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9 4. Noting that any nowhere dense closed analytic subset of a Lagrangean
| variety is never involutive, Theorem 9.2.3 implies the following theorem.

! THEOREM 9.4.1. Let . be a holonomic & s-module. Then the following
condltzons are equivalent.

(1) There exists a Lagrangean subvariety A such that M has regular
| singularities along A.

(i) For any involutive subvariety A which contains Supp M, M has
! regular singularities along A.

(111) There exists an open dense subset Q of Supp /A such that M
has regular singularities along Supp 4 on Q.

; If these equivalent conditions are satisfied, we say that ./ is a regular
| holonomic & y-module.

The following properties are almost immediate.

THEOREM 9.4.2.

i () Let 0— M — M — M"— 0 be an exact sequence of three coherent
& y-modules. If two of them are regular holonomic then so is the third.

(i) If M is regular holonomic, its dual M* is also regular holonomic.

1 We just mention another analytic property of regular holonomic modules,
~ which generalizes the fact that a formal solution of an ordinary differential
l equation with regular singularity converges.

{ TueoreM 9.4.3 ([KK] Theorem 6.1.3). If .# and A are regular
* holonomic ~ &x-modules, then &xth (M, N) — Extl (M, &y @ N) and
| Ex

1 Extly (M, N) > Extl (M, EF & N) are isomorphisms.
; A Ex

§ 10. STRUCTURE OF REGULAR HOLONOMIC &-MODULES
(See [SKK], [KK])

"x* 10.1. Let A be a Lagrangean submanifold of T*X. We define ¢, and
b &, asin §9.2. ;
* Then &5(—1) = &4+ &(—1) is a two-sided ideal of &, and E,/EA(—1) |
 is a sheaf of rings which contains 0,(0) = &(0)/#A(—1), the sheaf of
homogeneous functions on A. i
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Let us take an invertible 0,-module % such that 2 = o, @ 02 !.
Ox

Such an # exists at least locally. For P = P(x,d) + Py(x,0) + ..€ #
we define, for ¢ € @, and an invertible section s of &,

1 Lu, (s%°®dx) 1 & o°P,
L(P)((PS)={HPI((P)+—2‘(P S®2®dx +(PO—§Zaxaé> }S

Here dx = dx; A .. A dx,e oy and s®2 ® dx is regarded as a section
of w,. The Lie derivative Ly, of Hp operates on @, as the first order
1

differential operators so that Ly, (s®2®dx) is a section of ®, and
1
Ly, (s®°*®dx)/s®* ® dx is a function on A.
1

We thus obtain L: £, — &nd(¥). Then this does not depend on the
choice of local coordinate system and moreover it extends to the ring
homomorphism L: &, — &nd(¥). Since the image is contained in the

differential endomorphism of %, we obtain the ring homomorphism
L:6,>¥QP,Q £® 1.

N N

ProrosiTiON 10.1.1. By L, &A/E\(—1) coincides with the subsheaf of
L R D\ Q@ L® 1 consisting of differential endomorphisms of ¥ homo-

OA Op
geneous of degree O.

If we take
Fr€d = 84(x,0) + (x, 0) +
such that d3; = —04 mod I,Q! and

829,

Z@ 3 = 94(x, ) mod £,

then L(8) gives the Euler operator of %#. Such a 9 is unique modulo
FA=1) = EA(—=1) 0 Ex(D).

10.2. Let .# be a regular holonomic &y-module whose support is A.
Let .4, be a coherent sub-&,-module of M which generates .#. Such an
M, is called a saturated lattice of M. Then M = M,/E(—1)M, is an
& /& A(— 1)-module, which is coherent over @,(0).

Since a coherent sheaf with integrable connection is locally free, we have

LemMMA 10.2.1. . is a locally free © A(0)-rlnodule of finite rank.
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Since 9 belongs to the center of &,/EA(—1), 9 can be considered as an
éndomorphism of Homg, e A(_l)(ﬁ, %), which is a locally constant sheaf
f on A. Its eigenvalues are called the order of .4 with respect to My .

10.3. Let us take a section G < C of C — C/Z. Then there exists a unique
| saturated lattice M, such that the orders of 4 with respect to #, are

contained in G (See [K4]). Then

é F = Homg s, -\ M Z)
and

M = exp 2mid € Aut(F)

does not depend on the choice of G.

ORI N SO LA ISICY

I  Tueorem 10.3.1 ([KK] Chapter I, §3). Assume that there exists an
I invertible Oj-module ¥  such that $®2 = @, @y 1. Then the
§ category of regular holonomic & y-modules with support in A is equivalent
| to the category of (7, M)s where & is a locally constant C,-module

and M € Lut(F).

} 104. If ue ., then the solution to L(P)p = 0 for Pe &, with Pu =0
'is called a principal symbol of u and denoted by o(u). The homogeneous
1 degree of o(u) is called the order of u. In the terminology of §10.2, the
principal symbol is a section of Homg, s, (- 1)\ EAUEA(— Dt %) and the
| order is the eigenvalue of § in Homyg, s, (- o(EAWE A(— Dy, £).

R |

i 10.4. When the characteristic variety is not smooth, we don’t know much

g about the structure of holonomic systems. In this direction, we have

TueoreM 10.4.1 ([K-K] Theorem 1.2.2). Let Z be a closed analytic

(i) If dimZ < n—1, then

5 [(Q; Homg (M, N) > T(Q\Z, Homg (M, )
is injective.

(i) If dimZ <n—2, then

T(Q; #Homgs (M, N)) = T(Q\Z; #Homg (M, N)
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is an isomorphism.

In particular if Supp 4 < A; U A, andif dim(A;nA,) < n—2, then
M is a direct sum of two holonomic &y-modules supported on A, and
A,, respectively. '

Here is another type of theorem.

THeorEM 104.3 ([SKKO]). Let M = &u = &£/ be a holonomic
&-module defined on a neighborhood of pe T*X. Assume Supp .4
= A, UA, and '

M A;,A, and A, A, are non-singular and dim A; = dim A,
= n,dim (A;nA,) = n—1.

M T, AinT,A, = T (AnA,) forany p' in a neighborhood of p in
Ai 0 A,.

(i) The symbol ideal of # coincides with the ideal of functions vanishing
on A UA,.

Setting k = ord,,u — ord, u — 1/2, we have
(@) A has a non-zero quotient supported on A, <> .# has a non-zero
submodule supported on A, < ke Z.
(b) A, isasimple & ,-module <>k ¢ Z.

Sketch of the proof. By a quantized contact transformation, we can
transform p, A;, A, and _¢ as follows:

p = (0, dx,)
Ay ={x8;x =& =..=§, =0}
Ay = {x8;x1 =x, =8 =..=§ =0} °
F = E(x10;—N) + E(x20,—p) + Y &9,

j>2

In this case, we can easily check the theorem.
§ 11. APPLICATION TO THE b-FUNCTION (see [SKKO])
11.1. As one of the most successful application of microlocal analysis,

we shall sketch here how to calculate the b-function of a function under
certain conditions.
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