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252 M. KASHIWARA

is an isomorphism.

In particular if Supp 4 < A; U A, andif dim(A;nA,) < n—2, then
M is a direct sum of two holonomic &y-modules supported on A, and
A,, respectively. '

Here is another type of theorem.

THeorEM 104.3 ([SKKO]). Let M = &u = &£/ be a holonomic
&-module defined on a neighborhood of pe T*X. Assume Supp .4
= A, UA, and '

M A;,A, and A, A, are non-singular and dim A; = dim A,
= n,dim (A;nA,) = n—1.

M T, AinT,A, = T (AnA,) forany p' in a neighborhood of p in
Ai 0 A,.

(i) The symbol ideal of # coincides with the ideal of functions vanishing
on A UA,.

Setting k = ord,,u — ord, u — 1/2, we have
(@) A has a non-zero quotient supported on A, <> .# has a non-zero
submodule supported on A, < ke Z.
(b) A, isasimple & ,-module <>k ¢ Z.

Sketch of the proof. By a quantized contact transformation, we can
transform p, A;, A, and _¢ as follows:

p = (0, dx,)
Ay ={x8;x =& =..=§, =0}
Ay = {x8;x1 =x, =8 =..=§ =0} °
F = E(x10;—N) + E(x20,—p) + Y &9,

j>2

In this case, we can easily check the theorem.
§ 11. APPLICATION TO THE b-FUNCTION (see [SKKO])
11.1. As one of the most successful application of microlocal analysis,

we shall sketch here how to calculate the b-function of a function under
certain conditions.




MICROLOCAL ANALYSIS 253

" 11.2. Let f be a holomorphic function on a complex manifold X. Then,
it is proved ([Bj], [Be] [K1]) that there exist (locally) a non zero poly-
! nhomial b(s) and P(s) € Z[s] = 2 ® C[s] such that P(s)f (x)**! = b(s)f(x)

‘ def C
_for any seN. Such a polynomial b(s) of smallest degree is called the

b-function of f(x) and is denoted by b(s). For the relations between the
b-function and the local monodromy see [M1], [K3].

b 113, Set # = {P(s)e D[s]; P(s)f* = O for seN} and A = P[s]/.7. We
shall denote the canonical generator of A" by f° Then t: A3 P(s) f5
, = P(s+1)f - fSe A gives a @-endomorphism of 4" and tA4" = D[s]fsH.
Here f5*! = f - fSe 4. In this terminology b (s) is the minimal polynomial
l  of se &ndy(N/tA).

’ For Ae C, we set M, = D[s]/(F+D[s](s—))) and denote by f* the
canonical generator of .#,. Then f**'+> f f* defines a Z-linear homo-
morphism A, 1 = M.

~ 11.4. Let W be the closure of
| {(s,x,8)e C x T*X; & = sdlog f(x), f(x) # 0}
in C x T*X.Set W, = W n {s=0} = T*X. Then we can prove

ProprosiTION 11.4.1 ([K1]).

5 () N is a coherent Dx-module and Ch(A) = p(W), where p is the
| projection from C x T*X to T*X.

(i) For any AeC,.#, is a regular holonomic Dx-module and
1 Ch(w,) = W,.

| (i) &)t/ is a regular holonomic ~ Dy-module and Ch (AN '[tN")
= Wo 0 (nof)”(0).

i 11.5. In the sequel, for the sake of simplicity, we assume that there exists
B a vector field v such that o(f) = f. Therefore we have vf(f*) = s*f*.
Hence A4 is a @2-module generated by f° If we set £ = 2 n #, then
N =9/ Fand #F = D[s](s—v) + D[s].7.

11.6. The following lemma is almost obvious but affords a fundamental
tool to calculate the b-function.
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LEMMA 11.6.1. Let & be an Ex-module and w a non-zero section
of ¥. For AeC, we assume

1) vw) = Aw
() Fw =0
(iii) fw = 0.

Then we have b(\) = 0.

Proof. There is a P € 9 such that b(s)f* = Pf**1. Hence (b (v)— Pf)f*
= 0, which implies b(v) — Pfe #. Since b Av)w = b(M)w we have

0 = (bv)—Pflw = b (AM)w.
This implies b{(A) = 0.

11.7. Let # be the symbol ideal of #. Then the zero set of ¢ is W,
and the zero of ¢ + Oo(v) is W,. Let A be an irreducible component of
Wo. If # 4+ Or,xo(v) is a reduced ideal at a generic point p of A then
we call A a good Lagrangean.

If A is a good Lagrangean, then W is non-singular on a neighborhood
of a generic point p of A and o = o(s)|» has non zero-differential. Let
p: W — X denote the projection. We define m(A) e N as the degree of zero
of fop along A, and set f, = (fop/c™™)|,. Let @ be the non-vanishing
n-form on X. Then (p*w) A do is an (n+ 1)-form on W. Let p(A) be the
degree of zeros of (p*w) A do along A, and let n be the n-form on A
given by

p*o A do
GH®)

=n A do.
A

If we set kK, =N 0® 'ew, ® ®§ !, then this is independent of the
choice of . We have

ProrosiTioN 11.7.1 ((SKKO]). If A is a good Lagrangean, then for any
AeC, M, is a simple holonomic system on a neighborhood of a generic
point p of A and we have

@ o(fY) = fav/¥a-

In particular

ord f* = —m(A\ — WA)/2.
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(i) There exists a monic polynomial  b(s) of degree m(A) and an
! invertible micro-differential operator P, of order m(A) such that

baA(S)f* = Ppf - f°5 in (f%%

and o(P)lr= frt.

% Remark that f, and ®, are homogeneous of degree —m(A) and

— w(A), respectively.

5 Remark also that the minimal polynomial of se€ &ndg(6 @ N /tN)|A
D

b is ba(9). In fact, if Pf**! = b(s)f* in & ® A, then (P+P 5 'ba(s) = b(9)f* = O.
| This implies that P+ P 'b,(v) — b(v) € & 7. Hence

S(P+ P 'ba(v)—b)|w = 0.

d If ord P- P 'b,(v) = ord P > degb, then o(P)|y = 0. Therefore P = P’
| + P” with P" € & and o(P’) < o(P). Hence P’ f**! = b(s)f*. Thus, we may
| assume ord P < deg b. Then

0= G(b(v)“P'PXIbA(U)N w = b(c) — (O'(P)IWfAbA(U))-

- This shows that b(s) is a multiple of b,(s).

CoroLLARY 11.7.2. If every irreducible component. of W, is good
| Lagrangean, then b(s) is the least common multiple of the b A(s).

11.8. Let A; and A, be two good Lagrangeans. We assume the following
1 conditions for a point pe A; N A,:

%(11.8.1) dim,A; " A, = n—1 and A, A, and A; n A, are non singular
on a neighborhood of p.

(11.8.2) For any point p’ on a neighborhood of p in A; N A,, we have
Tp'Al N Tp'A2 = Tp' (AlnAz).

’;;(11.8.3) F + Oo(v) coincides with the defining ideal of A, U A, with the
3 reduced structure.

B In this case we say that A, and A, have a good intersection.

We have the following theorem.
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THEOREM 11.7.3. Let A, and A, be good Lagrangeans with a good
intersection. If m(A,) = m(A,), then

m(A1) —m(A2)—1

s e e g oy s

1
<ordA2fs—ordA1fs+§+k> | b(s) .

k=0

In order to prove this let us take A € C such that

k = ords f* — ord,,f* — 12e N and
(11.8.4)
k' = ord,, f**! — ord,, f*** — 1/2eN.,

Recall that
1 :
k = (m(Ay) —m(A)\ — E(H(Az)_U(Al)_l/z) ;

and k' = k + (m(A,)—m(A,)). Then by Theorem 10.4.3, ., has a non-zero
quotient £ whose support is A;. Let we ¥ be the image of f*e .,. ;

Let a: 4, — &£ be the canonical homomorphism and B: .#,., - 4, &
be the homomorphism given by f**!+> f - f* Then, since k' ¢ N, .#,,, i
has no non-zero quotient supported in A;. Hence oo B = 0. Therefore

fw = af(f**!) = 0. Thus we can apply Lemma 11.6.1 to conclude that
bAr) = 0.If ke Z with 0 < k < m(A;) — m(A,) then

1 1
= ) (k + E(u(Al)—u(Az)—l))

satisfies (11.8.4). This shows that b {(s) is a multiple of

m(A1) —m(A2)— 1

k=0

1
<(m(A1)~m(A2))S ) (H(A1)_H(A2)_1) ry k)
m(A1)—m(Az)—1 1
= const. I1 (ordAsz —ord,, f* + - + k).

k=0 2

If we refine this argument, we can prove

Tueorem 11.8.2 ([SKKO]). If A, and A, are good Lagrangeans with
a good intersection and if m(A,) = m(A,) then

b m(A1) —m(A2)— 1 1
AlS) = const. 1 (ordAzfs —ord,, f*+ - + k).
bAz(S) k=0 A 2
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Example 11.8.3.
() X =M,(C) =C” and f(x)=detx

s+1

D —s—1/2
s+2

@ —2s—4/2 bs) = le (s+7).
S+n

n’ —ns—n?/2

Here means a good Lagrangean which is the conormal bundle to an
a-codimensional submanifold. O—O means that the two corresponding

good Lagrangeans have a good intersection.
The polynomial attached to the intersection is the ratio of the corres-
ponding b,-functions, calculated by Theorem 11.8.2. The polynomial attached

to the circle is the order of f™.

() X =C f() = x}+ .+ x2
G 0
.
s+1 |
E O —5—1/2 bs) = (s+1) (s+n/2)
s+n/2
(n) —25—n/2

i) X = C3 f = x%y 4+ 22
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—s—1/2  bds) = (s+1)Xs+3/2)

(2542) (25+3) —2s—1

—3s5—2
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