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INTRODUCTION TO MICROLOCAL ANALYSIS ')

by Masaki KASHIWARA

§ 0. INTRODUCTION

0.1. In this lecture, we explain the micro-local point of view (ie. the
B! consideration on the cotangent bundle) for the study of systems of linear
Il differential equations.

0.2. The importance of the cotangent bundle in analysis has been recognized
¥ for a long time, although implicitly, for example by the following con-
§ . sideration.
; We consider a linear differential operator

P(x,0) = Y ax)0* with 0% = (0/0x,)* ... (0/0x,)*

aeN"

for ¢ = (oty, .., ,), and try to find a solution to P(x, du(x) = 0. If we
- suppose that u(x) has a singularity along a hypersurface f(x) = 0, then the
simplest possible form of u(x) is

u(x) = co(x)f(x)" + c () f()" + ..
Then setting P,(x, &) = Y. a,(x)5* we have

|a|=m
0.11)  P(x, Ou(x) = S5—1) ... (s—m+ Deolx)P,(x, df)f(F™ + ..
+ (s+j) . (s+j-—m~+Dcx)P,(x, df)
+ (terms in ¢g, ..., ¢;— 1) f(x)* 7 + ...

Therefore P,(x,df) must be a multiple of f(x) (ie. P, (x,df) = 0 on
M. /(0)). In this case, f~1(0) is called characteristic.

Thus the hypersurface f~'(0) is not arbitrary and the singularity of the
| solution to Pu(x) = 0 has a very special form.
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3 1 Survey lectures given at the University of Bern in June 1984 under the
H sponsorship of the International Mathematical Union.

This article has already been published in Monographie de I'Enseignement Mathé-
matique, N° 32, Université de Genéve, 1986.
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03. If P,(x,&) # 0 for any non-zero real vector &, then P is called an
elliptic operator. In this case, one can easily solve P(x, d)u(x) = f(x) for any
f(x), at least locally. We start from the plane wave decomposition of the
d-function.

()

<x,E>"

(0.3.1) d(x) = const. J
’ sn—1

where (&) is the invariant volume element of the sphere S"~ 1.
By formula (0.1.1), we can solve

1
(<xa E.s> — <) &>)n ’

P(x, 0)K(x, y) =

by setting K(x, y) = ) ¢;(<x,&>— <y, £>)"""*/ and determining c; recur-

sively. Then K(x, y) = const J K(x, y, E)(&) satisfies

P(x, OK(x, y) = 8(x—y)
by (0.3.1).
If we set u(x) = jK(x, ) f(y)dy then u(x) satisfies P(x, du(x) = f(x).

In fact
P(x, Oyu(x) = JP(x, DK(x, y) f(y)dy = J O(x=y)f(Wdy = f(x).

0.4. By these considerations, M. Sato recognized explicitly the importance
of the cotangent bundle by introducing the singular spectrum of functions
and microfunctions [Sato]. For a real analytic manifold M, let <7,, be the
sheaf of real analytic functions and %,, the sheaf of hyperfunctions. Let
n: T*M — M be the cotangent bundle of M. Then he constructed the sheaf
%\ of microfunctions and an exact sequence

0 oy = By 1,6y — 0.

The action of a differential operator P(x, d) on A, extends to the action
on €y, .
- Moreover P: %, — %, is an isomorphism outside

{x,8e€ T*M; P,(x, &) = 0} .
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| 05 In the situation of §0.2, u(x) = ¢o(x)f(x)" + .. satisfies supp sp(u(x))
= {+df(0)} Therefore P,(x,df) must be zero if P(x, du(x) = 0. In fact
otherwise the bijectivity of P: €y — € implies sp(u) = 0.

f 0.6. Such a method of studying functions or differential equations locally
on the cotangent bundle is called microlocal analysis. After Sato’s discovery
| of microfunctions, microlocal analysis was studied intensively in Sato-Kawai-

! Kashiwara [SKK].

3 Also L. Hérmander [H] worked in the C*-case. Since then, microlocal
{ analysis has been one of the most fundamental tools in the theory of

linear partial differential equations.

§ 1. SYSTEMS OF DIFFERENTIAL EQUATIONS (See [O], [Bjl)

1.1. Let X be a complex manifold. A system of linear differential equations
{ can be written in the form

; No
(1)) S P =0, i=1,2.N,.
. j=1

Here u,, .., uy, denote unknown functions and the P;;(x, 0) are differential
- operators on X. The holomorphic function solutions of (1.1.1) are simply
§  the kernel of the homomorphism

(1.1.2) P:0% - 0%

which assigns (v , .., Uy,) t0 (Uy, ., Uiy, ), Where v; =} Pyj(x, O)u;.

1 Let us denote by 2y the ring of differentiall operators with holo-
morphic coefficients. Then

(1.1.3) P: 9% > 9%

given by (Q;, .., Qn,) to (2Q;P;, .., ZQ;Piy,) is a left Py-linear homo-
: f“ morphism. If we denote by .# the cokernel of (1.1.3), then .# becomes a
left @y-module and Homg, (M, Ox) is the kernel of (1.1.2). This means
that the set of holomorphic solutions to Pu = 0 depends only on /.
For this reason we mean by a system of linear differential equations
a left 24-module. ‘
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