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MICROLOCAL ANALYSIS

§ 5. The Vanishing Cycle Sheaf

1.1. Let M be a real manifold and f\M-> R a continuous map. For a

sheaf F on M, *,(^) I is called the O'-th) vanishing cycle sheaf

of SF. Here R+ {t e R; t ^ 0}. This measures how the cohomology groups

of change across the fibers of /. Its algebro-geometric version is studied

by Grothendieck-Deligne ([D]).

5.2. Let (X, (9X) be a complex manifold. Let / : X -> R be a C°°-map and

consider the vanishing cycle sheaf ^}-1(r+)($x) I f~no)- ^et s sect^on

0f /- !(0) - T*X given by df. Then we have

Proposition 5.2.1 ([KS1] §3, [K2] §4.2). +)($*) I f~no) has a

structure of an s~ x-module.

Let P be a differential operator. If a(P) does not vanish on s(f H^)),

then P has an inverse in s_1^x by Proposition 2.2.3. Therefore we obtain

Corollary 5.2.2. If a(P) | s/-i(0) 7^ 0? then

P: xe'3r 1r+(0x) I /-1(0) Jf'rHR+)(^x) I f~H0}

is bijective.

5.3. More generally, let Jt be a coherent ^x-module, and set

Rjfom2x{Ji, (9X).

Then the preceding corollary shows that

RT^-ir+CJO I /-1(G) 0 if s(/_1(0)) n ChMO 0
Here Ch^ denotes the characteristic variety of M.

I 5.4. To consider vanishing cycle sheaves is very near to the "microfocal"

consideration. In this direction, see [K-S2].

§ 6. Micro-Differential Operators
AND THE SYMPLECTIC STRUCTURE ON THE COTANGENT BUNDLE

I 6.1. The ring êx is a non-commutative ring. This fact gives rise to new
I phenomena which are not shared by commutative rings such as the ring of
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