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| TueoreMm 8.10.1. Let Uy and Uy be open subsets of T*X and
d T*Y, respectively. Let A" be a coherent (€y| y,)-module. Assume

@) p,i®y (Supp A) N p, (Ux) > Uy is a finite morphism.

Then we have

| !

I (a) TorP “¥(Exey,®,'N) =0 for j#0.

(b)) M = puExcy Q? ®, ' A)|uy isacoherent & x|y ,-module.
G)g Sy

(©) Supp A = p, (B, " Supp &/ NUy).
§9. REecuLArITY ConDITIONS (See [KK], [K-O])

9.1. Let us recall the notion of regular singularity of ordinary differential
equations. Let P(x,d) = Y a;(x)0' be a linear differential operator in one

jsm
variable x. We assume that the aj{x) are holomorphic on a neighborhood of
x = 0. Then we say that the origin 0 is a regular singularity of Pu = 0 if

(*) Ordx=0aj(x) 2 Ordx=0'am(x) - (m _]) .

 Here ord,_, means the order of the zero. In this case, the local structure

of the equation is very simple. In fact, the Zx-module Px/PxP is a direct
sum of copies of the following modules:

Ox = 9x/9x0, Bioyx = Dx/Dxx, Dx/Dx(x0—N""1  (AeC, meN),
Dy Dx(x0)""1x (meN), Dy Dx0(x0)" 1 (meN) .

| If we denote by u the canonical generator, then we have Pu = 0.
1 By multiplying either a power of 0 or a power of x, we obtain

i b{x) (x0Yu = 0
i=0

. . , o . N-1 . '

§ with by(x) = 1. Hence # = Y O(xdYu = ) O(xdYu is a coherent @-sub-
B j=0 i=0

§. module of ./ which satisfies (x0)F < #. We shall generalize this property

B. to the case of several variables.

B 02 et X be a complex manifold, Q an open subset of T*X and V
a closed involutive complex submanifold of Q. Let us define
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Fv = {ueé)|q; oyP)|y = 0}

and let &, be the subring of &y|, generated by #,. For a coherent
&x-module #, a coherent sub-&y(0)-module & of 4 is called a lattice of
M M = ExF. The following proposition is easily derived from the fact
that &(0) is a Noetherian ring.

ProPOSITION 9.2.1 ([K-O] Theorem 1.4.7). Let .# be a coherent
&x | g-module. Then the following conditions are equivalent.

(1) For any point peQ, there is a lattice M, of M on a neigh-
borhood of p suchthat gy Mo = M,.

(2) For any open subset U of Q and for any coherent &(0)-submodule &
of M|y,EyL iscoherent over £0)|y.

Definition 9.2.2. If the equivalent conditions of the preceding proposition
are satisfied, then we say that .# has regular singularities along V.

Remark that if .# has regular singularity along V, then the support of .#
is contained in V. Let us denote by IR, () the set of points p such that
A has no regular singularities along ¥ on any neighborhood of p.

The following theorem is an immediate consequence of Gabber’s
Theorem 6.3.2.

THEOREM 9.2.3.  IRy(.#) is an involutive analytic subset of M.

In fact, if we take a lattice .#, of #, then T*X\IR(.#) is the largest
open subset on which &,.#, is coherent over &(0).

9.3. If an &-module .# has regular singularities along an involutive sub-
manifold V then .# is, roughly speaking, constant along the bicharacteristics
of V. More precisely, let Y and Z be complex manifolds and X = Y x Z.
Let zo € Z and let j be the inclusion map Y ¢ X by y > (y, z,). Then we
have

THEOREM 9.3.1. Let .# be a coherent &x-module. Assume that M
has. regular singularities along T*Y x T%¥Z. Then . is isomorphic to
xR 0,.

Note that any involutive submanifold V of T*X with 04|, # 0 is
transformed by a homogeneous symplectic transformation to the form
T*Y x T%Z.
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9 4. Noting that any nowhere dense closed analytic subset of a Lagrangean
| variety is never involutive, Theorem 9.2.3 implies the following theorem.

! THEOREM 9.4.1. Let . be a holonomic & s-module. Then the following
condltzons are equivalent.

(1) There exists a Lagrangean subvariety A such that M has regular
| singularities along A.

(i) For any involutive subvariety A which contains Supp M, M has
! regular singularities along A.

(111) There exists an open dense subset Q of Supp /A such that M
has regular singularities along Supp 4 on Q.

; If these equivalent conditions are satisfied, we say that ./ is a regular
| holonomic & y-module.

The following properties are almost immediate.

THEOREM 9.4.2.

i () Let 0— M — M — M"— 0 be an exact sequence of three coherent
& y-modules. If two of them are regular holonomic then so is the third.

(i) If M is regular holonomic, its dual M* is also regular holonomic.

1 We just mention another analytic property of regular holonomic modules,
~ which generalizes the fact that a formal solution of an ordinary differential
l equation with regular singularity converges.

{ TueoreM 9.4.3 ([KK] Theorem 6.1.3). If .# and A are regular
* holonomic ~ &x-modules, then &xth (M, N) — Extl (M, &y @ N) and
| Ex

1 Extly (M, N) > Extl (M, EF & N) are isomorphisms.
; A Ex

§ 10. STRUCTURE OF REGULAR HOLONOMIC &-MODULES
(See [SKK], [KK])

"x* 10.1. Let A be a Lagrangean submanifold of T*X. We define ¢, and
b &, asin §9.2. ;
* Then &5(—1) = &4+ &(—1) is a two-sided ideal of &, and E,/EA(—1) |
 is a sheaf of rings which contains 0,(0) = &(0)/#A(—1), the sheaf of
homogeneous functions on A. i
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