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MICROLOCAL ANALYSIS 229

| 05 In the situation of §0.2, u(x) = ¢o(x)f(x)" + .. satisfies supp sp(u(x))
= {+df(0)} Therefore P,(x,df) must be zero if P(x, du(x) = 0. In fact
otherwise the bijectivity of P: €y — € implies sp(u) = 0.

f 0.6. Such a method of studying functions or differential equations locally
on the cotangent bundle is called microlocal analysis. After Sato’s discovery
| of microfunctions, microlocal analysis was studied intensively in Sato-Kawai-

! Kashiwara [SKK].

3 Also L. Hérmander [H] worked in the C*-case. Since then, microlocal
{ analysis has been one of the most fundamental tools in the theory of

linear partial differential equations.

§ 1. SYSTEMS OF DIFFERENTIAL EQUATIONS (See [O], [Bjl)

1.1. Let X be a complex manifold. A system of linear differential equations
{ can be written in the form

; No
(1)) S P =0, i=1,2.N,.
. j=1

Here u,, .., uy, denote unknown functions and the P;;(x, 0) are differential
- operators on X. The holomorphic function solutions of (1.1.1) are simply
§  the kernel of the homomorphism

(1.1.2) P:0% - 0%

which assigns (v , .., Uy,) t0 (Uy, ., Uiy, ), Where v; =} Pyj(x, O)u;.

1 Let us denote by 2y the ring of differentiall operators with holo-
morphic coefficients. Then

(1.1.3) P: 9% > 9%

given by (Q;, .., Qn,) to (2Q;P;, .., ZQ;Piy,) is a left Py-linear homo-
: f“ morphism. If we denote by .# the cokernel of (1.1.3), then .# becomes a
left @y-module and Homg, (M, Ox) is the kernel of (1.1.2). This means
that the set of holomorphic solutions to Pu = 0 depends only on /.
For this reason we mean by a system of linear differential equations
a left 24-module. ‘
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1.2. Let us take a local coordinate system (x,,..,x,) of X. Then any
differential operator P can be written in the form

(1.2.1) P(x,0) = ¥ a (0"
aeN"
where 0* = dl*//ox% ... ox*, |o| = o; + .. + o, and the a/x) are holo-

morphic functions. For j € N, we set

Piv8 = ¥ (e,
al=j
where & = £3'.. &y, and we call {P;(x, &)} the total symbol of P. The
largest m such that P,, # 0 is called the order of P and P, is called the
principal symbol of P and denoted by o(P).
Let us denote by T*X the cotangent bundle of X, and let

(X1 5 ooy X3 &1 5 v Ep)

be the associated coordinates of T*X. It is a classical result that if we
consider o(P) as a function on T*X, then this does not depend on our
choice of the local coordinate system (x,, ..., X,).

1.3. Let M be a real analytic manifold, and X its complexification, e.g.,
M=R"cX =C" Let P be a differential operator on X. When
o(P) (x, &) # 0 for (x, &) e R"” x (R"\{0}), P is called an elliptic differential
operator. In this case, we have the following result.

ProrosiTiON 1.3.1. If u is a hyperfunction (or distribution) on M
and Pu is real analytic, then wu is real analytic. More precisely if we
denote by </ the sheaf of real analytic functions on M and by X%
(resp. Db) the sheaf of hyperfunctions (resp. distributions) on M, then
P:RB|A — B/A (resp. P:Db/d — Db/l ) is a sheaf isomorphism.

This suggests that if o(P)(x,&) # 0, we can consider the inverse P!
in a certain sense. Since (x, &) is a point of the cotangent bundle, P!
is attached to the cotangent bundle.

In fact, as we shall see in the sequel, we can construct a sheaf of rings
&x on T*X such that 9y < n,Ex, where n is the canonical projection
T*X — X. Moreover if P € 9y satisfies o(P) (x, §) # 0 at a point (x, ) € T*X,
then P~ ! exists as a section of &y on a neighborhood of (x, &).

This can be compared to the analogous phenomena for polynomial
rings, as shown in the following table.
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