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§ 2. MICRO-DIFFERENTIAL OperATORS (See [SKK], [Bjl, [S], [K2])

71. Let X be an n-dimensional complex manifold and let my: T*X —» X

{ be the cotangent bundle of X. Let us take a local coordinate system

‘ (xy, - X,) Of X and the associated coordinates (Xy, .., Xn> &1 - g,) of T*X.
For a differential operator P, let {P;(x, &)} be the total symbol of P as in

i § 1.2. We sometimes write P = XP;(x, 0).
Let Q = 2Q;(x, 0) be another differential operator. Set S = P + Q and

'R = PQ. Then the total symbols {S;} and {R;} of R and S are given
I explicitly by

1 21 S; =P+

!

212 R = ) —(0%P;) (0520
| e o

where 0 = (0/08)" .. (8/08, )y~ and 0% = (9/0x)*" ... (0/0x,)™"
B The total symbol {P;(x, )} of a differential operator behaves as follows
} under coordinate transformations. Let (xy, ..., X,) and (X}, .., X,;) be two local

1 coordinate systems. Let &, . &) and €, .., §,) be related by

_ 0%,
R & = Z &7
] , J T 0%y
% L€, (Xgs e X3 E1» s &) aDd (Xg 5 oes %€, .,E,) are the associated local
coordinate systems of the cotangent bundle T*X. Let P be a differential
§ operator on X and let {P;(x, £)} and {P;(%,E)} be the total symbols of P
#% with respect to the local coordinate systems (X;,.. X,) and (X, .. X,),

respectively. Then one has

BB P% Y

<B gux> .. < 0%x>08 T WPi(x, §).
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Here the indices run over jeZ, veN, «,,..,a,€N" such that k
Loty |, |0, | = 2andl=]+v—|a1|— —lavl.ForBeN",<E,6§£>§
denotes Z E0°%;. ' 1

2.2. The total symbol {P;(x, &)} of a differential operator is a polynomial ]
in & We shall define microdifferential operators by admitting P; to be
holomorphic in E.

For A € C, let Or,x(A) be the sheaf of homogeneous holomorphic functions |
of degree A on T*X, i.e. , holomorphic functions f(x, &) satisfying ]

(X8;0/08;—Nf(x,8) = 0.
Definition 2.2.1. For AeC we define the sheaf &x(A) on T*X by ’
Q> {(Poey5, D)jens Pry € T(Q; Opyulh—)) ‘

and satisfies the following conditions (2.2.1)}

(2.2.1) for any compact subset K of Q, there exists a Cx > 0 such that
3111<p|P,L_j|<Cgf(j!) forall j>0. |

Remark. The growth condition (2.2.1) can be explained as follows. For :
a differential operator P = XP;(x, d), we have

I .
P(x, 0) (<x, &> +p)* = ZP;(x, é)r(tl—(—;l)'i‘l)(<x’ E>+pH7.

For P = (P,_;(x, £)) € &(\) we set, by analogy

I'(p)
Fp—A+j+1)

P(<x,E> +pt = pr—j(X, £) (<x,E>+pHr*ti.

Then the growth condition (2.2.1) is simply the condition that the right
hand side converges when 0 < | <x,E> + p| « 1.

Now, we have the following

ProrosiTion 2.2.2 ([SKK], Chap. II, § 1, [Bj] Chap. 1V, § 1).
0) &x(A) contains Ex(A—m) as a subsheaf for me N.

(1) Patching by rule (2.1.3) under coordinate transformatlons Ex(A) becomes §
a sheaf defined globally on T*X.
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§ (2) By rule (2.1.1), &x(A) isa sheaf of C-vector space on T*X.
j (3) By rule (2.1.2), we can define the “product” homomorphism :
600 ® &x() — Ex ),
c

which satisfies the associative law.

(4) In particular, &x(0) and &x = U &(m) become sheaves of (non

meZ

commutative ) rings on T*X, with a unit.
The unit is given by (P;(x,£)) with P; =1 for j=0 and P;= 0
W for j#0. ‘

We define the homomorphism
& o)1 Ex(N) = Opx(M)
§§ by (Pk—j)HPx-

Then, o, is a well-defined homomorphism on T*X (i.e. compatible with
5 .
B coordinate transformation) and we have an exact sequence

0> Ex(h—1) > Ex(1) 3 Op,x(¥) = 0.
i Now we have the following proposition, which says that the ring &y

B is a kind of localization of .

r PRroOPOSITION 2.2.3.
() For Pe&M)) and Qe &), we have o, (PQ) = o,(P)5,(Q).

B () ((SKK] Chap. II, Thm. 2.1.1) If Pe&() satisfies o,(P)(g) # 0 at
1 ge T*X, then there exists Qe &(—MA) such that PQ = QP = 1.

The relations between &y and 2, are summarized in the following
theorem.

THEOREM 2.2.4 ([SKK], Chap. II, § 3).

W () &y contains n”'Dy as a subring and is flat over n”'Dy.

(i) &Exlr%x =~ Dx, where TXX is the zero section of T*X.
| (i) For a coherent ZDy-module M, the characteristic variety of M

coincides with the support of &y & mnx'AM.

-1
ny Dx.
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