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234 M. KASHIWARA

§ 3. THE ALGEBRAIC PROPERTIES OF & (See [SKK], [Bj])

3.1. In the preceding section, we introduced the notion of micro-differential

operators. The ring & of micro-differential operators has nice algebraic pro- |

perties similar to those of the ring of holomorphic functions.
Let us recall some definitions of finiteness properties.
Definition 3.1.1. Let o/ be a sheaf of rings on a topological space S. |

(1) An o/-module .# is called of finite type (resp. of finite presentation)
if for any point x € X there exists a neighborhood U and an exact
sequence 0 « M |y < AP |y (resp. 0 « M|y « AP|y « L)

(2) A is called pseudo-coherent, if any submodule of finite type defined on
an open subset is of finite presentation. If .# is pseudo-coherent and of |
finite type, then ./ is called coherent. '

(3) A is called Noetherian if ./ satisfies the following properties:
(a) A is coherent.

(b) For any x e X, .4, is a Noetherian «/,-module (i.e. any increasing
sequence of &7, -submodules is stationary).

() For any open subset U, any increasing sequence of coherent
(.« | y)-submodules of ./ |, is locally stationary.

As for the sheaf of holomorphic functions, we have

THEOREM 3.1.1 ([SKK] Chap. II, Thm. 3.4.1, Prop. 3.2.7). Ler T*X
denote the complement of the zero section in T*X.

(1) &x and &x(0) are Noetherian rings on T*X.
(2) &x isflat over n 19,

(3) Ex(M)|f4x is a Noetherian &x(0)| ¢, x-module.
(4) For peT*X, &x(0), is a local ring with the residual field C.

(5) A coherent &y-module is pseudo-coherent over & 4(0).

§4. VARIANTS OF & (See [SKK], [Bi], [S])

4.1. We have defined the sheaf of rings & However we can introduce
other sheaves of rings, similar to &, which makes the theory transparent.
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42 The sheaf & = lim &/&(—m) is called the sheaf of formal micro-
m:N

differential operators. This is nothing but the sheaf similar to &, obtained
. by dropping the growth condition (2.2.1).

43. We can define the sheaf & of micro-differential operators of infinite
d order ([SKK]). For an open Q = C", we set

T(Q; 6%) = {(pjiezs Py € T(Q; Oryx()))
satisfying the following conditions (4.3.1) and (4.3.2)}.

: (43.1) For any compact set K < Q, there is a Cx >0 such that
| sup | p;| < Cgl(—j)!forj < 0.
K

, (4.32) For any compact set K = Q and any & > 0, there exists a
: Ck.. > 0 such that
e
sup | p;| < Cyorr for j>1.
K j!

8 44, We can also define the sheaf &% on T*X by #"(u (0F:%)). (See
‘ [KS] Chap. II, [SKK]). Here n = dim X, 0%." is the sheaf of holomorphic
forms on X x X which are n-forms with respect to the second variable,
and p, is the micro-localization with respect to the diagonal set of X x X
. (See [SKK] Chap. II for the details).

', 45. We have &y < €2 < &%, &y = 4. Moreover, £2, &% and &y are
faithfully flat over &y. The sheaf &y is Noetherian. The sheaf &% contains

&4(\)’s compatible with the multiplication.

4.6. If we denote by v the projection map T*X — T*X/C*, then Riy &% = 0
forj # 0 and &° = y~ 'y, &R,

§47. In [SKK], &, &, and £ are denoted by #, ? and 2.

14.8. To explain the differences between &, £, &® and &, we shall take the
following example. Let X be a complex manifold and Y a hypersurface of X.

We shall take local coordinates (x,, .., x,) of X such that Y is given by
X, = 0. The Py-module Dy/PDyx; + ) Dy0; is denoted by Byx. Set

i>1
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(gnx = & _% «@nx,(gﬂx = gx? (gnx,

(g;olx = éa;{o ;@ (gylx and (gl}le == gRX;’@ (gYIX'

Then we have, setting p = (0, dx;), xo = 0
Cyix,p = {a + blogx;;ae0x . [1/x,],be Oy, xo}/(OX, X0

= (Ox,x[1/%11/Ox, x)) ® Ox, x4
(gnx,p = {a + blogx;;a€e Oy, [1/x,], b€ @xw, %0}/ Ox, xo
= (Ox, xo[1/%11/0x, ) ® Oxjy,x, -
Here @le - li}_n Ox/xTOy is the sheaf of formal power series in the

x,-direction.

;OIX,p = {a + blOg xl;ae(j*i_l(OX)xos bE@X,xo}/(pX,xo
where j is the open embedding X\Y < X.
€., = lim OU)/0, , -

U
Here U ranges over the set of open subsets of the form

{xeX;|x|<éeRex, <elmuxg}.

4.8. If we use &%, the structure of &-modules becomes simpler. We just
mention two theorems in this direction.

- Tueorem 4.8.1 ([KK] Thm. 5.2.1). Let A/ be a holonomic & x-module.
Then there exists a (unique) regular holonomic &x-module M., such that

E° Q@ MZE®Q My
. Ex

Ex

TueoreMm 4.8.2 ([SKK] Chap. II, Thm. 5.3.1). Let X and Y be
complex manifolds and let T%Y be the zero section of T*Y. If M
is an &y« y-module whose support is contained in T*X x TYY, then there
exists a (locally) coherent &x-module ¥ such that

g;(oxY ® ﬂgé{’;{oxY ® (g®@Y)

Exxy Exxy

Here & denotes the exterior tensor product. (See § 8).
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