e! of f; into X has [
its initial vertex in T, so i(e') = x;. Choose an element a, € G,, which H
sends e! to e,,. Let

el% = (V}l a;ll)ek

for m+1 < k < n, and replace e, e, ... e, by the new path e}, enisr ...

We call this process tail wagging. Our new path begins at

2 = t('le el) = i(e;t+1)

which is a vertex of T and ends at (y7, ay,' g)v, see Figure 2. We walk ||
along it to the first point x, where it quits T and repeat the above i

(Fa5 g)v

(2b, )V
f [}

gy

FIGURE 2
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‘ procedure. Since we shorten the tail at each step we eventually obtain

a path which lies entirely in T and ends at say
(47, @5 Vs G’ V72 G 9V

_ _ ~ o
g Then v7 ai'..Y7 @ ¢ must fix v, say V7, a5t V7Gx 9 = @ € Gy

B We now have

g = axl ,yfl . axr Yfr av
and we somewhat optimistically define

\Il(g) = Ay, >\‘f1 woe Oy, }‘fr a, R.

4. AN INEFFICIENT CHOICE

Is ¢ well defined? The geodesic from v to gv is certainly unique, as
is the first point x, where it leaves T and its first edge e, outside T.
Both the edge ¢! and the group element v, are now determined by our
original construction. The only ambiguity at this stage is the choice of the
element a,, € G,, which maps e to e,. A different choice b,, will give a
path from z; to (y7, b;.! gv which leaves T for the first time at say y,.
The first edge outside T will project to an edge f, of X/G and so on
until eventually we have g expressed as

g = bxl 'Yfl byz ’Yflz oo b)’s Yf; bv .

We must show that a,, Ay, a,, Mg, .. a5, Ay, a, and by, Ay by, Ag, by, Ayl b,
determine the same left coset of R in (k G,,)*F.

Agree to select a,, from G,, so that the tail of the resulting path is as
long as possible. Continue in this way selecting a,,, a,, ... S0 as to maximise
the length of the tail at each stage. We shall compare any other set of
choices with this rather inefficient selection.

Both a,, and b, map e to e,, so ¢ = a,’ b, must fix el. Also,
due to our particular selection of a,,, the geodesic from z; to x, is
left fixed by v3, ¢ vy, . Therefore

N IRy
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by My, by Mg, o by, Ayl by R
= 4, M Mgy a5 by Ag by Ay by A bR
= Gy, A, M, Gy Mg, by, Ay o by, A bR
= Gy, M, (Y7,CY 1)z By, Agy o by, Mg DR
= Gy, M (V71CY s by Mg, o by, Ay B,R
= ay, Ay, ak, by, Ay by Mg bR

X2 “y2

where a}, = (Y7,¢Ys)x,- If x, happens to equal y, then we simplify this
further to

ay, Ap ay, hp, by, kf’3 . by, Kf’s b,R

!

where aj, is the product a,b,, in G,,. We now compare a,, with '

a,, if x, # y,, noting that y,, = 1-in this case, or with aj, if x, = y,, |

X2

and repeat the process. Eventually we obtain
bx1 }"fl byz 7\.]',2 v bJ’s }\‘f; va = axl )\‘fl axz }sz e axr )\,f'_ a:,' R .

As g = ay, Yy, o Gy Yy, Gy = Gy, Yy, - Gy, Yy, Ay We see that aj = a,. This |
completes the proof that  is well defined. 1

5. NEAREST FIXED POINTS

To show V is a homomorphism we shall verify

U(hg) = W(h)V(9)

under the assumption that h either leaves some vertex of T fixed or is |
one of the elements y,. This is sufficient because the elements of the |
G, (w a vertex of T) together with the vs (f an edge of X/G—M)
form a set of generators for G.

Suppose h fixes the vertex w of T. Walk along the geodesic vw and let x
be the first vertex we meet which is left fixed by h. Then vx is contained §
in T, and vx followed by h(xv) is the geodesic from v to hv. This quits T
for the first time at x and we see that

W(h) = h.R.
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hx=x

thgiv
\J /‘
h
-\
Y ’\,M hv
gv
FIGURE 3

Using the geodesic from v to gv we have Y(g) = ax,
usual way. Therefore

U(h(g) = hy Gx, Mgy o O, As, a,R .

he geodesic from v to (hg)v.

In order to compute (hg) we need t
llowed by the image of

. We can construct this as follows, take v hv fo

B, 5u under h and remove any round trips.
If vgv does not contain all of vx (Figure 3) then v(hgv leaves T

B (or the first time at x. A tail wag of v(hg)v using h;!' leads us to a
path which has the same tail as v gv, then the process continues as for g.

Thus
U(hg) = hy Gy, Ay, o G Mg, @R = W(RW(9) -
Otherwise v gv contains all of vx (Figure 4) and we split the argument

into three cases.

FIGURE 4 -
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(@) vgv stays in T for at least one more edge after x. Then v(hg)v must
leave T at x. As above, a first choice of h ! leads to a path with
the same tail as v gv.

(b) v_g_ﬁ; and v(hg)v both leave T at x. Then x; = x and we write a,
instead of a,, . A first tail wag of v(hg)v using yfl(h a,)” ! produces

—_—

the same path as a first tail wag of v gv using y7, a; *. Thus

U(hg) = hya. Ay, ax, Ay, .. ax, Ay a,R = \I!(h)\ll(g).

() vgv leaves T at x, but v(hg)v stays in T for at least one more
edge after x. Then x, = x, Yr, = 1 and we may as well equate a,,
with Ao . A first tail wag of vgv using h, gives a path with the
same tail as v(hg)v. Thus
VY(hg) = a,, Ay, ... a,, s, a,R

=h.h ta, N, ..a, A; a,R
= Y(h(g) .

Suppose finally that h = y, for some edge f of X/G—M. As usual
e is the chosen lift of f into X withx = i(e)e Tandz = t(y; e). Let y = i(y7 e).
The geodesic from v to y,v is made up of vx followed by e followed by
yf(z_v3. This leaves T for the first time at x and a single tail wag using
Y7 produces 0. Therefore

‘l’(Yf) = fo-

To obtain the geodesic from v to (y.g)v we follow vyfv by v, (v qv)
and then remove any round trips (Figure 5). If v gv does not contain vy,
then v(y,g)v leaves T for the first time at x and a single tail wag using y;

(hglv

FIGURE 5
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: produc;es a path with the same tail as v gv. The process then continues as
for g and |
U(yrg) = Agay, Mgy oo Gy, As, a,R = V(yV(9) -

—_

Otherwise v gv contains ;; Then Xy =5 Y, = y;7 and we may as well
take a,, = 1. A first tail wag of vgv using y, leaves a path with the

same tall as (Y rg)v. Thus

U(Yrg) = Gy, Apy oo Oy, A, a,R
= }\41‘ )\;‘7‘ axz ?\‘fz son axr }\ofr avR

= Yy W(g) -

This completes the proof that Y is a homomorphism.

Our construction of { ensures that if y(g) = R then g = 1. So V¥
is injective. The cosets h,R (w a vertex of T and h(w) = w) and A R
(f an edge of X/G) together generate [(* G,)*F 1/R. Now y(h) = h,R where x
is the nearest fixed point of h to v. But h fixes all of XW SO

V(h) = h,R = h,R.
1 Also
‘l’(Yf) = )\'fR~

| Therefore the image of  is all of [(* G,)*F]/R and we have shown that
| is an isomorphism.

,. The author would like to thank the members of the Mathematics
| Department of the University of Geneva for their hospitality during the
preparation of this article.
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