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§ 8. FUNCTORIAL PROPERTIES OF MICRO-DIFFERENTIAL MODULES
-(See [SKK])

8.1. External Tensor Product.

Let X and Y be complex manifolds and let p; and p, be the projections
T*XxY)— T*X and T*X x Y) —» T*Y, respectively. Then &y contains
pi'6x ® p; '€y as a subring. For an &y-module .# and an &y-module A,

C

we define the &y xy-module A4 & A by

(8.1.1) MO N = Exxy ® il @ p;tH).
-1 -1 c
p1 éx 63 p2 ¢y
Then one can easily see

ProPosITION 8.1.1.
() M & N isan exact functor in M and in N and Supp (ARN)
= Supp A4 x Supp N
G) If M is &Ex-coherent and N is &Ey-coherent, then * M & N s
& x x y-Coherent.

8.2. For a complex submanifold Y of a complex manifold X of codimension |/,
the sheaf lim &xt} (Ox/ #™ Ox) has a natural structure of Zy-module,

m

which is denoted by %y x. Here # is the defining ideal of Y. The homo-
morphism Oy — Extg,(Oy, Q%) — Q% ® By x gives the canonical section
Ox

oY, X) of Q% ® AByx- If we take local coordinates (x, .., x,) of X such
Y

that Y is defined by x;, = ... = x; = 0, then we have
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Byx = DY, Dxx; + Z Dx0; -
j=sl
If we denote by & the canonical generator of the left hand side, then
- oY, X) corresponds to dx; A .. A dx; ® d. We set
(ngX =6y ® n—lgnx-

t12x

Therefore locally we have

Gox = 6x Y, Exxj + L Ex;-

| ~ Then %y)x 1s a coherent & x-module whose support is T7X.

8.3. For an invertible Gy-module ¥, & ® Ex ® £® 1 has a natural

Ox Ox
structure of sheaves of rings, by the composition rule

RPRs® 1o (sQQRs® ) = s Q@ PQQs® 1

for an invertible section s of & and P, Q € 6.
Then the category Mod (x) of left &x-modules and the category
Mod (& ® Ex ® PO of left (¥ ® &x @ L® )-modules are equi-

Cx Ox Ox

valent by the functor

Mod (64) 3 - /ZHﬁ@ﬂEMOd(Q@é’X@g@ .

Ox Ox

l 34 Let oy be the canonical sheaf on X, ie. the sheaf of differential
1 forms with top degree. Let a be the antipodal map of T*X, ie. the
B multiplication by — 1. Then we have the anti-ring isomorphism.
(8.4.1) 0y RExRQ S S a18y.

Ox Ox
- This homomorphism is given by using a local coordinate system (x, ..., X,)
§ s follows. For P = Y P{x,d)e &x we define P* = ) P¥(x, d), called the
 formal adjoint of P ([SKK] Chap. II, Th. 1.5.1), by

S

842) P~ = 3 1 0WIPfcD).
Jiel:l"u

| This is well-defined and satisfies

(8.4.3) (P¥)* = P
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(8.4.4) (PQ)* = Q*pP* .
Then the isomorphism (8.4.1) is given by
(8.4.5) dx @ P ® (dx)® ! P*

where dx = dx; AN .. A dx, € ®wy. This is independent of coordinate trans-
formations.

8.5. The isomorphism (8.4.1) can be explained as follows. Let Ay be the
diagonal set of X x X, and let p; be the j-th projection from T% (X x X)
to T*X for j = 1,2. Then the p; are isomorphisms and p,op;' = a.
Let g; be the j-th projection from T*(X x X) to X(j=1, 2). Then c(Ay, X x X)

gives the canonical section of g, '®y ® Fayxxx- Since B xxx is a
-1
92 Ox
p 1 *€x-module, this section gives a homomorphism

piléx = q; oy @ (gAX|X><X
42 0x
It turns out that this is an isomorphism and the right multiplication of

Oy on & corresponds to the Oy-module structure of g5 oy, ® € Ax|X x X

-1
. . q2 Ox
via ¢, . Thus we obtain

()" ® Ex @0 NS q1 oy ® Caxixxx -
Ox Ox ‘11 (9x
This last being isomorphic to p; '€y, we obtain
Oy @ Ex @ wF ' S piprtEx ~aEx.

Ox Ox

8.6. By 8.3 and 84, if ./ is a left &y y-module for an open set U of
T*X, then oy ® a™ '/ is a right (& x|,y)-module.
, byl

8.7. For a left coherent é”x-module M, Exth (M, Ey) is a right coherent
&x-module. Therefore &xt} (M, &) ® 0P ! is a left &x-module by §8.6.

If ./ is holonomic then &xt% (A, €X) = O for j # n = dim X (See [SKK],
[K1]). Set M* = &xthy (M, Ex) @ @3~ 1. Then A* is also a holonomic
Ox

& x-module.
We call #* the dual system of .#. We have A** = M, and M — M*
is an exact contravariant functor on the category of holonomic & y-modules.
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&
|

88 Let X and Y be complex manifolds, and let p,: T*X xY)— T*X
§ and p,: THX xY) -~ T*Y be the canonical projections. Let p% denote
| p,oa Let A be a left &y.y-module defined on an open subset of
| T*(X x Y). Then, by §8.6, oy ® A has a structure of (p;'€x,p5 "Ey)-
g o

bi-module. For an &y-module A,

ﬂ=P1*(((DY((OX)9{) 181) Pg_lv/‘/)

g p2 6y
" has a structure of &x-module. We have the following

1 TuroreM 8.8.1. Let Q, Uy and Uy be open subsets of T*X xY),
| T*X and T*Y, respectively. Let A be a coherent (Exxy|q)-module and

V& acoherent (&y|y,)-module. Assume
I i) py:pitUx 0 Supp A Aps tSupp &/ - Uy is a finite morphism.

Then we have

: a—1 _
| @ 7o o (O @X.p5 ")y tux = 0 for j#0.

(b) M = Py @A) ® ps 'A) |y, is a coherent &x-module.
Oy -1

a
p2 &y

| (¢ Supp.# = Uy py (Supp X np5 " Supp A).

We denote py(0y ® ) & ps~ ' A) by J A o N
Oy Y

a—1
p2 €&y

3 89. Let f:X — Y be a holomorphic map and let A, be the graph of f,
ie. {(x, f(x)) e X x Y;xe X}, then A = €u xxy is a coherent &y x y-module
§; whose support is Tx(X xY). Now let ® be the canonical map X x T*Y

{
g > T*X and p the projection X x T*Y. Then we have the following
§. diagram

T*X & X x T*Y Lt T*Y
Y

& (8.9.1) id | 2 | id.
T*X «— T (X xY) - T*Y
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We set &y.y = Oy ® €4, xxy and consider this as a sheaf on X x T*Y
Oy . Y

by the above isomorphism. Then &4,y is a (® ~'&y, p~ '&y)-bi-module.
For an &y-module A,

J'f ° </‘/‘ = R(T)*p_l(éax_,y ® p_lc/V‘).

p~léey

We shall denote this by f*.A4" and call it the pull-back of A4". Then
Theorem 8.8.1 reads as follows.

THEOREM 8.9.1. Let Uy and Uy be open subsets of T*X and
T*Y, respectively. Let A be a coherent (&y|y)-module. Assume

i) p;'(Supp &) N &; (Uy) - Uy is a finite morphism.

Then we have

-1
(@) Tor?t ¥ (Exy, /) = 0 for j#0.

b) M =& (Exoy @ p;rA)|u, isacoherent &x-module.
-1
pf 6y

(c) SuppM = &,p;"' Supp &/ N Uy.

8.10. Similarly let g: Y — X be a holomorphic map and let A, be the
graph of g, ie. {(g(y),y)€ X x Y;ye Y}. Then we have the isomorphisms

Pg Bg

T*X - Y x T*X - T*Y
(8.10.1) || 2 | id.
| T*X <  Ti(XxY) T*Y

—
a
p2

We set &xcy = 0y @ €5, xxy and regard this as a sheaf on Y x T*X.
0 X

Then Ex.y is a (p~ &y, ® ~1&y)-bi-module. For an &y-module 4 we have

J%Aguxy"«/‘/ = RP*GJ—I(gX«Y ® & 'AH).

(’f)—lény

We shall denote this by j/V . Then Theorem 8.8.1 applies to this case
’ - o

and we have
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| TueoreMm 8.10.1. Let Uy and Uy be open subsets of T*X and
d T*Y, respectively. Let A" be a coherent (€y| y,)-module. Assume

@) p,i®y (Supp A) N p, (Ux) > Uy is a finite morphism.

Then we have

| !

I (a) TorP “¥(Exey,®,'N) =0 for j#0.

(b)) M = puExcy Q? ®, ' A)|uy isacoherent & x|y ,-module.
G)g Sy

(©) Supp A = p, (B, " Supp &/ NUy).
§9. REecuLArITY ConDITIONS (See [KK], [K-O])

9.1. Let us recall the notion of regular singularity of ordinary differential
equations. Let P(x,d) = Y a;(x)0' be a linear differential operator in one

jsm
variable x. We assume that the aj{x) are holomorphic on a neighborhood of
x = 0. Then we say that the origin 0 is a regular singularity of Pu = 0 if

(*) Ordx=0aj(x) 2 Ordx=0'am(x) - (m _]) .

 Here ord,_, means the order of the zero. In this case, the local structure

of the equation is very simple. In fact, the Zx-module Px/PxP is a direct
sum of copies of the following modules:

Ox = 9x/9x0, Bioyx = Dx/Dxx, Dx/Dx(x0—N""1  (AeC, meN),
Dy Dx(x0)""1x (meN), Dy Dx0(x0)" 1 (meN) .

| If we denote by u the canonical generator, then we have Pu = 0.
1 By multiplying either a power of 0 or a power of x, we obtain

i b{x) (x0Yu = 0
i=0

. . , o . N-1 . '

§ with by(x) = 1. Hence # = Y O(xdYu = ) O(xdYu is a coherent @-sub-
B j=0 i=0

§. module of ./ which satisfies (x0)F < #. We shall generalize this property

B. to the case of several variables.

B 02 et X be a complex manifold, Q an open subset of T*X and V
a closed involutive complex submanifold of Q. Let us define
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