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§ 2. Micro-differential Operators (See [SKK], [Bj], [S], [K2])

21 Let Xbean n-dimensional complex manifold and let nx : T*X - X

be the cotangent bundle of X. Let us take a local coordinate system

!(x X of X and the associated coordinates {xx,xn;t,l9 -, sJ 0

For a' differential operator P, let {Pj(x,Ç)}be the total symbol of P as in

§ 1.2. We sometimes write P EPj(x, d).

Let Q Z<2 (x, d) be another differential operator. Set an

R PQ. Then the total symbols {S/} and } of R and S are given

explicitly by

(2.1.1) SJ PJ +

(2.1.2) *,= E ^V ' 7= »+Ir-!r»l OC Il=j+k-,
aeNn

where d\ WW1 -WW"andd% WW1 -
'

The total symbol {Pj{x,ofa differential operator behaves as follows

: under coordinate transformations. Let (xi, xn) and (x"i, xn) be two local

; coordinate systems. Let (£,,,..., £,„) and (|i, -, 1„) be related by

I i.e. (xx,..., x„; > •••> £») and (x~1; -, x„; I,,-,?„) are the associated local
1 coordinate systems of the cotangent bundle T*X. Let be a differential

operator on X and let {Pj(x,0}and be the total symbols of

with respect to the local coordinate systems (x^,—,x„) and (xl5—, x„),

respectively. Then one has

(2.1.3) Pi(*>I)

y <?, d%lx> <1, Ç)

v.«,-.,. v ax av
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Here the indices run over je Z, v g N, al9..., av g N" such that
I QCi I,..., I ocv I ^ 2 and / j + v - | oq | - - | ocv |. For ß g N", <1, d*x>
denotes ^jd^Xj.

j

2.2. The total symbol {Pj(x, Q} of a differential operator is a polynomial
in £,. We shall define microdifferential operators by admitting Pj to be

holomorphic in E,.

For XeC, let &T*x(ty be the sheaf of homogeneous holomorphic functions
of degree X on T*X, i.e., holomorphic functions f(x, Ej) satisfying

ÇZSjd/dîj-XWx,® 0.

Definition 2.2.1. For XeC we define the sheaf S'xiX) on T*X by

ßI {(Px_,(x, ^.eN ; P,_je T(Q; -;))
and satisfies the following conditions (2.2.1)}

(2.2.1) for any compact subset K of Q, there exists a 0 such that

SUP I p\-j I < Ckj'C/!) for all j > 0
K

Remark. The growth condition (2.2.1) can be explained as follows. For
a differential operator P ZP7(x, d), we have

P(x, d)«x,Ç> +pfZPj(x, 3_EM_(<X,

For P {Px-j(x, £)) g <f(À,) we set, by analogy

p(<x,t>+Pr

Then the growth condition (2.2.1) is simply the condition "that the right
hand side converges when 0 < | <x, £> + p | « 1.

Now, we have the following

Proposition 2.2.2 ([SKK], Chap. II, § 1, [Bj] Chap. IV, § 1).

(0) S'xiX) contains S^jX—m) as a subsheaffor me N.

(1) Patching by rule (2.1.3) under coordinate transformations, S'xiX) becomes

a sheaf defined globally on T*X.
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(2) By rule(2.1.1), é'xCk) is a sheaf of C-vector space on T*X.

(3) By rule (2.1.2), we can define the "product" homomorphism :

Sx(^) ® $x(n) <^x(X l0>

c

which satisfies the associative law.

(4) Inparticular, #*(0) and Sf u S°x(m) become sheaves of non
meZ

commutative) rings on T*X, with a unit.

The unit is given by (Pfix, £)) with Pj 1 /or j 0 and Pj 0

for j ¥= 0.

We define the homomorphism

by

Then, is a well-defined homomorphism on T*X (i.e. compatible with

coordinate transformation) and we have an exact sequence

0 - Sx{\-1) - £x(X) 3 (9t*x(X) - 0.

Now we have the following proposition, which says that the ring Sx

is a kind of localization of $)x.

Proposition 2.2.3.

(1) For PeS{X) and Q e <%i), we have <jx+il{PQ) ax(P)aM(g).

(2) ([SKK] Chap. II, Thm. 2.1.1) If PeSfk) satisfies Gx(P){q)J=0 at

qeT*X, then there exists Qe^(-X) such that PQ QP 1.

The relations between Sx and Q)x are summarized in the following
theorem.

Theorem 2.2.4 ([SKK], Chap. II, § 3).

(i) êx contains k~x^x as a subring and is flat over

(ii) êx I T*x ~ Qsx, where T %X is the zero section of T*X.

(iii) For a coherent Q>x-module M, the characteristic variety of Ji
coincides with the support of Sx ® nx^Jt.

nX 1@x
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