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234 M. KASHIWARA

§ 3. The Algebraic Properties of g (See [SKK], [Bj])

3.1. In the preceding section, we introduced the notion of micro-differential
operators. The ring S of micro-differential operators has nice algebraic
properties similar to those of the ring of holomorphic functions.

Let us recall some definitions of finiteness properties.

Definition 3.1.1. Let s/ be a sheaf of rings on a topological space S.

(1) An j/-module Ji is called of finite type (resp. of finite presentation)
if for any point x e X there exists a neighborhood U and an exact
sequence 0 <- Ji\ v <- stfp\v (resp. 0 «- Ji\ v <- s/p\ v <- jgq\v).

(2) Ji is called pseudo-coherent, if any submodule of finite type defined on
an open subset is of finite presentation. If Ji is pseudo-coherent and of
finite type, then Ji is called coherent.

(3) Ji is called Noetherian if Ji satisfies the following properties :

(a) Ji is coherent.

(b) For any x e X, Jix is a Noetherian j/x-module (i.e. any increasing
sequence of j^-submodules is stationary).

(c) For any open subset U, any increasing sequence of coherent
(sé I jj-submodules of Ji | v is locally stationary.

As for the sheaf of holomorphic functions, we have

Theorem 3.1.1 ([SKK] Chap. II, Thm. 3.4.1, Prop. 3.2.7). Let T*X
denote the complement of the zero section in T*X.
(1) $x and <fjr(0) are Noetherian rings on T*X.
(2) $x is flat over 7ü_1^x.

(3) êZ(À,) 17°*x is a Noetherian Sx{0) | T*x'm°dule.

(4) For p g T*X, êx(0)p is a local ring with the residual field C.

(5) A coherent Sx~module is pseudo-coherent over <fx(0).

§ 4. Variants of g (See [SKK], [Bj], [S])

4.1. We have defined the sheaf of rings ê. However we can introduce
other sheaves of rings, similar to g, which makes the theory transparent.
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4.2. The sheaf Slim £/<g(-m)iscalled the sheaf of formal micro-

meN

differential operators. This is nothing but the sheaf similar to <f, obtained

by dropping the growth condition (2.2.1).

4.3. We can define the sheaf S of micro-differential operators of infinite

order ([SKK]). For an open Q c= Cn, we set

r(Q ; Sn {{pj)jez; Pj e r(Q; &T*x(j))

satisfying the following conditions (4.3.1) and (4.3.2)}.

(4.3.1) For any compact set K a £2, there is a CK > 0 such that

sup I pj I ^ CKj(-j) for j < 0.
K

(4.3.2) For any compact set K a Q and any s > 0, there exists a

CK £ > 0 such that

g-j

sup I Pj\<CKyt— for j > 1.

K J

4.4. We can also define the sheaf êR on T*X by jTfyA(05?x"i)). (See

; [KS] Chap. II, [SKK]). Here n dim X, (9{ffxn)x is the sheaf of holomorphic
I forms on I x I which are n-forms with respect to the second variable,

and |iA is the micro-localization with respect to the diagonal set of X x X
j (See [SKK] Chap. II for the details).

i 4.5. We have Sx a Sx <= $x Œ • Moreover, ix ê\ and Sx are

# faithfully flat over Sx. The sheaf Sx is Noetherian. The sheaf <fR contains
« $x(kys compatible with the multiplication.

4.6. If we denote by y the projection map T*X - T*X/C*, then Rjy*$R 0

for j # 0 and S y~1y^SR.

4.7. In [SKK], S, and are denoted by 0>f, & and

4.8. To explain the differences between ê, <f°°, êR and #, we shall take the

following example. Let X be a complex manifold and Y a hypersurface of X.
We shall take local coordinates (xl5..., xn) of X such that Y is given by
xl 0. The ^x-module ^x/^xx1 + £ @xdj *s denoted by &Y\x- Set

j> i



236 M. KASHIWARA

V>Y\X — ®X yy Y\X^Y\X — VxWVy\x >

n~1S>x Sx

^Yjx $X ® ^Y\X âlld &Y\X ~ ^X ® ^>Y\X •

Sx Sx

Then we have, setting p (0, dx1), x0 0

%y\x,p {a +blogx±; ae<Px>X0[l/xi], e &x,X0}/&x,X0

«Px.^[l/xi Wx,X0)®
$Y\x,p {a +blog x1;as &x<X(^\/x{\, be

{0x,X0[MxAI®x,X0)®Vx\y,x„-

Here SX\Y lim &x/x(9x is the sheaf of formal power series in the

xY-direction.

%y\x,p {a +blogXi ; a e (jJ~lC>x)x0, b e &x,X0}/&x,X0

where j is the open embedding X\Y c> X.

«V, Hm &

u

Here U ranges over the set of open subsets of the form

{xeX;\x\ < 8, Re xx < s Im xj
4.8. If we use Sx, the structure of «^-modules becomes simpler. We just
mention two theorems in this direction.

Theorem 4.8.1 ([KK] Thm. 5.2.1). Let M be a holonomic Sx-module.

Then there exists a (unique) regular holonomic Sx-module such that

<f* 0 Ji (T00 ® e/#reg
Sx Sx

Theorem 4.8.2 ([SKK] Chap. II, Thm. 5.3.1). Let X and Y be

complex manifolds and let T$Y be the zero section of T*Y. If M
is an êXxY-module whose support is contained in T*X x T£7, then there

exists a (locally) coherent êx-module f£ suchthat

<ff>xr ® ® (<£®(9y).
Sx X Y Sx xY

Here ® denotes the exterior tensor product. (See § 8).
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