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An analytic subset V of T*X is called involutive if /\v ~ d\v - ®

implies {/, g} | v 0.

The following theorem exhibits a phenomenon which has no analogue

in the commutative case.

Theorem 6.3.2 ([G]). Let M be a coherent Sx-module defined on an

open subset Q of f*X and let & be a <fx(0)| ^-module which is a

union of coherent êx(0)-modules. Then V {p e £2; is not coherent over

$x(0) on any neighborhood of p] is an involutive analytic subset of

Corollary 6.3.3 ([SKK] Chap. II, Theorem 5.3.2, [M]). For any

coherent Sx-module M, Supp Jt is involutive.

Since any involutive subset has codimension less than or equal to

dim X, we have

Corollary 6.3.4. The support of a coherent $x-module has codimension

^ dim X.

After some algebraic calculation, this implies

Theorem 6.3.5 ([SKK] Chap. II, Theorem 5.3.5). For any point p g T*X,
iXj has a global cohomological dimension dim X.

6.4. An analytic subset A of T*X is called Lagrangean if A is involutive
and dim A dim X. A coherent (^-module is called holonomic if its support
is Lagrangean.

§ 7. Quantized Contact Transformations

7.1. In the previous section, we saw that the symplectic structure of

: T*X is closely related to micro-differential operators via the relation of
J commutator and Poisson bracket. In this section, we shall explain another

I relation.

Definition 7.2.1. Let X and Y be complex manifolds of the same
dimension. A morphism cp from an open subset U of T*X to T*7 is
called a homogeneous symplectic transformation if (p*0y 0X:.
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We can easily see the following

(7.2.1) If cp is a homogeneous symplectic transformation, then cp is a local

isomorphism and is compatible with the action of C*.

(7.2.2) Assume Y C" and let (yx,..., yn; r\1,..., rj„) be the coordinates of
T*Y, so that 0y

Set pj r[j o cp and q-j yj ° (p. Then we have

(7.2.3.1) {pj,pk} {qj,qk} 0,{pj,qk} 8jJt for k 1

(7.2.3.2) pj is homogeneous of degree 1 and ^ is homogeneous of degree 0

with respect to the fiber coordinates.

(7.2.4) Conversely assume that functions {q±,..., qn, p1,..., pn} on U a T*X
satisfy (7.2.3.1) and (7.2.3.2). Then the map cp: U - T*Y, given by

U 3xI-»(<Ji(x),..., g„(x); p,(x),..., p„(x)) e T*Y

is a homogeneous symplectic transformation. We call {qx,..., qn; pY %..., p„)
a homogeneous symplectic coordinate system.

Theorem 7.2.2 ([SKK] Chap. II § 3.2, [K2] § 2.4, [Bj] Chap. 4 § 6).

Let cp : T*X D U -> T* Y he a homogeneous symplectic transformation,
fet px be a point of U and set pY ty(Px)- Then we have

(a) There exists an open neighborhood U' of px and a C-algebra

isomorphism <P : cp - 1SY | v. -+ $x I v (we ca^ (9> <&) a quantized contact

transformation

(b) If cD: <p~1(fY $x\u î5 a C-algebra homomorphism 'then for any

m, <D gives an isomorphism cp_1<fy(m) ^xim)\ u- Moreover the

following diagram commutes :

<p~ Vy(m) %

I I
(p

(c) Let O and <£' be two C-algebra homomorphisms <p~1$Y -> Sx\ u-
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Then there exist XeC, a neighborhood U' of and S"x('k))

such that ct,(P) is invertible and

<£>'(£) pa>(ô)P_1 for getp 1ßY\v

Moreover Xis unique and P is unique up to constant multiple.

(d) Let Y C" and let U be an open subset of T*X.

If P, er(l/;<?*(!)) and QjeT{U; <?x(0)) (1 <Kn) satisfy

(7.2.5) IPJ, Pu] lQ0

IPj, Qui <>jU

then there exists a unique quantized contact transformation (cp, <t>) such that

cp(p) (af/öi) (p),..., a0(ß„) (p), vfPi) (P), -, <*i(A) (p)),

and Wyj) Pj-
We call {Q1,-,Q„,Pi,-,Pn} quantized canonical coordinates.

7.3. We shall give several examples of quantized contact transformations.

Example 7.3.1. If P{5) is a constant coefficient micro-differential operator

of order 1, then

(Xi + [\P, ^2 "h £P5 ^2!' •••' Xn "h C-P? Xnh> dxi 5 ^x„)

gives quantized canonical coordinates.

Example 7.3.2. More generally if P is a micro-differential operator of

order 1 and exp tHai{P) exists, then exp tP gives a quantized contact

transformation by solving the equation — ®t(ß) [P, ®Xß)] with the initial

condition ®,(ß) Q for t 0.

Example 7.3.3. (Paraboloidal transformation [K2] p. 36). Set

X C1+" {M)gC X C"},

Q {(t, x; t, Ç) e T*X; x # 0}, G Sp(n; C)

{0 e GL(2n; C);tgJg J} with J _° J

quantized contact transformation

given by
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Ôx I— CLÔX — ßxdt

x ^ ydxd r1 + Sx

dt i—>•

t t + ^{<dx, 'yadx> d,~2 + <dx, fyßx> df1

+ <'yßx, dx> ôf1 + <x, r8ßx>}.

Then we have <Fflf?.

§ 8. Functorial Properties of Micro-Differential Modules
(See [SKK])

8.1. External Tensor Product.

Let X and Y be complex manifolds and let p1 and p2 be the projections
T*(X x Y) -+ T*X and T*(X xY) -> T* Y, respectively. Then ix x y contains
PÏ1&x ® P21$y as a subring. For an ^-module ^ and an ^-module

c

we define the Sx x y-module Ji 0 Jf by

(8.1.1) ® -/F iXxY ® (pï1Ji ® p2
^Jf}.

-1 -1 c
P1 &x ® P2 &Y

Then one can easily see

Proposition 8.1.1.

(i) M ® Jf is an exact functor in Ji and in Jf and Supp (Ji®jf)
Supp Ji x Supp Jf.

(ii) If Ji is incoherent and Jf is iY-coherent, then * Ji ® Jf is

Sx x y-coherent.

8.2. For a complex submanifold Y of a complex manifold X of codimension I,

the sheaf lim ixt 1&X{(9XIfm, &x) has a natural structure of ^-module,
m

which is denoted by Here is the defining ideal of Y. The homo-

morphism (9Y -> ixtlffx{0Y, &lx) &x ® &y\x giyes the canonical section
Ox

c(Y,X) of Qlx (g> 0&y\x- If we take local coordinates (x1?..., x„) of X such
Ox

that Y is defined by x% xl 0, then we have
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