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§5. THE VANISHING CYCLE SHEAF

1 51. Let M be a real manifold and f: M — R a continuous map. For a
b sheaf # on M, #%-1x+(F) | ;-1 1s called the (j-th) vanishing cycle sheaf
b of #. Here R* = {teR;t > 0}. This measures how the cohomology groups
of # change across the fibers of f. Its algebro-geometric version is studied

é by Grothendieck-Deligne ([D]).

52. Let (X, Oy) be a complex manifold. Let f: X — R be a C®-map and
consider the vanishing cycle sheaf #7%-1g+(0x) | s-1(0)- Let s be the section
. of £71(0) » T*X given by df. Then we have
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{  PROPOSITION 52.1 ([KS1] §3, [K2] §4.2). #%-1+(0x)| s-10) has a
i structure of an s~ '& y-module.

| Let P be a differential operator. If o(P) does not vanish on s(f ~10)),
} then P has an inverse in s~1&, by Proposition 2.2.3. Therefore we obtain

COROLLARY 5.2.2. If o(P)|sr-10) # 0, then
P: #%-13+(0x) | s-10) = K- 1@ (O0) | s-10)
is bijective.
53. More generally, let .# be a coherent Zx-module, and set
| F' = R#tomg (M, Oy).
‘é Then the preceding corollary shows that
R[ ;- ge(F )| po10) =0 if  s(f70) 0 Ch(lt) = @ .

Here Ch.# denotes the characteristic variety of /.

54. To consider vaniShing cycle sheaves is very near to the “microlocal”
consideration. In this direction, see [K-S2].

§ 6. MICRO-DIFFERENTIAL OPERATORS
AND THE SYMPLECTIC STRUCTURE ON THE COTANGENT BUNDLE

| 6.1. The ring &4 is a non-commutative ring. This fact gives rise to new
phenomena which are not shared by commutative rings such as the ring of
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holomorphic functions. They are also closely related to the symplectic
structure of the cotangent bundle.

6.2. Let us recall the symplectic structure on the cotangent bundle.

Let Oy denote the canonical 1-form on the cotangent bundle T*X of a
complex- manifold. Then dBy gives the symplectic structure on T*X. The
Hamiltonian map H: T*T*X) 5 T(T*X) is given by

(6.1.1) <m,v> = <db;,vAH(M)> for neTXT*X)
and ve T(T*X).

For a function { on T*X, H(df) is denoted by H, and the Poisson §
bracket {f, g} is defined as Hg). If we denote by % the Euler vector
field (i.e. the infinitesimal action of C* on T*X), then we have "

X = H(—0,).

With a local coordinate system (x,, .., x,) of X and the associated local
coordinate system (x;, ..., X,; &y, ..., &,) of T*X, we have ‘

ex = Z&_,dej ¥

dby = Zdéjdxj ’
H: dE_U. — 6/axj, dxj — —a/a&j

0
9[=Z§ja—¢g

{f.9} = Z(ag}. 0x; B 0&; axJ').

6.3. This structure is deeply related to the ring of micro-differential operators.
The first relation between them appears in the following

PrROPOSITION 6.3.1. For Pe &) and Qe &(p), set
[P,Q] = PQ — QP (A +p—1).
Then
Gseu [P, 0]) = {51(P), 5,(Q)}




€x

MICROLOCAL ANALYSIS 239

An analytic subset V of T*X is called involutive if fly = gly =0

implies {f, g} |y = 0.
The following theorem exhibits a phenomenon which has no analogue
§ in the commutative case.

THEOREM 6.3.2 ([G]). Let # be a coherent &x-module defined on an
E  open subset Q of T*X and let ¥ be a £x(0)|g-module which is a

union of coherent & x(0)-modules. Then V = {peQ; & isnot coherent over

£4(0) on any neighborhood of p} is an involutive analytic subset of Q.

: COROLLARY 6.3.3 ([SKK] Chap. II, Theorem 5.3.2, [M]). For any
¥ coherent &x-module M, Supp M is involutive.

Since any involutive subset has codimension less than or equal to

§  dim X, we have

COROLLARY 6.3.4. The support of a coherent & x-module has codimension
< dim X.

After some algebraic calculation, this implies

THEOREM 6.3.5 ([SKK] Chap. II, Theorem 5.3.5). For any point p e T*X,

., has a global cohomological dimension dim X.

~ 6.4. An analytic subset A of T*X is called Lagrangean if A is involutive

¥ and dim A = dim X. A coherent &x-module is called holonomic if its support

- is Lagrangean.

§ 7. QUANTIZED CONTACT TRANSFORMATIONS

~ 7.1. In the previous section, we saw that the symplectic structure of
§ 7T*X is closely related to micro-differential operators via the relation of

. commutator and Poisson bracket. In this section, we shall explain another
% relation.

1 Definition 7.2.1. Let X and Y be complex manifolds of the same
' dimension. A morphism ¢ from an open subset U of T*X to T*Y is
| called a homogeneous symplectic transformation if @*0, = 0.
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