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0.5. In the situation of §0.2, u(x)c0(x)f(xf + satisfies supp sp(n(x))

{±df(x)}.Therefore Pm(x,df) must be zero if - 0. In fact

otherwise the bijectivity of P: implies sp(u) — 0.

0.6. Such a method of studying functions or differential equations locally

on the cotangent bundle is called microlocal analysis. After Sato's discovery

of microfunctions, microlocal analysis was studied intensively in Sato-Kawai-

Kashiwara [SKK].

Also L. Hörmander [H] worked in the case. Since then, microlocal

analysis has been one of the most fundamental tools in the theory of

linear partial differential equations.

§ 1. Systems of Differential Equations (See [O], [Bj])

1.1. Let X be a complex manifold. A system of linear differential equations

can be written in the form

No

(1.1.1) X Pij(x, d)uj 0 i 1, 2,..., N!
j= i

Here wl9..., uNo denote unknown functions and the Py(x, 3) are differential

operators on X. The holomorphic function solutions of (1.1.1) are simply
; the kernel of the homomorphism

; (1.1.2) P:(9f^(9^
which assigns (v1,..., vNl) to (u1,..., uNo), where vt ^ Pij(x, d)uj.

j
Let us denote by the ring of differential operators with holo-

1 morphic coefficients. Then

i (1.1.3) P:3NX> ->@NX°

given by {Ql9...,QNl) to (Wfl>-W^0) is a left ^-linear homo-

i: morphism. If we denote by Jl the cokernel of (1.1.3), then Jt becomes a

left ^-module and Qx) is the kernel of (1.1.2). This means

that the set of holomorphic solutions to Pu 0 depends only on M.

For this reason we mean by a system of linear differential equations

a left ^-module.



230 M. KASHIWARA

1.2. Let us take a local coordinate system (xls,.., x„) of X. Then any
differential operator P can be written in the form

(1.2.1) P(x, 5) X fla(x)da
aeNn

where da d^'/dx"1 dx*n, | a | a1 + + a„ and the aa(x) are holo-
morphic functions. For je N, we set

PjM X aJrtPn
M=j

where ^ and we call {Pj(x,Q} the tota/ symbol of P. The

largest m such that Pm =£ 0 is called the order of P and Pm is called the

principal symbol of P and denoted by a(P).
Let us denote by T*X the cotangent bundle of X, and let

(x1(..., £„)

be the associated coordinates of T*X. It is a classical result that if we
consider a(P) as a function on T*X, then this does not depend on our
choice of the local coordinate system (xx,..., x„).

1.3. Let M be a real analytic manifold, and X its complexification, e.g.,

M R" c= X C". Let P be a differential operator on X. When
cr(P) (x, £) 7^ 0 for (x, y eR" x (R"\{0}), P is called an elliptic differential

operator. In this case, we have the following result.

Proposition 1.3.1. If u is a hyperfunction (or distribution) on M
and Pu is real analytic, then u is real analytic. More precisely if we

denote by sé the sheaf of real analytic functions on M and by &
(resp. Qib) the sheaf of hyperfunctions (resp. distributions) on M, then

P : -> (resp. P : @b/stf -> SJb/srf is a sheaf isomofphism.

This suggests that if a(P) (x, £) ^ 0, we can consider the inverse P_1

in a certain sense. Since (x, £) is a point of the cotangent bundle, P"1
is attached to the cotangent bundle.

In fact, as we shall see in the sequel, we can construct a sheaf of rings

$x on T*X such that $)x c= n^Sx, where n is the canonical projection
T*X - X. Moreover if P e Q)x satisfies a(P) (x, £) ^ 0 at a point (x, £) e T*X,
then P"1 exists as a section of Sx on a neighborhood of (x, £).

This can be compared to the analogous phenomena for polynomial
rings, as shown in the following table.
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