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An analytic subset V of T*X is called involutive if fly = gly =0

implies {f, g} |y = 0.
The following theorem exhibits a phenomenon which has no analogue
§ in the commutative case.

THEOREM 6.3.2 ([G]). Let # be a coherent &x-module defined on an
E  open subset Q of T*X and let ¥ be a £x(0)|g-module which is a

union of coherent & x(0)-modules. Then V = {peQ; & isnot coherent over

£4(0) on any neighborhood of p} is an involutive analytic subset of Q.

: COROLLARY 6.3.3 ([SKK] Chap. II, Theorem 5.3.2, [M]). For any
¥ coherent &x-module M, Supp M is involutive.

Since any involutive subset has codimension less than or equal to

§  dim X, we have

COROLLARY 6.3.4. The support of a coherent & x-module has codimension
< dim X.

After some algebraic calculation, this implies

THEOREM 6.3.5 ([SKK] Chap. II, Theorem 5.3.5). For any point p e T*X,

., has a global cohomological dimension dim X.

~ 6.4. An analytic subset A of T*X is called Lagrangean if A is involutive

¥ and dim A = dim X. A coherent &x-module is called holonomic if its support

- is Lagrangean.

§ 7. QUANTIZED CONTACT TRANSFORMATIONS

~ 7.1. In the previous section, we saw that the symplectic structure of
§ 7T*X is closely related to micro-differential operators via the relation of

. commutator and Poisson bracket. In this section, we shall explain another
% relation.

1 Definition 7.2.1. Let X and Y be complex manifolds of the same
' dimension. A morphism ¢ from an open subset U of T*X to T*Y is
| called a homogeneous symplectic transformation if @*0, = 0.

e A b
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We can easily see the following

(7.2.1) If ¢ is a homogeneous symplectic transformation, then ¢ is a local
1isomorphism and is compatible with the action of C*.

(7.22) Assume Y = C” and let (y,, ..., ¥,; N1, - Nn.) b€ the coordinates of
T*Y, so that 8, = Y ndy;.

Set p; = ;o @ and g; = y; o ¢. Then we have

(723.1) {p;, o} = {g5- a4} = 0, {pj» s} = d;xforjk = 1,..,n.

(7.2.3.2) p; is homogeneous of degree 1 and g; is homogeneous of degree 0
with respect to the fiber coordinates.

(7.2.4) Conversely assume that functions {q;, -, ¢,, P1> - Ps} o0 U = T*X
satisfy (7.2.3.1) and (7.2.3.2). Then the map ¢: U — T*Y, given by

Usx (ql (X), ] Qn(x)a P (X), sne3y pn(x)) € T*Y s

is a homogeneous symplectic transformation. We call (q,, .-, gu; P15 - Pn)
a homogeneous symplectic coordinate system.

THeoreM 7.2.2 ([SKK] Chap. II §3.2, [K2] §24, [Bj] Chap. 4 §6).
Let @:T*X D U — T*Y be a homogeneous symplectic transformation,
let py beapoint of U and set py = ©(px). Then we have

(@) There exists an open neighborhood U’ of pyx and a C-algebra
isomorphism ®: @ 1&y|y = Ex|y (wecall (@, ®) aquantized contact
transformation ).

(b) If ®:9 &y — Ex|ly is a C-algebra homomorphism ‘then for any
m,® gives an isomorphism @ 'EWm) > Ex(m)|y. Moreover the
following diagram commutes :

le

@~ Ey(m) Ex(m) |y
l Om ’ l Om

¢_1(97*y(m) 3 @T*Y(m)l U

(c) Let ® and @ be two C-algebra homomorphisms ¢ '8y — &x|y-




i
2

)

;’ condition ®(Q) = Q fort = 0.

X =C'""={tx)eC x C",
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Then there exist L e C, aneighborhood U’ of px and PeT(U; &x(V)

| such that o,(P) is invertible and

'(Q) = POQP~  for Qe ¢ 'ylu -
Moreover A is unique and P is unique up to constant multiple.

(d) Let Y = C" andlet U be an open subset of T*X.
If P,el(U;é&x(1) and Q;eT(U; 6x(0) (1<j<n) satisfy

(7-2-5) [Pj,Pk] = [Qja Qk] =0
[Pjan] = 8jk

then there exists a unique quantized contact transformation (@, ®) such that

(P(p) = (GO(Ql) (p)= ees 0-O(Qn) (p)’ Gl(Pl) (p)a wees G1(Pn) (p)) H

l and <D(y1) = Qj’q)(ayj) = PJ"

We call {Qy, ., Qu, Py, ... P,} quantized canonical coordinates.

73. We shall give several examples of quantized contact transformations.

Example 7.3.1. 1f P(d) is a constant coefficient micro-differential operator

| of order 1, then

(x1+ [P, x11, X3+ [P, X1, s X+ [P, X,], Oy, s s Oy,

l  gives quantized canonical coordinates.

Example 7.3.2. More generally if P is a micro-differential operator of

- order 1 and exp tH,, exists, then exp tP gives a quantized contact trans-

? : : . d
1 formation ®,, by solving the equation I ®,(0) = [P, ®,(Q)] with the initial

Example 7.3.3. (Paraboloidal transformation [K2] p. 36). Set

Q = {(t,x;7,& e T*X ;1 # 0}, G = Sp(n; C)

= {geGL(2n; C);'gJg = J} with J =< ? (1))

B o .
For g = (Y S)E G, let ¥, be the quantized contact transformation

‘i
| |
given by 3
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2. > 0f, — B,
X v0,0, ! + 8x
0, — 0,

1
t—t + §{<ax,tya(3x> 0,72+ <0,,"yBx> 0, !

+ <'yBx,0,> 4, ' + <x,"8Px>}.
Then we have ¥, ¥,, = ¥

gi92 °

§ 8. FUNCTORIAL PROPERTIES OF MICRO-DIFFERENTIAL MODULES
-(See [SKK])

8.1. External Tensor Product.

Let X and Y be complex manifolds and let p; and p, be the projections
T*XxY)— T*X and T*X x Y) —» T*Y, respectively. Then &y contains
pi'6x ® p; '€y as a subring. For an &y-module .# and an &y-module A,

C

we define the &y xy-module A4 & A by

(8.1.1) MO N = Exxy ® il @ p;tH).
-1 -1 c
p1 éx 63 p2 ¢y
Then one can easily see

ProPosITION 8.1.1.
() M & N isan exact functor in M and in N and Supp (ARN)
= Supp A4 x Supp N
G) If M is &Ex-coherent and N is &Ey-coherent, then * M & N s
& x x y-Coherent.

8.2. For a complex submanifold Y of a complex manifold X of codimension |/,
the sheaf lim &xt} (Ox/ #™ Ox) has a natural structure of Zy-module,

m

which is denoted by %y x. Here # is the defining ideal of Y. The homo-
morphism Oy — Extg,(Oy, Q%) — Q% ® By x gives the canonical section
Ox

oY, X) of Q% ® AByx- If we take local coordinates (x, .., x,) of X such
Y

that Y is defined by x;, = ... = x; = 0, then we have
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