

Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de l'Enseignement Mathématique
Band: 32 (1986)
Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: INTRODUCTION TO MICROLOCAL ANALYSIS
Autor: Kashiwara, Masaki
Kapitel: §11. Application to the b-function (see [SKKO])
DOI: <https://doi.org/10.5169/seals-55089>

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. [Mehr erfahren](#)

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. [En savoir plus](#)

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. [Find out more](#)

Download PDF: 03.02.2026

ETH-Bibliothek Zürich, E-Periodica, <https://www.e-periodica.ch>

is an isomorphism.

In particular if $\text{Supp } \mathcal{M} \subset \Lambda_1 \cup \Lambda_2$ and if $\dim(\Lambda_1 \cap \Lambda_2) \leq n-2$, then \mathcal{M} is a direct sum of two holonomic \mathcal{E}_X -modules supported on Λ_1 and Λ_2 , respectively.

Here is another type of theorem.

THEOREM 10.4.3 ([SKKO]). *Let $\mathcal{M} = \mathcal{E}u = \mathcal{E}/\mathcal{J}$ be a holonomic \mathcal{E} -module defined on a neighborhood of $p \in T^*X$. Assume $\text{Supp } \mathcal{M} = \Lambda_1 \cup \Lambda_2$ and*

- (i) Λ_1, Λ_2 and $\Lambda_1 \cap \Lambda_2$ are non-singular and $\dim \Lambda_1 = \dim \Lambda_2 = n$, $\dim(\Lambda_1 \cap \Lambda_2) = n-1$.
- (ii) $T_{p'} \Lambda_1 \cap T_{p'} \Lambda_2 = T_{p'}(\Lambda_1 \cap \Lambda_2)$ for any p' in a neighborhood of p in $\Lambda_1 \cap \Lambda_2$.
- (iii) The symbol ideal of \mathcal{J} coincides with the ideal of functions vanishing on $\Lambda_1 \cup \Lambda_2$.

Setting $k = \text{ord}_{\Lambda_1} u - \text{ord}_{\Lambda_2} u - 1/2$, we have

- (a) \mathcal{M} has a non-zero quotient supported on $\Lambda_1 \Leftrightarrow \mathcal{M}$ has a non-zero submodule supported on $\Lambda_2 \Leftrightarrow k \in \mathbb{Z}$.
- (b) \mathcal{M}_p is a simple \mathcal{E}_p -module $\Leftrightarrow k \notin \mathbb{Z}$.

Sketch of the proof. By a quantized contact transformation, we can transform p, Λ_1, Λ_2 and \mathcal{J} as follows:

$$\begin{aligned} p &= (0, dx_1) \\ \Lambda_1 &= \{(x, \xi); x_1 = \xi_2 = \dots = \xi_n = 0\} \\ \Lambda_2 &= \{(x, \xi); x_1 = x_2 = \xi_3 = \dots = \xi_n = 0\} \\ \mathcal{J} &= \mathcal{E}(x_1 \partial_1 - \lambda) + \mathcal{E}(x_2 \partial_2 - \mu) + \sum_{j>2} \mathcal{E} \partial_j \end{aligned}$$

In this case, we can easily check the theorem.

§ 11. APPLICATION TO THE b -FUNCTION (see [SKKO])

11.1. As one of the most successful application of microlocal analysis, we shall sketch here how to calculate the b -function of a function under certain conditions.

11.2. Let f be a holomorphic function on a complex manifold X . Then, it is proved ([Bj], [Be] [K1]) that there exist (locally) a non zero polynomial $b(s)$ and $P(s) \in \mathcal{D}[s] = \mathcal{D} \underset{\text{def}}{\otimes} \mathbf{C}[s]$ such that $P(s)f(x)^{s+1} = b(s)f(x)^s$ for any $s \in \mathbf{N}$. Such a polynomial $b(s)$ of smallest degree is called the b -function of $f(x)$ and is denoted by $b_f(s)$. For the relations between the b -function and the local monodromy see [M1], [K3].

11.3. Set $\mathcal{J} = \{P(s) \in \mathcal{D}[s]; P(s)f^s = 0 \text{ for } s \in \mathbf{N}\}$ and $\mathcal{N} = \mathcal{D}[s]/\mathcal{J}$. We shall denote the canonical generator of \mathcal{N} by f^s . Then $t: \mathcal{N} \ni P(s)f^s \rightarrow P(s+1)f \cdot f^s \in \mathcal{N}$ gives a \mathcal{D} -endomorphism of \mathcal{N} and $t\mathcal{N} = \mathcal{D}[s]f^{s+1}$. Here $f^{s+1} = f \cdot f^s \in \mathcal{N}$. In this terminology $b_f(s)$ is the minimal polynomial of $s \in \mathcal{E}nd_{\mathcal{D}}(\mathcal{N}/t\mathcal{N})$.

For $\lambda \in \mathbf{C}$, we set $\mathcal{M}_\lambda = \mathcal{D}[s]/(\mathcal{J} + \mathcal{D}[s](s-\lambda))$ and denote by f^λ the canonical generator of \mathcal{M}_λ . Then $f^{\lambda+1} \mapsto f f^\lambda$ defines a \mathcal{D} -linear homomorphism $\mathcal{M}_{\lambda+1} \rightarrow \mathcal{M}_\lambda$.

11.4. Let W be the closure of

$$\{(s, x, \xi) \in \mathbf{C} \times T^*X; \xi = sd \log f(x), f(x) \neq 0\}$$

in $\mathbf{C} \times T^*X$. Set $W_0 = W \cap \{s=0\} \subset T^*X$. Then we can prove

PROPOSITION 11.4.1 ([K1]).

- (i) N is a coherent \mathcal{D}_X -module and $\text{Ch}(N) = p(W)$, where p is the projection from $\mathbf{C} \times T^*X$ to T^*X .
- (ii) For any $\lambda \in \mathbf{C}$, \mathcal{M}_λ is a regular holonomic \mathcal{D}_X -module and $\text{Ch}(\mathcal{M}_\lambda) = W_0$.
- (iii) $\mathcal{N}/t\mathcal{N}$ is a regular holonomic \mathcal{D}_X -module and $\text{Ch}(\mathcal{N}/t\mathcal{N}) = W_0 \cap (\pi \circ f)^{-1}(0)$.

11.5. In the sequel, for the sake of simplicity, we assume that there exists a vector field v such that $v(f) = f$. Therefore we have $v^k(f^s) = s^k f^s$. Hence \mathcal{N} is a \mathcal{D} -module generated by f^s . If we set $\tilde{\mathcal{J}} = \mathcal{D} \cap \mathcal{J}$, then $\mathcal{N} \cong \mathcal{D}/\mathcal{J}$ and $\mathcal{J} = \mathcal{D}[s](s-v) + \mathcal{D}[s]\tilde{\mathcal{J}}$.

11.6. The following lemma is almost obvious but affords a fundamental tool to calculate the b -function.

LEMMA 11.6.1. *Let \mathcal{L} be an \mathcal{E}_X -module and w a non-zero section of \mathcal{L} . For $\lambda \in \mathbf{C}$, we assume*

- (i) $v(w) = \lambda w$
- (ii) $\tilde{\mathcal{J}}w = 0$
- (iii) $fw = 0$.

Then we have $b_f(\lambda) = 0$.

Proof. There is a $P \in \mathcal{D}$ such that $b_f(s)f^s = Pf^{s+1}$. Hence $(b_f(v) - Pf)f^s = 0$, which implies $b_f(v) - Pf \in \tilde{\mathcal{J}}$. Since $b_f(v)w = b_f(\lambda)w$ we have

$$0 = (b_f(v) - Pf)w = b_f(\lambda)w.$$

This implies $b_f(\lambda) = 0$.

11.7. Let $\bar{\mathcal{J}}$ be the symbol ideal of $\tilde{\mathcal{J}}$. Then the zero set of $\bar{\mathcal{J}}$ is W , and the zero of $\bar{\mathcal{J}} + \mathcal{O}\sigma(v)$ is W_0 . Let Λ be an irreducible component of W_0 . If $\bar{\mathcal{J}} + \mathcal{O}_{T^*X}\sigma(v)$ is a reduced ideal at a generic point p of Λ then we call Λ a *good Lagrangean*.

If Λ is a good Lagrangean, then W is non-singular on a neighborhood of a generic point p of Λ and $\sigma = \sigma(s)|_W$ has non zero-differential. Let $p: W \rightarrow X$ denote the projection. We define $m(\Lambda) \in \mathbf{N}$ as the degree of zero of $f \circ p$ along Λ , and set $f_\Lambda = (f \circ p/\sigma^{m(\Lambda)})|_\Lambda$. Let ω be the non-vanishing n -form on X . Then $(p^*\omega) \wedge d\sigma$ is an $(n+1)$ -form on W . Let $\mu(\Lambda)$ be the degree of zeros of $(p^*\omega) \wedge d\sigma$ along Λ , and let η be the n -form on Λ given by

$$\left. \frac{p^*\omega \wedge d\sigma}{\sigma^{\mu(\Lambda)}} \right|_\Lambda = \eta \wedge d\sigma.$$

If we set $\kappa_\Lambda = \eta \otimes \omega^{\otimes -1} \in \omega_\Lambda \otimes \omega_X^{\otimes -1}$, then this is independent of the choice of ω . We have

PROPOSITION 11.7.1 ([SKKO]). *If Λ is a good Lagrangean, then for any $\lambda \in \mathbf{C}$, \mathcal{M}_λ is a simple holonomic system on a neighborhood of a generic point p of Λ and we have*

- (i) $\sigma(f^\lambda) = f_\Lambda^\lambda \sqrt{\kappa_\Lambda}$.

In particular

$$\text{ord } f^\lambda = -m(\Lambda)\lambda - \mu(\Lambda)/2.$$

(ii) There exists a monic polynomial $b_\Lambda(s)$ of degree $m(\Lambda)$ and an invertible micro-differential operator P_Λ of order $m(\Lambda)$ such that

$$b_\Lambda(s)f^s = P_\Lambda f \cdot f^s \quad \text{in} \quad \mathcal{E} \underset{\mathcal{D}}{\otimes} \mathcal{N}$$

and

$$\sigma(P_\Lambda)|_\Lambda = f_\Lambda^{-1}.$$

Remark that f_Λ and ω_Λ are homogeneous of degree $-m(\Lambda)$ and $-\mu(\Lambda)$, respectively.

Remark also that the minimal polynomial of $s \in \text{End}_{\mathcal{E}}(\mathcal{E} \underset{\mathcal{D}}{\otimes} \mathcal{N}/t\mathcal{N})|_\Lambda$ is $b_\Lambda(s)$. In fact, if $Pf^{s+1} = b(s)f^s$ in $\mathcal{E} \otimes \mathcal{N}$, then $(P \cdot P_\Lambda^{-1}b_\Lambda(s) - b(s))f^s = 0$. This implies that $P \cdot P_\Lambda^{-1}b_\Lambda(v) - b(v) \in \mathcal{E}\tilde{\mathcal{J}}$. Hence

$$\sigma(P \cdot P_\Lambda^{-1}b_\Lambda(v) - b(v))|_W = 0.$$

If $\text{ord } P \cdot P_\Lambda^{-1}b_\Lambda(v) = \text{ord } P > \deg b$, then $\sigma(P)|_W = 0$. Therefore $P = P' + P''$ with $P'' \in \mathcal{E}\tilde{\mathcal{J}}$ and $\sigma(P') < \sigma(P)$. Hence $P'f^{s+1} = b(s)f^s$. Thus, we may assume $\text{ord } P \leq \deg b$. Then

$$0 = \sigma(b(v) - P \cdot P_\Lambda^{-1}b_\Lambda(v))|_W = b(\sigma) - (\sigma(P)|_W f_\Lambda b_\Lambda(\sigma)).$$

This shows that $b(s)$ is a multiple of $b_\Lambda(s)$.

COROLLARY 11.7.2. *If every irreducible component of W_0 is good Lagrangean, then $b_f(s)$ is the least common multiple of the $b_\Lambda(s)$.*

11.8. Let Λ_1 and Λ_2 be two good Lagrangeans. We assume the following conditions for a point $p \in \Lambda_1 \cap \Lambda_2$:

- (11.8.1) $\dim_p \Lambda_1 \cap \Lambda_2 = n-1$ and Λ_1, Λ_2 and $\Lambda_1 \cap \Lambda_2$ are non singular on a neighborhood of p .
- (11.8.2) For any point p' on a neighborhood of p in $\Lambda_1 \cap \Lambda_2$, we have $T_{p'}\Lambda_1 \cap T_{p'}\Lambda_2 = T_{p'}(\Lambda_1 \cap \Lambda_2)$.
- (11.8.3) $\tilde{\mathcal{J}} + \mathcal{O}\sigma(v)$ coincides with the defining ideal of $\Lambda_1 \cup \Lambda_2$ with the reduced structure.

In this case we say that Λ_1 and Λ_2 have a *good intersection*.

We have the following theorem.

THEOREM 11.7.3. *Let Λ_1 and Λ_2 be good Lagrangeans with a good intersection. If $m(\Lambda_1) \geq m(\Lambda_2)$, then*

$$\prod_{k=0}^{m(\Lambda_1)-m(\Lambda_2)-1} \left(\text{ord}_{\Lambda_2} f^s - \text{ord}_{\Lambda_1} f^s + \frac{1}{2} + k \right) \mid b_f(s).$$

In order to prove this let us take $\lambda \in \mathbf{C}$ such that

$$(11.8.4) \quad \begin{aligned} k &= \text{ord}_{\Lambda_1} f^\lambda - \text{ord}_{\Lambda_2} f^\lambda - 1/2 \in \mathbf{N} \quad \text{and} \\ k' &= \text{ord}_{\Lambda_1} f^{\lambda+1} - \text{ord}_{\Lambda_2} f^{\lambda+1} - 1/2 \in \mathbf{N}. \end{aligned}$$

Recall that

$$k = (m(\Lambda_2) - m(\Lambda_1))\lambda - \frac{1}{2}(\mu(\Lambda_2) - \mu(\Lambda_1) - 1/2)$$

and $k' = k + (m(\Lambda_2) - m(\Lambda_1))$. Then by Theorem 10.4.3, \mathcal{M}_λ has a non-zero quotient \mathcal{L} whose support is Λ_1 . Let $w \in \mathcal{L}$ be the image of $f^\lambda \in \mathcal{M}_\lambda$.

Let $\alpha: \mathcal{M}_\lambda \rightarrow \mathcal{L}$ be the canonical homomorphism and $\beta: \mathcal{M}_{\lambda+1} \rightarrow \mathcal{M}_\lambda$ be the homomorphism given by $f^{\lambda+1} \mapsto f \cdot f^\lambda$. Then, since $k' \notin \mathbf{N}$, $\mathcal{M}_{\lambda+1}$ has no non-zero quotient supported in Λ_1 . Hence $\alpha \circ \beta = 0$. Therefore $fw = \alpha\beta(f^{\lambda+1}) = 0$. Thus we can apply Lemma 11.6.1 to conclude that $b_f(\lambda) = 0$. If $k \in \mathbf{Z}$ with $0 \leq k < m(\Lambda_1) - m(\Lambda_2)$ then

$$\lambda = \frac{1}{m(\Lambda_1) - m(\Lambda_2)} \left(k + \frac{1}{2}(\mu(\Lambda_1) - \mu(\Lambda_2) - 1) \right)$$

satisfies (11.8.4). This shows that $b_f(s)$ is a multiple of

$$\begin{aligned} &\prod_{k=0}^{m(\Lambda_1)-m(\Lambda_2)-1} \left((m(\Lambda_1) - m(\Lambda_2))s - \frac{1}{2}(\mu(\Lambda_1) - \mu(\Lambda_2) - 1) + k \right) \\ &= \text{const.} \prod_{k=0}^{m(\Lambda_1)-m(\Lambda_2)-1} \left(\text{ord}_{\Lambda_2} f^s - \text{ord}_{\Lambda_1} f^s + \frac{1}{2} + k \right). \end{aligned}$$

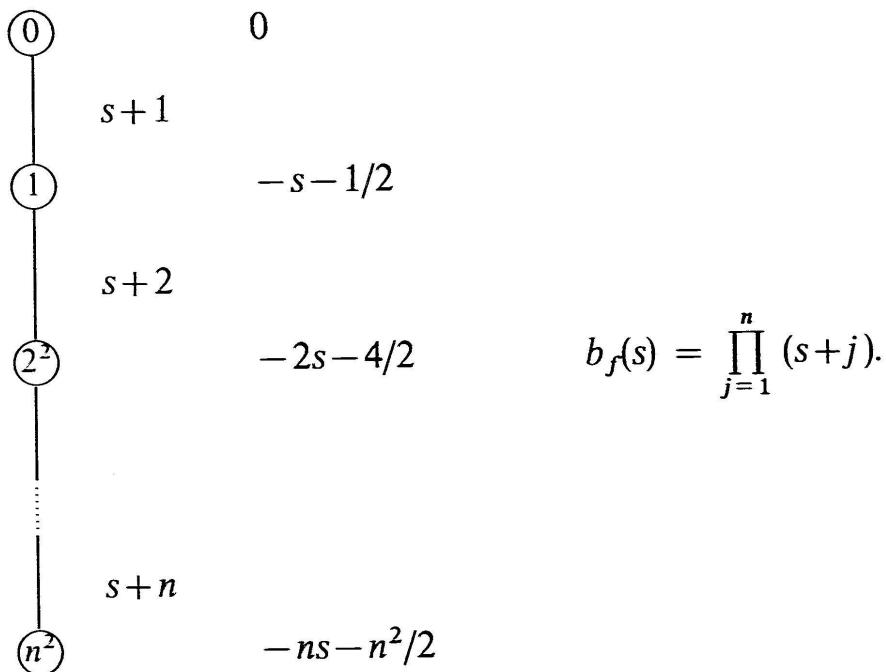
If we refine this argument, we can prove

THEOREM 11.8.2 ([SKKO]). *If Λ_1 and Λ_2 are good Lagrangeans with a good intersection and if $m(\Lambda_1) \geq m(\Lambda_2)$ then*

$$\frac{b_{\Lambda_1}(s)}{b_{\Lambda_2}(s)} = \text{const.} \prod_{k=0}^{m(\Lambda_1)-m(\Lambda_2)-1} \left(\text{ord}_{\Lambda_2} f^s - \text{ord}_{\Lambda_1} f^s + \frac{1}{2} + k \right).$$

Example 11.8.3.

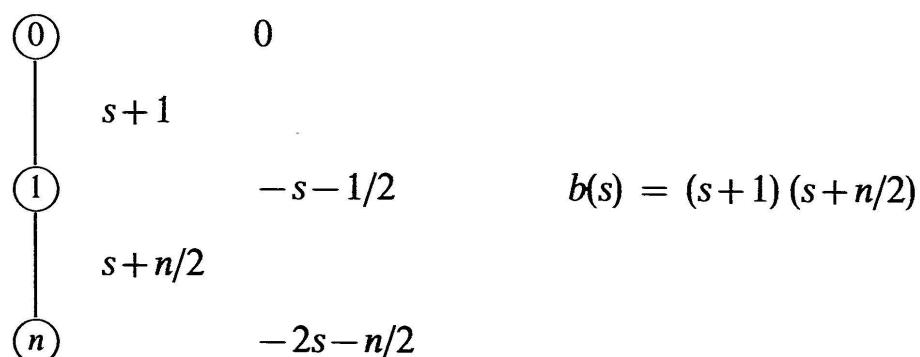
(i) $X = M_n(\mathbf{C}) = \mathbf{C}^{n^2}$ and $f(x) = \det x$.



Here (a) means a good Lagrangean which is the conormal bundle to an a -codimensional submanifold. ()—() means that the two corresponding good Lagrangeans have a good intersection.

The polynomial attached to the intersection is the ratio of the corresponding b_Λ -functions, calculated by Theorem 11.8.2. The polynomial attached to the circle is the order of f^λ .

(ii) $X = \mathbf{C}^n, f(x) = x_1^2 + \dots + x_n^2$



(iii) $X = \mathbf{C}^3, f = x^2y + z^2$

