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Ôx I— CLÔX — ßxdt

x ^ ydxd r1 + Sx

dt i—>•

t t + ^{<dx, 'yadx> d,~2 + <dx, fyßx> df1

+ <'yßx, dx> ôf1 + <x, r8ßx>}.

Then we have <Fflf?.

§ 8. Functorial Properties of Micro-Differential Modules
(See [SKK])

8.1. External Tensor Product.

Let X and Y be complex manifolds and let p1 and p2 be the projections
T*(X x Y) -+ T*X and T*(X xY) -> T* Y, respectively. Then ix x y contains
PÏ1&x ® P21$y as a subring. For an ^-module ^ and an ^-module

c

we define the Sx x y-module Ji 0 Jf by

(8.1.1) ® -/F iXxY ® (pï1Ji ® p2
^Jf}.

-1 -1 c
P1 &x ® P2 &Y

Then one can easily see

Proposition 8.1.1.

(i) M ® Jf is an exact functor in Ji and in Jf and Supp (Ji®jf)
Supp Ji x Supp Jf.

(ii) If Ji is incoherent and Jf is iY-coherent, then * Ji ® Jf is

Sx x y-coherent.

8.2. For a complex submanifold Y of a complex manifold X of codimension I,

the sheaf lim ixt 1&X{(9XIfm, &x) has a natural structure of ^-module,
m

which is denoted by Here is the defining ideal of Y. The homo-

morphism (9Y -> ixtlffx{0Y, &lx) &x ® &y\x giyes the canonical section
Ox

c(Y,X) of Qlx (g> 0&y\x- If we take local coordinates (x1?..., x„) of X such
Ox

that Y is defined by x% xl 0, then we have
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@Y\X@xXj + Ij^l j>l

If we denote by 5 the canonical generator of the left hand side, then

c(Y, X) corresponds to dxx A A dxx ® 5. We set

$x & ^ •

n~

Therefore locally we have

^Y\x $X/^Ej $xxj + X ^x®] -

j^d j>d

Then <£nx is a coherent <f*-module whose support is T$X.

8.3. For an invertible ^-module Se, has a natural
§X Gx

structure of sheaves of rings, by the composition rule

(s®P®s®"1)°(s®ô®s®~1) s ® ® s®"1

for an invertible section sof if and P, ße
Then the category Mod (Sx)of left ^-modules and the category

Mod (if® Sx®if®"1) of left (if ® ® if®" ^-modules are equi-
(fx ffx

valent by the functor

Mod (<?*) a ,// if ® MeMod (if ® <fx ® if®"1).
'x Gx Gx

8.4. Let co* be the canonical sheaf on X, i.e. the sheaf of differential

forms with top degree. Let a be the antipodal map of T*X, i.e. the

multiplication by —1. Then we have the anti-ring isomorphism.

(8.4.1) co* ® êx ® cof _1 a~1êx.
<9x Gx

This homomorphism is given by using a local coordinate system (x1,..., xn)

as follows. For P X-P/x, d) e Sx we define P* YFT(x> ^)> called the

formal adjoint of P ([SKK] Chap. II, Th. 1.5.1), by

(8.4.2) PT(x,-i;)I ^ dldlPfx, y.
J=I-W a!

aeNn

This is well-defined and satisfies

(8.4.3) (P*f P
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(8.4.4) (PQ)* Q*P*

Then the isomorphism (8.4.1) is given by

(8.4.5) dx ® P ® (dx)®_1 f-» P*

where dx dx1 A A dxnecox. This is independent of coordinate
transformations.

8.5. The isomorphism (8.4.1) can be explained as follows. Let Ax be the

diagonal set of X x X, and let pj be the j-th projection from T%x{X x X)
to T*X for j 1, 2. Then the pj are isomorphisms and p2 ° PÏ1 a-

Let Qj be the ;-th projection from T*(X x X) to X(j= 1, 2). Then c{Ax, X x X)

gives the canonical section of ® ^ax\x*x'• Since ^Ax\Xxx *s a

PÏ^'é'x-module, this section gives a homomorphism

Pi %$X * Ql 1(% ® ^AxlXxX-

It turns out that this is an isomorphism and the right multiplication of

(9X on Sx corresponds to the ^-module structure of q2 1cox- ® %>ax\xxx

via q2. Thus we obtain q2 &x

Pi 1((ÖX ® $X ® ^X #1 1(ÙX ® ^AxlXxX-

This last being isomorphic to p21$x, we obtain

(Ox ® $x ® 1
* PiPi lé>x — a 1S'X

Ox Ox

8.6. By 8.3 and 8.4, if Jt is a left <fx([/-module for an open set U of

T*X, then (% ® a~1Jt is a right (<fX|a[7)-module.
Ox

8.7. For a left coherent <fx-module Jt, Sxtjgx {Jt, Sx) is a right coherent

(^-module. Therefore Sxtjêx{Jt, é?x) ® cof_1 is a left ^-module by §*8.6.
Ox

If ^ is holonomic then SxtjSx {Jt, $x) 0 for j ^ n dim X (See [SKK],
[Kl]). Set Jt* Sxtnêx{Jt, <ox) ® cof_1. Then Jt* is also a holonomic

Ox

Sx-module.
We call Jt* the dual system of Jt. We have Jt** Jt, and Jt f— Jt*

is an exact contravariant functor on the category of holonomic (^-modules.
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8.8. Let X and Y be complex manifolds, and let py : T*(X

and p :T*{XxY)-» T*Ybethe canonical projections. Let p \ denote

p2oa.2Let Jf be a left ^.-module defined on an open subset of

T*(XxY). Then, by §8.6, roy ® X has a structure of (py <M-
V

0Y

bi-module. For an <fy-module Jf,

ur pu((% ® JO ® PL1^)
0y a-1

p 2

has a structure of ^-module. We have the following

Theorem 8.8.1. LetQ, Ux andUY be open subsets of T*(XxY),

T*X and T*Y, respectively. Let Jfbe a coherent (S'x x y I n)-module and

Jf a coherent (S\ | UY)-module. Assume

(i) Pi : PT 1JJxnSuPP ^ n PL1 SuPP ux is a fimte

Then we have

fa) STorpl'2 1<?Y ® P2 1«^0 Ip^t/x ^ for J ^
./ 0Y

i (b) Jt Pi*((coy ® Jf) ® pr'^lux is a coherent ^module.
0y " ia~ 1

P2 &Y

(c) Supp JlUxnpy (Supp
1 Supp Jf).

We denote pu((©y ®® lj/) bY
0Y

p 2

Jf °Jf.

8.9. Let / : X-* Ybe a holomorphic map and let A be the graph of /,
i.e. {(x, f(x)) e X x Y;xeX}, then Jf x r is a coherent Sx x y-module

whose support is TffXxY). Now let S be the canonical map

-> T*X and p the projection X x T*Y. Then we have the following
y

diagram

T*X X x T*Y T* Y

(8.9.1) id l\ id.

T*X r*f(x x y) <Y* y
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We set êx-+Y cûy (g) #A/|xxy and consider this as a sheaf on X x T*y
0Y Y

by the above isomorphism. Then SX^Y is a (65_1^, p~ Vy)-bi-module.
For an <fy-module Jf,

® p~ 1t/F).
P_1<?y

We shall denote this by f*JT and call it the pull-back of Jf. Then
Theorem 8.8.1 reads as follows.

Theorem 8.9.1. Let Ux and UY be open subsets of T*X and

T* Y, respectively. Let Jf be a coherent (SY | jfi-module. Assume

(i) p^1 (Supp JA) n c<bf1(Ux) - Ux is a finite morphism.

Then we have

(a) ffor9f Sy (Sx^y, Jf) 0 for j J 0.

(b) Ji c5® Pflj^)\ux is a coherent Sx-module.

P/ lSy

(c) Supp M cOfPj1 Supp Jf r\Ux.

8.10. Similarly let g:Y - X be a holomorphic map and let Ag be the

graph of g, i.e. {(g(y), y)e X x Y ; y e Y}. Then we have the isomorphisms

T*X £ y x T*X ^ T*Y

(8.10.1) || 1! || id.

T*X <- T% (X x Y) T*Y

We set &X+-Y ö)y®^Äg|xxy and regard this as a sheaf on YxT*X.
0Y

9
X

Then SX^.Y is a ® ~ Vy)-bi-module. For an ^y-module Jf we have

We shall denote this by

and we have

Afl|X x y ° Jf — RP*® 1($X<-Y ® ® 1Jf)
a-Vy

«yF. Then Theorem 8.8.1 applies to this case
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Theorem 8.10.1. Let Ux andUY be open subsets of T*X and

T*Y, respectively. Let Jf be a coherent (<Sy | Uy)-module. Assume

(i) pg: S ;'(Supp Jf) n P9HUx) -> Ux is a finite morphism.

Then we have

(a) 0 for j 0.

(b) Jl Pg*(<?x^Y® is a coherent v

&g S Y

(c) Supp JlPff(ô5
~1 Supp JTnUx).

§ 9. Regularity Conditions (See [KK], [K-O])

9.1. Let us recall the notion of regular singularity of ordinary differential

equations. Let P(x, d) £ aj(x)di be a linear differential operator in one
j^m

variable x. We assume that the afx) are holomorphic on a neighborhood of

x 0. Then we say that the origin 0 is a regular singularity of 0 if

(*) ordx 0a/x) > ord^=0am(x) - (m-j).

Here ordx=0 means the order of the zero. In this case, the local structure

of the equation is very simple. In fact, the ^-module 3>X/&XP is a direct

sum of copies of the following modules :

®x3>xl3>xd, @{0)\x ®xl®xx, meN),

Jx/Jx(xd)m+lx (meN), (meN).

If we denote by u the canonical generator, then we have Pu 0.

By multiplying either a power of dora power of x, we obtain

£ bfx) (xd)Ju 0
t=o

co N — 1

with bN(x) 1. Hence 3F — (9(xdYu £ (9(xdYu is a coherent 0-sub-
j=o j—o

module of M which satisfies (xö)^ c «f. We shall generalize this property
to the case of several variables.

o

9.2. Let X be a complex manifold, Q an open subset of T*X and V
a closed involutive complex submanifold of Q. Let us define
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